導航:首頁 > 網路數據 > 大數據預測被打臉

大數據預測被打臉

發布時間:2023-06-19 14:37:08

㈠ 介紹有關計算機的一種前端技術

大數據基礎概念

「很多人還沒搞清楚什麼是PC互聯網,移動互聯網來了,我們還沒搞清楚移動互聯的時候,大數據時代又來了。」——馬雲卸任演講

本文嘗試從三大產業的角度將大數據的核心商業價值分類討論。
首先例舉一些大數據的典型應用,然後解釋大數據的定義,最後總結大數據的價值。

我們知道:
第一次工業革命以煤炭為基礎,蒸汽機和印刷術為標志,
第二次工業革命以石油為基礎,內燃機和電信技術為標志,
第三次工業革命以核能基礎,互聯網技術為標志,
第四次工業革命以可再生能源為基礎,_________為標志。
空白處你會填上什麼?歡迎大家討論。但是目前可以預測的是,數據和內容作為互聯網的核心,不論是傳統行業還是新型行業,誰率先與互聯網融合成功,能夠從大數據的金礦中發現暗藏的規律,就能夠搶佔先機,成為技術改革的標志。

一、大數據的應用
大數據挖掘商業價值的方法主要分為四種:
客戶群體細分,然後為每個群體量定製特別的服務。
模擬現實環境,發掘新的需求同時提高投資的回報率。
加強部門聯系,提高整條管理鏈條和產業鏈條的效率。
降低服務成本,發現隱藏線索進行產品和服務的創新。

Mckinsey列出了各個行業利用大數據價值的難易度以及發展潛力。《Big data: The next frontier for innovation, competition, and proctivity》

各種Data之間的關系圖,注意Open Data是完全包含了Open government data(政府開放數據)

Mckinsey也列出了Open Data時代里七大行業潛在的經濟價值,自上而下分別是教育,運輸,消費品、電力、石油與天然氣、醫療護理、消費金融。(感謝知友安陽提供的補充鏈接資料)

大數據的類型大致可分為三類:
傳統企業數據(Traditional enterprise data):包括 CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。
機器和感測器數據(Machine-generated /sensor data):包括呼叫記錄(Call Detail Records),智能儀表,工業設備感測器,設備日誌(通常是Digital exhaust),交易數據等。
社交數據(Social data):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平台。

從理論上來看:所有產業都會從大數據的發展中受益。但由於數據缺乏以及從業人員本身的原因,第一、第二產業的發展速度相對於第三產業來說會遲緩一些。

(2).第二產業
2013年9月,工業和信息化部發布了《關於印發信息化和工業化深度融合專項行動計劃(2013-2018年)》的通知。明確提出推動物聯網在工業領域的集成創新和應用:
實施物聯網發展專項,在重點行業組織開展試點示範,以感測器和感測器網路、RFID、工業大數據的應用為切入點,重點支持生產過程式控制制、生產環境檢測、製造供應鏈跟蹤、遠程診斷管理等物聯網應用,促進經濟效益提升、安全生產和節能減排。

大數據的業務多是數據驅動型,具有數據量大、種類多、實時性高的特點。工業企業對數據的記錄以往看來主要分為兩種方法:傳統的紙筆和Excel電子表格記錄。這些操作起來看似簡單的數據管理方式為企業生產及質量監控埋下了巨大的隱患,也讓數據挖掘無從談起。

隨著信息化與工業化的融合發展,信息技術滲透到了工業企業產業鏈的各個環節。例如Sensor、RFID、Barcode、物聯網等技術已經在企業中得到初步應用,工業大數據也開始逐漸得到積累。企業中生產線高速運轉時機器所產生的數據量不亞於計算機數據,而且數據類型多是非結構化數據,對數據的實時性要求也更高。因此工業大數據所面臨的問題和挑戰很多,所以通用電氣公司(General Electric)的副總裁兼全球技術總監William Ruh認為相對於工業大數據來說,工業互聯網(Instrial Internet)才是當前急需的,因為大數據本身並沒有讓信息的提取更加智能,業務比數據本身更加重要。他舉了一個核磁共振成像掃描的例子:
Here』s an example. An MRI scan is the best way to see inside the human body. While effective in helping to diagnose multiple sclerosis, brain tumors, torn ligaments and strokes, the data proced by an MRI machine is disconnected from the person that needs it the most.
At a very simplistic level, there are many indivials working as a team to make the scan happen. A nurse administers medications or contrast agents that may be needed for the exam; an MRI technologist operates the scanner; and a radiologist identifies the imaging sequences to be used and interprets the images. This information is then given to the nurse, who then passes it to the primary doctor to review and take action accordingly. This is Big Data, but it is not making information more intelligent.

又如在工業中,壓力、溫度等數據的特點是需要語境才能理解的。燃氣輪機排氣裝置上的溫度讀數與一台機車的內部溫度是完全不同的。燃氣輪機改善熱敷需要使用非常復雜的演算法運行模型。在筆記本電腦上,一個典型的查詢要獲得答案一般需要三個星期。在基於大數據的分布式系統上發布同樣的查詢執行一種計算只需要不到一秒鍾。

第三方認證機構(TÜV NORD GROUP),工業
德國漢德技術監督服務有限公司的前身是德國鍋爐檢驗協會(簡稱TÜV)早在1869年,德國鍋爐檢驗協會就承擔了德國國內所有鍋爐運行安全的檢驗工作,保證了鍋爐生產的安全。漸漸的,德國鍋爐檢驗協會取得了德國政府的授權,開展對其他產品的檢驗工作,從采礦,電力系統開始,到壓力容器,機動車輛,醫療設備,環境保護,宇航工業,醫療產品等等,現在的德國漢德技術監督服務有限公司已經成為了許許多多產品的安全代號。主要體系認證包括企業質量管理體系,生產環境體系,生產碳排放方案等。TÜV當前從建築綠色標准體系方面提出了對於大數據能源管理的探索,以微軟新總部,蒂森克虜伯電梯總部為例,在整個項目實施中引入大數據能源管理,在建築的設計規劃階段、施工階段、運營階段等多個階段通過數據化的能源管理系統,實現建築的低碳、綠色、智能。

工業自動化軟體商(Wonderware ),工業
Wonderware作為系統軟體涉及的專業企業,對於大數據的計算和運用是從比較「IT」的角度出發的。Wonderware 的實時數據管理軟體能夠提供一個工廠所需要的從建立到報廢的所有實時數據。目前已經退出移動版本,工程總監在手機上就能夠隨時隨地監控設備的運行狀況。目前全球超過三分之一的工廠應用Wonderware公司的軟體解決方案。

了解更多:
大數據在電力行業的應用前景有哪些?

(3).第三產業
這一個部分的內容比較多。這里只提出一些典型的應用例子,歡迎補充。
健康與醫療:Fitbit® Official Site: Flex, One and Zip Wireless Activity and Sleep Trackers的健身腕帶可以收集有關我們走路或者慢跑的數據,例如行走步數、卡路里消耗、睡眠時長等數據與健康記錄來改善我們的健康狀況;Early Detection of Patient Deterioration等公司正在開發床墊監測感測器,自動監測和記錄心臟速率、呼吸速率、運動和睡眠活動。該感測器收集的數據以無線方式被發送到智能手機和平板電腦進行進一步分析;美國公共衛生協會(APHA: American Public Health Association)開發Flu Near You用來的症狀,通過大數據分析生成報告顯示用戶所在地區的流感活動。

視頻:互聯網電視能夠追蹤你正在看的內容,看了多長時間,甚至能夠識別多少人坐在電視機前,來確定這個頻道的流行度。Netflix 美國國內規模最大的商業視頻流供應商,收集的數據包括用戶在看什麼、喜歡在什麼時段觀看、在哪裡觀看以及使用哪些設備觀看等。甚至記錄用戶在哪視頻的哪個時間點後退、快進或者暫停,乃至看到哪裡直接將視頻關掉等信息。典型的應用是Netflix公司利用數據說服BBC重新翻拍了電視連結劇《紙牌屋》,而且成功的挖掘出演員Kevin Spacey和導演David Fincher的支持者與原劇集粉絲的關聯性,確定新劇拍攝的最佳人選。
When the program, a remake of a BBC miniseries, was up for purchase in 2011 with David Fincher and Kevin Spacey attached, the folks at Netflix simply looked at their massive stash of data. Subscribers who watched the original series, they found, were also likely to watch movies directed by David Fincher and enjoy ones that starred Kevin Spacey. Considering the material and the players involved, the company was sure that an audience was out there.

交通:《車來了》通過分析公交車上GPS定位系統每天的位置和時間數據,結合時刻表預測出每一輛公交車的到站時間;WNYC開發的Transit Time NYC通過開源行程平台(Github:OpenTripPlanner和MTA )獲取的數據將紐約市劃分成2930個六邊形,模擬出從每一個六邊形中點到邊緣的時間(地鐵和步行,時間是上午九點),最終建模出4290985條虛擬線路。用戶只需點擊地圖或者輸入地址就能知道地鐵到達每個位置的時間;實時交通數據採集商INRIX-Traffic的口號是(永不遲到!^^),通過記錄每位用戶在行駛過程中的實時數據例如行駛車速,所在位置等信息並進行數據匯總分析,而後計算出最佳線路,讓用戶能夠避開擁堵。

電子商務:Decide 是一家預測商品價格並為消費者提出購買時間建議的創業公司,通過抓取亞馬遜、百思買、新蛋及全球各大網站上數以十億計的數據進行分析,最終整合在一個頁面中方便消費者對比查看,並且能夠預測產品的價格趨勢,幫助用戶確定商品的最好購買時機。已經於2013年被 eBay收購。

政治:奧巴馬在總統競選中使用大數據分析來收集選民的數據,讓他可以專注於對他最感興趣的選民,谷歌執行董事長Eric Schmidt當時向奧巴馬的大數據分析團隊投資數百萬美元並聚攏核心成員成立了Civis Analytics咨詢公司,該公司將會將在奧巴馬連任競選中所獲得的經驗應用到商業和非營利行業中。(了解更多可以看看MIT technology的文章The Definitive Story of How President Obama Mined Voter Data to Win A Second Term)

金融:ZestFinance | Big Data Underwriting 是由是Google的前任 CIO,Douglas Merrill創立金融數據分析服務提供商,使用機器學習演算法和大數據為放款者提供承保模式,旨在為那些個人信用不良或者不滿足傳統銀行貸款資格的個人提供服務。公司使用分析模型對每位信貸申請人的上萬條原始信息數據進行分析,只需幾秒時間便可以得出超過十萬個行為指標。目前違約率比行業平均水平低 60%左右。另外一個不得不提到的是風險管理先驅者FICO | Predictive Analytics, Big Data Analytics and FICO Credit Scores,通過大數據分析為銀行和信用卡發卡機構、保險、醫療保健、政府和零售行業提供服務。FICO 信用分計算的基本思想是:把借款人過去的信用歷史資料與資料庫中的全體借款人的信用習慣相比較,檢查借款人的發展趨勢跟經常違約、隨意透支、甚至申請破產等各種陷入財務困境的借款人的發展趨勢是否相似。FICO 已經為三分之二的世界 100 強銀行提供服務,提高了客戶忠誠度和盈利率、減少欺詐損失、管理信貸風險、滿足監管與競爭要求並快速獲取市場份額。想了解更多的企業可以看看附錄中《經濟學人》的文章《Big data: Crunching the numbers》。

電信: 美國T-mobiles採用Informatica - The Data Integration Company平台開展大數據工作,通過集成數據綜合分析客戶流失的原因,根據分析結果優化網路布局為客戶提供了更好的體驗,在一個季度內將流失率減半;韓國 SK telecom新成立一家公司SK Planet,通過大數據分析用戶的使用行為,在用戶做出決定之前推出符合用戶興趣的業務防止用戶流失。美國AT&T 公司將記錄用戶在Wifi網路中的地理位置、網路瀏覽歷史記錄以及使用的應用等數據銷售給廣告客戶。比如當用戶距離商家很近時,就有可能收到該商家提供的折扣很大的電子優惠券。英國BT - Broadband公司發布了新的安全數據分析服務Assure Analytics—BT news releases,幫助企業收集、管理和評估大數據集,將這些數據通過可視化的方式呈現給企業,幫助企業改進決策。

一般來說盈利性質的商業公司和企業都不會輕易泄露自己的數據、建模方法和分析過程,所以還有很多大家不知道的神秘應用潛伏在黑暗裡,如同《三體》中的」黑暗森林法則「。
宇宙就是一座黑暗森林,每個文明都是帶槍的獵人,像幽靈般潛行於林間,輕輕撥開擋路的樹枝,竭力不讓腳步發出一點兒聲音,連呼吸都必須小心翼翼:他必須小心,因為林中到處都有與他一樣潛行的獵人,如果他發現了別的生命,能做的只有一件事:開槍消滅之。在這片森林中,他人就是地獄,就是永恆的威脅,任何暴露自己存在的生命都將很快被消滅,這就是宇宙文明的圖景,這就是對費米悖論的解釋。

二、大數據的定義
大數據(Big Data)是指「無法用現有的軟體工具提取、存儲、搜索、共享、分析和處理的海量的、復雜的數據集合。」業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。

數據體量巨大(Volume)。截至目前,人類生產的所有印刷材料的數據量是200PB,而歷史上全人類說過的所有的話的數據量大約是5EB(1EB=210PB)。
數據類型繁多(Variety)。相對於以往便於存儲的以文本為主的結構化數據,非結構化數據越來越多,包括網路日誌、音頻、視頻、圖片、地理位置信息等,這些多類型的數據對數據的處理能力提出了更高要求。
價值密度低(Value)。價值密度的高低與數據總量的大小成反比。如何通過強大的機器演算法更迅速地完成數據的價值「提純」成為目前大數據背景下亟待解決的難題。
處理速度快(Velocity)。大數據區分於傳統數據挖掘的最顯著特徵。根據IDC的「數字宇宙」的報告,預計到2020年,全球數據使用量將達到35.2ZB。

看看專家們怎麼說。

舍恩伯格,大數據時代 (豆瓣)
不是隨機樣本,而是全體數據;不是精確性,而是混雜性;不是因果關系,而是相關關系。

埃里克·西格爾,大數據預測 (豆瓣)
大數據時代下的核心,預測分析已在商業和社會中得到廣泛應用。隨著越來越多的數據被記錄和整理,未來預測分析必定會成為所有領域的關鍵技術。

城田真琴,大數據的沖擊 (豆瓣)
從數據的類別上看,「大數據」指的是無法使用傳統流程或工具處理或分析的信息。 它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。

三、大數據的價值
了解了大數據的典型應用,理解了大數據的定義。這時相信在每個人的心中,關於大數據的價值都有了自己的答案。

2010年《Science》上刊登了一篇文章指出,雖然人們的出行的模式有很大不同,但我們大多數人同樣是可以預測的。這意味著我們能夠根據個體之前的行為軌跡預測他或者她未來行蹤的可能性,即93%的人類行為可預測。
Limits of Predictability in Human Mobility
A range of applications, from predicting the spread of human and electronic viruses to city planning and resource management in mobile communications, depend on our ability to foresee the whereabouts and mobility of indivials, raising a fundamental question: To what degree is human behavior predictable? Here we explore the limits of predictability in human dynamics by studying the mobility patterns of anonymized mobile phone users. By measuring the entropy of each indivial』s trajectory, we find a 93% potential predictability in user mobility across the whole user base. Despite the significant differences in the travel patterns, we find a remarkable lack of variability in predictability, which is largely independent of the distance users cover on a regular basis.

而大數定理告訴我們,在試驗不變的條件下,重復試驗多次,隨機事件的頻率近似於它概率。「有規律的隨機事件」在大量重復出現的條件下,往往呈現幾乎必然的統計特性。
舉個例子,我們向上拋一枚硬幣,硬幣落下後哪一面朝上本來是偶然的,但當我們上拋硬幣的次數足夠多後,達到上萬次甚至幾十萬幾百萬次以後,我們就會發現,硬幣每一面向上的次數約占總次數的二分之一。偶然中包含著某種必然。

隨著計算機的處理能力的日益強大,你能獲得的數據量越大,你能挖掘到的價值就越多。

實驗的不斷反復、大數據的日漸積累讓人類發現規律,預測未來不再是科幻電影里的讀心術。

如果銀行能及時地了解風險,我們的經濟將更加強大。
如果政府能夠降低欺詐開支,我們的稅收將更加合理。
如果醫院能夠更早發現疾病,我們的身體將更加健康。
如果電信公司能夠降低成本,我們的話費將更加便宜。
如果交通動態天氣能夠掌握,我們的出行將更加方便。
如果商場能夠動態調整庫存,我們的商品將更加實惠。

最終,我們都將從大數據分析中獲益。

四、結束語。

Here's the thing about the future.關於未來有一個重要的特徵
Every time you look at it,每一次你看到了未來
it changes because you looked at it.它會跟著發生改變 因為你看到了它
And that changes everything else.然後其它事也跟著一起改變了

數據本身不產生價值,如何分析和利用大數據對業務產生幫助才是關鍵。

祝每一個DMer都挖掘到金礦和快樂:)

㈡ 通過大數據獲得足夠多的信息,是否可以預測個人的行為

不可能完完全全的預測個人的,就算是獲得了足夠多的信息都沒有你去接觸這個人更快的預測這個人,消息也是有誤的,要預測一個人最好自己去了解。

㈢ 大數據如何預測

大數據的本質是解決問題,大數據的核心價值就在於預測,而企業經營的核心也是基於預測而做出正確判斷。在談論大數據應用時,最常見的應用案例便是「預測股市」「預測流感」「預測消費者行為」等。
大數據預測則是基於大數據和預測模型去預測未來某件事情的概率。讓分析從「面向已經發生的過去」轉向「面向即將發生的未來」是大數據與傳統數據分析的最大不同。

大數據預測的邏輯基礎是,每一種非常規的變化事前一定有徵兆,每一件事情都有跡可循,如果找到了徵兆與變化之間的規律,就可以進行預測。大數據預測無法確定某件事情必然會發生,它更多是給出一個事件會發生的概率。

實驗的不斷反復、大數據的日漸積累讓人類不斷發現各種規律,從而能夠預測未來。利用大數據預測可能的災難,利用大數據分析癌症可能的引發原因並找出治療方法,都是未來能夠惠及人類的事業。

㈣ 對於現在的大數據思維你咋理解

大數據的核心就是預測,大數據能夠預測體現在很多方面。大數據不是要教機器像人一樣思考,相反,它是把數學演算法運用到海量的數據上來預測事情發生的可能性。正因為在大數據規律面前,每個人的行為都跟別人一樣,沒有本質變化,所以商家會比消費者更了消費者的行為。

㈤ 生活中的大數據例子

1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。

目前位於美國加利福尼亞州的PredPol公司在某種程度上把利用大數據預測犯罪變成了現實。

PredPol 推出的犯罪活動預測軟體主界面是一張城市地圖,看起來與谷歌地圖相似。它會根據某一地區過往的犯罪活動統計數據,藉助特殊演算法,計算出某地發生犯罪的概率、犯罪類型,以及最有可能犯罪的時間段。

它還可以用紅色方框表示需要提高警惕的犯罪「熱點」地區,警方可以通過個人電腦、手機或平板電腦對其進行在線查看。

犯罪預測軟體實際上是從地震預測軟體進化而來的,它能處理大量犯罪數據,尤其是犯罪地點和犯罪時間,然後再聯系已知的犯罪行為,比如竊賊通常傾向於在他們最熟悉的社區犯罪等,最終給出一個較為完善的結果。

每次運算結束後,犯罪預測軟體會給出一張畫出了紅色方框的地圖,這些紅色方框代表盜竊行為可能發生的「熱點」地區,有些時候這些區域能准確地縮小至很小的范圍。

警察局的上司會吩咐屬下,當他們沒在處理報警電話時,就應該花時間在這些高危區域中巡邏,最好是每兩小時巡邏至少15分鍾。這樣做的重點更在於通過在軟體畫出的高危區中高調巡邏而降低犯罪,而非等案子發生後破案。

2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。

Google流感趨勢(Google Flu Trends,GFT)是Google於2008年推出的一款預測流感的產品。Google認為,某些搜索字詞有助於了解流感疫情。Google流感趨勢會根據匯總的Google搜索數據,近乎實時地對全球當前的流感疫情進行估測。

3、麻省理工學院利用手機定位數據和交通數據建立城市規劃。

目前手機移動網路實現了城鄉空間區域的全覆蓋,城鄉人口中手機終端的持有率和使用率已經達到相當高的比例,手機定位數據契合了城鄉人口空間分布與活動規律的分析需求。

根據手機信號在真實地理空間上的覆蓋情況,將手機用戶時間序列的移動信號數據,映射至現實的地理空間位置,即可完整、客觀地還原出手機用戶的現實活動軌跡,從而挖掘得到人口空間分布與活動聯系特徵信息。

4、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

(5)大數據預測被打臉擴展閱讀

經李克強總理簽批,2015年9月,國務院印發《促進大數據發展行動綱要》(以下簡稱《綱要》),系統部署大數據發展工作。

《綱要》明確,推動大數據發展和應用,在未來5至10年打造精準治理、多方協作的社會治理新模式,建立運行平穩、安全高效的經濟運行新機制,構建以人為本、惠及全民的民生服務新體系,開啟大眾創業、萬眾創新的創新驅動新格局,培育高端智能、新興繁榮的產業發展新生態。

未來,數據科學將成為一門專門的學科,被越來越多的人所認知。各大高校將設立專門的數據科學類專業,也會催生一批與之相關的新的就業崗位。與此同時,基於數據這個基礎平台,也將建立起跨領域的數據共享平台,之後,數據共享將擴展到企業層面,並且成為未來產業的核心一環。

㈥ 為什麼說未來只有兩種人,掌握高科技的人和被高科技掌握的人

未來只有兩種人,掌握高科技的人和被高科技掌握的人。「高科技」一詞過於泛泛,代入一種,也就是我們今天要講的「大數據技術」。馬雲說,很多人還沒搞清楚什麼是PC互聯網,移動互聯網來了,我們還沒搞清楚移動互聯的時候,大數據時代又來了。(在其卸任時的演講。)同馬總觀點一樣,「大數據」,它代表著一個時代。

人類文明是一艘巨輪,科技是它永不沉沒的唯一動力,能看到這一點,還懂得去追隨的,就掌握了它;那些不僅看不到,甚至還想辦法使絆子的,就只有跟在後面吃灰。

這就是我的結論。要想打破這種思維壁壘,成為掌握高科技的人,首先要對科技抱有積極的熱愛,不斷從中學習,付之以赤誠,培養科技敏銳度,如果你覺得這一切都太多太麻煩的話,有一個簡單一點的辦法。

㈦ 大數據價值僅顯露冰山一角

大數據價值僅顯露冰山一角
一度被認為是廢物的各種來源的數據現在對某些人來說已經成為一種寶貴資源,這些人保存大數據並以此進行分析預測而為全球企業的改變服務。我們可能在某些細小的方面看到過案例。有些組織在與其對手的競爭中通過使用bigdata已經獲得了絕對優勢,但很多人會說並不能確定是勝在使用bigdata這一點上。
2012年已經被預測為大數據年。但到目前為止,研究的重點還集中在處理4V(高速、種類、容量和價值)bigdata以及如何操作它們。據我所知,還沒有在商業角度使用這種數據以期獲得競爭優勢或改進業務流程的願景。如果能夠為大家的利益分享這種實例,將會是很有趣的事情。
bigdata有足夠的競爭力么?
如果有人提出bigdata有什麼不同的爭論,出現這種爭論也是很現實的。有沒有通過bigdata來驗證的分析呢。不用說,大部分的數據還是很龐大,仍然同之前一樣是一種浪費。你會發現大概有1%到5%對提高業務流程是有足夠使用價值的。
組織開始調整和改善流程、客戶關系、降低價格以獲得競爭優勢並且提供捷徑滿足客戶的戰術需求。所有這些調整都將是bigdata分析的一部分並且可能會偏離預測。因此,bigdata有兩條路,它能夠通過分析給你競爭優勢或者說消除所作出的偏離的未經驗證的分析。由於統計分析技術或者對數據正確評估經驗的不足,使進行正確的分析和得到正確的結果有了更大的困難。
大數據軟體蓄勢待發
bigdata的定義迄今集中在提高定址能力和處理數據4V的能力上。但終端客戶卻不是bigdata所關注的。它關注於如何獲得精細的統計數據來更好的為客戶服務。我們將很可能在今年餘下的時間內看到成熟的大數據軟體。Teradata收購eCircle、IBM收購TeaLeaf和其他的例子證明企業營銷、數字媒體、活動、客戶體驗和更多的數據同步都會要朝這個方向移動。
決策使其更強大
無論是結構化還是非結構化數據的計算和分析作為組織的一種能力為組織作出決定和執行分析進行反饋、為客戶的利益而使bigdata有價值。我們已經看到冰山一角,當有一天可以提供特定領域的個性化的bigdata解決方案用以在零售業、保險業、金融業和其他行業做出決策將會是件很有趣的事情。
雖然還有很多工作要做,我們已經看到bigdata世界的巨大進步,我們希望更多的創新和令人興奮的事情在今年餘下的時間里能夠出現。

閱讀全文

與大數據預測被打臉相關的資料

熱點內容
手機網站幻燈片代碼 瀏覽:549
上海雲動網路 瀏覽:435
無效的ps文件什麼意思 瀏覽:522
中國移動app如何查家庭網 瀏覽:699
微信顯示未注冊 瀏覽:977
粒子匯聚圖像教程 瀏覽:619
pdf文件能替換圖片 瀏覽:727
製表位不居中word 瀏覽:265
dell驅動盤裝驅動程序 瀏覽:577
編程中如何創建密碼 瀏覽:135
林納斯托瓦茲使用什麼編程語言 瀏覽:132
安卓qq不能指紋支付密碼 瀏覽:476
sap原因代碼 瀏覽:242
數據反饋有什麼好處 瀏覽:502
iphone4612激活 瀏覽:466
蘭州電信寬頻升級 瀏覽:317
linux內核所有進程共享 瀏覽:901
怎怎樣下載內容到文件管理里 瀏覽:303
word試圖打開鎖定文件 瀏覽:971
linux文件找不到 瀏覽:310

友情鏈接