智慧城市大數據可視化決策分析系統,能夠將城市運行核心系統的各項關鍵數據進行可視化呈現,從而對包括應急指揮、城市管理、公共安全、環境保護、智能交通、基礎設施等領域進行管理決策支持,進而實現城市智慧式管理和運行。
系統支持將不同平台系統數據、不同業務部門數據融合貫通,綜合匯集於系統之上,以全方位掌控城市綜合態勢。包括:市政、警務、交通、電力、商業等多領域數據。
系統支持集成包括地理信息、GPS數據、傾斜攝影數據、BIM建築模型數據、統計數據、攝像頭採集畫面等多類型數據。
基於三維地理信息,系統利用三維視圖結合虛擬現實技術,將包括城市街區、地標點、建築物、機動目標、管線設施等在內的城市全景進行完整、鮮活的呈現。
系統支持多樣化的二維電子地圖,能夠載入矢量數據和柵格數據,進行地圖的放大、縮小、漫遊、距離量算、區域覆蓋計算、標繪以及圖層控制,支持移動目標的顯示控制。
我司獨創的二三維地理信息系統聯動功能,二維的平面地理視圖便於操作交互,三維視圖便於直觀形象化呈現,適用於大屏、多屏環境下的地理信息可視化。
將數據按照時間和空間兩個維度進行同步呈現,全面掌控數據變化態勢。支持空間數據的實時監控、歷史回放、模擬推演,讓規律清晰可見,讓決策有數可依、更加高效。
針對城市管理部門眾多數據的指標與維度,將數據按主題、成體系地加以呈現,幫助用戶從不同角度觀察、分析數據,聚焦趨勢規律。
支持將實時數據監測以及歷史數據分析,以逐時曲線、時域統計柱圖等形式,呈現數據隨時間的變化趨勢,顯現規律,支持決策。
系統提供豐富的圖表呈現方式,包括散點圖、折線圖、柱狀圖、餅圖、雷達圖、K線圖、熱力圖、箱線圖、關系圖、桑基圖等。除了平面圖表,還支持基於三維空間場景的圖表疊加。
通過建立預警指數或模型對與其存在關聯的數據進行監測、分析,提供基於數據挖掘的預警機制。一旦實時數據達到預定限值或發生異常,系統將自動發出報警。同時系統支持報警閾值、置信度閾值等設定值限定。
系統支持多種數據篩選方式,包括欄位查詢、地圖圈選、點選等,用戶可以根據實際需求,有針對性了解相應信息。
系統支持對單體對象進行詳細查看,例如三維樓宇、機動車輛信息、單體體征數據、攝像頭視頻信號等。
系統提供強大友好的標繪功能,除提供基礎信息標繪、行業專用標繪外,還支持標繪對象定製。同時支持觸控標繪操作,可用於指揮決策會商等場景。
統一的可視化模式控制機制,集成屏幕拼接控制,實現一鍵同時切換軟體系統和屏幕拼接模式。使用戶可以簡便快速的切換應用場景。
系統支持通過PAD、智能手機等手持設備作為控制終端,來實現對大屏顯示布局、系統模式的切換以及軟體界面內容的交互控制。為客戶提供一種靈活、便捷的操控體驗。
系統擁有高效可靠的大數據接入能力,支持接入超大范圍地圖、三維地表模型、城市建築模型、海量攝像頭數據,可以支撐TB級的業務數據吞吐 量。同時可以實現各類介面數據的無縫可視化接入,並可快速響應分析操作和實時反映數據變化。
平台打通政府各部門、各系統之間的信息壁壘,包括公安、交通、消防、情報、反恐等多部門數據,以及車輛移動GPS數據、傾斜攝影數據、BIM建築模型數據、統計數據、攝像頭採集畫面等多類型數據。從市政設施分布、公安&消防車輛運行態勢、交通運行情況、巡邏案件分布等多個角度,對城市各領域運行數據進行多維度可視分析,提升城市管理者資源統籌效率和管理決策能力。
平台以數字方式全面描繪城市區域經濟發展現狀,涵蓋城市概況、宏觀經濟、產業發展、投資貿易等。包括科技、教育、文化、人口、衛生、環境保護;GDP、財政收支數據、貿易、價格指數;按資本、就業、稅收等角度的產業分析;固定資產、工業、房地產各項投資數據分析等。為城市規劃、城市產業分布和城市基礎設施建設和改善居民生活條件等方面提供科學的決策依據。
平台將政府各職能部門和資源進行有效結合,為管理者應對突發事件建立一個信息共享、高效決策、部門聯動的可視化指揮調度系統,可以實時監控突發事件發展態勢、人員位置分布、警力資源、醫療配備情況等信息,幫助指揮人員實時了解現場情況、掌控事態發展趨勢,及時指揮決策。
平台具有開放體系結構,集成監測預警、應急指揮調度、模擬推演、分析研判等於一身,支持從警力警情分布、視頻監控、卡口分布、轄區人口、重點場所等多個維度進行日常監測與協調管理;支持突發事件下的可視化接處警、警情監控、警情查詢、轄區定位、警情態勢分析、應急指揮調度管理,以滿足常態下警力警情的監測監管、應急態下協同處置指揮調度的需要,滿足公安行業平急結合的應用需求。
平台是一個面向交通管理部門的綜合性輔助決策平台,集成運營業務管理、應急指揮調度、監測預警、分析研判於一身,兼具道路視頻監控展示,流量監測數據呈現,交通數據統計分析,具有綜合監視、運營協調、應急指揮等職能。支持從交通態勢監控、視頻監控、智能卡口分析、交通態勢評估研判等多個維度進行日常路網運行監測與協調管理。
平台能夠實現將園區運行核心系統的各項關鍵數據進行呈現,為用戶提供一個集園區生產、園區運營、園區控制、園區決策多維一體的智能運營管理平台,支持從園區基礎設施、園區交通、智能樓宇、園區招商、物業管理、企業孵化、產業分析管理等多個維度進行日常運行監測與協調管理,以及突發事件下的告警接報、信息處理發布、應急指揮調度管理。
平台支持對電網多個環節的數據進行深度分析挖掘,可以實現電網拓撲分析、用戶用電特徵分析、用電負荷異動識別、竊電嫌疑監測分析、安全防禦、商業選址等智能電網多個環節的日常運行監測與協調管理,切實提高電力生產、營銷及電網運維等方面的管理水平。
城區網格化管理,人、地、物、事多維度可視化呈現,全面掌控管轄區域內的綜合態勢。平台基於地理信息系統,可全麵包含智慧城管、智慧社區、智慧交通等幾部分可視化。
㈡ 常用的數據分析方法有排列圖、因果圖、直方圖、控制圖
為調查底板傾斜與封存形態的關系的資料如下,請製作散布圖,並說明相關性。NO底板形態NO底板形態NO底板形態10.0160.15150.0320.29280.0300.02920.0120.19160.060.52290.0440.5230.0270.27170.040.49300.0490.5340.0230.30180.0200.28
㈢ 大數據路線圖 大數據如何改變商業
大數據路線圖:大數據如何改變商業
如果說2012年是大數據概念為人所知、引人矚目、小試牛刀的一年,那麼2013年大數據將會實現產品部署,早期投資獲得回報,一小部分的產業被顛覆。到了2014年,各種大數據項目和系統很可能成為標准配置,到處可見。
今年,大數據和雲計算一起作為科技術語出現。大數據意味著非常多的事情,但是被援引的次數太多了,幾乎失去了其本來的定義。大數據的定義通常和速率(數據移動得快),體積(數據規模龐大),和種類(非結構化和結構化的信息)三點有關。
大數據真的如人們所描述的那樣嗎?是的。對我來說,大數據代表了科技和商業的一致——也就是首席信息官們始終追求的聖杯(Holy Grail)——成為了一件順理成章的事情。大數據項目從本質上來說和營收、風險利潤是相關的。換句話說,信息科技和商業世界情不自禁地聯合了起來。
顯然我們正處在一個追捧大數據的階段,我認為可以和1990年代末的Linux和2000年代初的開源軟體運動相提並論。那時候Linux正要開始改變世界,和微軟等廠商一較高下。從許多方面來說,Linux和開源軟體(比如安卓)的確改變了一切。但是在行業變革的過程中發生了一個有趣的事情——開放軟體成了每一個數據中心的標准配置,如今已經被認為是理所應當了。這場變革發生了,我們僅僅是不再談論它而已。雲計算也是一樣。
大數據會遵循同樣的發展路線。當然,會創造數百萬個工作機會,相關人才也會變得有一點搶手。公司們也會用大數據升級各自的行業。隨著Cloudera這樣的創業公司成為新的紅帽子(Red Hats),各家廠商的市場座次也逐漸明朗。
如下是我對大數據未來幾年的展望。
2013年:2012年的試驗項目成品化,每一個行業的垂直領域都會有一個成功的大數據案例。
2014年:在2013年成功經驗和客戶研究案例的基礎上,一些行動快速的市場跟隨者將進入大數據領域。各個行業都將遵循大數據的游戲規則。初期的回報看上去會很不錯。公司的主要關注點在內部數據上,因為有很多東西可以挖掘。外部數據也很有用,但是這段時期不會有什麼新進展。
2015年:在制定大數據計劃時,公司們開始將目光投向外部數據。在2015年之前,消費者所面對的公司都在花費大部分時間用於研究外部信息。每一個分析師和數據倉庫都將會有一個Hadoop計算簇和一個大數據層。像Hadoop這樣的技術不再受人關注,因為這些技術始終非常重要,慢慢淡化進入軟體棧。圍繞大數據題材的整合並購開始加速。
2016年:數據驅動的決策代替了直覺和常識。這個時候公司們要開始仔細思考數據的使用,避免出現無意義的數據。公司會因為錯誤解讀了數據而導致重大事故的發生。
2017年:雲和大數據、數據倉庫合並起來,成為了一項服務,「分析即服務」和「數據即服務」成為主流。很少有公司真正考慮創建自己的Hadoop計算簇進行整合工作。大數據基礎設施即將實現。注意:2017年是這些大數據即服務為大眾所普及的一個估算時間。大數據即服務的市場競爭在這個時間段正在進行,將會於不久涉及到關鍵的大范圍用戶群。
大數據在IT采購周期上又是怎樣的情況呢?大數據項目需要有更多高級別的管理人員。分析如下:
首席信息官:大數據項目終於能讓首席信息官解決一直以來的「我們一致嗎?」問題。
首席財務官:將大數據分析作為控製成本、最大化利潤的方式。潛在風險是公司有可能因為忽略人的因素而失去好的機會。
首席市場官:2012年,首席市場官成了IT采購的紅人。不過這有點不太合理,因為首席市場官主要依賴外部數據和信號判斷項目。
首席運營官,采購人員:大數據可以讓存貨、供應和製造過程自始至終都可以進行追蹤。效率能夠得到改進。
數據科學家:這部分員工越來越被看作是「首席」管理層的接班人。職場方面,數據高手想去哪家公司都行。
以上是小編為大家分享的關於大數據路線圖 大數據如何改變商業的相關內容,更多信息可以關注環球青藤分享更多干貨
㈣ 抖音上的大數據可視化怎麼做的呢
推薦你使用觀想報表,可以快速的製作多終端顯示的數據可視化,尤其是大屏顯示,觀向報表系統裡面有非常的多圖表樣式
㈤ 數據分析:大數據處理的基本流程(三)
01
什麼是數據分析
隨著數字化進程的高速發展,越來越多的企業面對愈加激烈的競爭,差異化的市場,多變的環境,常常會面臨各種難題,也變得更依賴於數據。
分析的本質是讓業務更加清晰,讓決策更加高效。 數據分析 作為大數據價值產生的必要步驟、整個 大數據處理流程的核心 ,其在企業中的地位也越來越重要。
數據分析的目的 說白了就是把隱藏在一大批看來雜亂無章的數據中的信息集中和提煉出來,對其加以匯總、理解並消化,以求最大化地開發數據的功能,從而找出所研究對象的內在規律,發揮數據的作用。
簡而言之, 數據分析就是一個有組織、有目的收集數據、為了使其成為信息而對數據加以詳細研究和概括總結的過程。
在企業實際應用中,數據分析的一系列過程也是產品質量管理體系的支持過程。在企業產品的整個壽命周期,包括從市場調研到售後服務的各個過程都需要適當運用數據分析,以提升數據分析的有效性,能夠適時解決企業難題、識別機會、規避風險。
數據分析的作用及價值,可簡單歸納總結為下面四個方面:
1.追溯過去,了解真相(識別機會、規避風險)
2.洞察本質,尋本溯源(診斷問題、亡羊補牢)
3.掌握規律,預測未來(評估效果、改進策略)
4.採取措施,驅動行動(提高效率、加強管理)
02
數據分析的三個常用方法
數據分析本身是一個非常大的領域,這里將主要討論一下在企業產品整個壽命周期期間,3個常用的數據分析方法 (想看數據分析常用演算法的小夥伴可以點這里跳轉) :
數據趨勢分析
數據對比分析
數據細分分析
趨勢 , 對比 , 細分 ,基本包含了數據分析最基礎的部分。無論是數據核實,還是數據分析,都需要不斷地找趨勢,做對比,做細分,才能得到最終有效的結論。
數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如產品點擊率、活躍用戶數等。簡單的數據趨勢圖並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念: 環比,同比,定基比 。
環比 指本期統計數據與上期比較,利用環比可以知道最近的變化趨勢,但是有些數據可能會受季節、時間、地域等因素影響而產生差異。
為了消除差異,於是有了 同比 的概念,例如2019年2月份和2018年2月份進行比較。
定基比 就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋。
數據對比分析
很多時候單獨看數據的趨勢變化並不能說明問題,此時就需要給孤立的數據一個合理的參考系,否則孤立的數據毫無意義,這也是對比分析的意義所在。
一般而言,對比的數據是數據的基本面,比如行業情況,全站的情況等。
有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準,也就是A/B test,比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致,只有這樣才能得到比較有說服力的數據。可以簡單理解為樣本數量為2的控制變數法。
數據細分分析
在得到一些初步結論後,就需要進一步對數據進行細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
進行數據細分分析時,一定要進行多維度的細拆,可以包括但不限於:
分時 :不同時間短數據是否有變化
分渠道 :不同來源的流量或者產品是否有變化
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異
分地區 :不同地區的數據是否有變化
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪
03
大數據時代數據分析面臨的挑戰
大數據時代,數據分析技術的發展也並非一直順風順水,眼下可能會面臨一些新的挑戰,主要有以下幾點:
1
數據量大並不一定意味著數據價值的增加,也有可能是意味著數據噪音的增多。
因此,在數據分析之前必須進行數據清洗等預處理工作,但是預處理如此大量的數據,對於計算資源和處理演算法來講都是非常嚴峻的考驗。
2
大數據時代的演算法需要進行調整。
大數據的應用常常具有實時性的特點,演算法准確率不再是大數據應用的最主要指標。很多時候,演算法需要在處理實時性和准確率之間博得一個平衡點。
其次,分布式並發計算系統是進行大數據處理的有力工具,這就要求很多演算法必須做出調整以適應分布式並發的計算框架,演算法需要變得具有可擴展性。許多傳統的數據挖掘演算法都是線性執行的,面對海量的數據很難在合理的時間內獲取所需的結果。因此需要重新把這些演算法實現成可以並發執行的演算法,以便完成對大數據的處理。
最後,在選擇處理大數據的演算法時必須謹慎,當數據量增長到一定規模以後,可以從少量數據中挖掘出有效信息的演算法並非一定適用大數據。
3
數據結果的衡量標准。
對大數據進行分析並非易事,同樣的,對大數據分析結果好壞如何衡量也是大數據時代數據分析面臨的更大挑戰之一。
大數據時代的數據體量大、類型混雜、產生速度快,進行分析時如果沒有對整個數據的分布特點了如指掌,無疑會導致在設計衡量的方法、指標時遇到困難。
企通查-企業大數據平台基於 數據採集、特徵提取、信息關聯、機器學習和深度學習演算法模型、NLP文本分析 等先進技術,清晰構建企業全維度動態畫像,通過 企業風控指數、企業信用指數、企業活力指數 三大指數模型體系和基於 企業基本能力、創新能力、經營能力、核心能力、財務能力和風險能力 六大方面的大數據風控體系,實現對企業和客戶的 全流程主動感知、重點監控、變動提醒和風險預警 。此外,企通查還可以根據客戶的不同需求定製所需的一系列企業數據。