⑴ 什麼是大數據分析 主要應用於哪些行業以製造業為例
大數據作為IT行業最流行的詞彙,圍繞大數據的商業價值的使用,隨之而來的數據倉庫、數據安全、數據分析、數據挖掘等,逐漸成為業界所追求的利潤焦點。隨著大數據時代的到來,大數據分析也應運而生。
1.大數據分析主要應用於哪些行業?
製造業: 利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
金融業: 大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
汽車行業: 利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。
互聯網行業: 藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
餐飲行業: 利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。
2.大數據分析師就業前景如何?
從20世紀90年代起,歐美國家開始大量培養數據分析師,直到現在,對數據分析師的需求仍然長盛不衰,而且還有擴展之勢。
根據美國勞工部預測,到2018年,數據分析師的需求量將增長20%。就算你不是數據分析師,但數據分析技能也是未來必不可少的工作技能之一。在數據分析行業發展成熟的國家,90%的市場決策和經營決策都是通過數據分析研究確定的。
3.關於大數據分析具體含義?
1、數據分析可以讓人們對數據產生更加優質的詮釋,而具有預知意義的分析可以讓分析員根據可視化分析和數據分析後的結果做出一些預測性的推斷。
2、大數據的分析與存儲和數據的管理是一些數據分析層面的最佳實踐。通過按部就班的流程和工具對數據進行分析可以保證一個預先定義好的高質量的分析結果。
3、不管使用者是數據分析領域中的專家,還是普通的用戶,可作為數據分析工具的始終只能是數據可視化。可視化可以直觀的展示數據,讓數據自己表達,讓客戶得到理想的結果。
什麼是大數據分析 主要應用於哪些行業?中琛魔方大數據平台指出大數據的價值,遠遠不止於此,大數據針對各行各業的滲透,大大推動了社會生產和生活,未來必將產生重大而深遠的影響。
我們可以看看億信華辰關於製造業的案例,
某電建集團主要從事國內外高速公路、市政、鐵路、軌道交通、橋梁、隧 道、城市綜合體開發、機場、港口、航道、地下綜合管廊以及生態水環境治理、海綿 城市建設、環境保護等項目投資、建設、運營等,為客戶提供投資融資、咨詢規劃、 設計建造、管理運營一攬子解決方案和集成式、一體化服務。成立以來,投資建設了 一大批體量大、強度高、領域寬的基礎設施及環保項目。
該公司的數據化建設,或將成為新型基礎設施建設的一個縮影。
項目背景 數字經濟時代,數據資源已經成為企業的核心資源和核心競爭力,各類企業信息化建設的重心正從 IT(信息技術) 向 DT(數據技術) 轉化,未來信息化建設的重心將是如何對組織內外部的數據進行深入、多維、實時的挖掘和分析,以滿足決策層的需求,推動信息化向更高層面進化,構築公司數字經濟時代的新優勢。目前,由於各級各部門大量的時間用在內外部各種繁雜的報表填報、匯總、統計和分析上,同時各級領導有對公司或者所轄單位的整體經營情況仍舊通過傳統的匯報、傳統的報表等了解,缺乏直觀和可視化系統支撐決策分析,主要存在問題如下:1、數據孤島嚴重各級各部門數據無法有效共享,跨部門跨層級的數據採集、共享和分析利用困難。2、數據採集方式落後數據採集仍舊採用傳統 EXCEL 方式進行,缺乏自下而上的數據採集、數據審核、數據報送、匯總分析的數據採集平台支撐,導致數據源分散、數據標准不統一、數據質量難以保證、數據採集效率低下。3、缺乏統一的決策經營指標體系和數據資源統一管理機制導致數據資源不能有效利用,價值無法充分發揮,無法為各級領導決策提供有效支持。
建設內容 為徹底解決以上問題,根據需求和數據資產類項目建設方式,系統實現按照「指標資源整理-應用場景展現設計--數據獲取-指標資源池-頁面實現-決策門戶 」的方式設計。即根據梳理的指標體系應用場景需要確定設計展現界面展現內容,根據展現內容確定指標體系,根據指標體系來並收集相關數據。
1、搭建智能填報系統 梳理指標體系,構建決策指標和主題指標,明確指標類型,指標數據來源,各指標輸出口徑:是否填報、填報維度與對象、填報周期等等。實現公司各級各部門自下而上決策數據填報、數據審核、 數據報送、匯總查詢、數據補錄等全過程網路化數據採集的需要。
2、構建經營決策指標體系構建公司經營決策指標體系。收集數據分析需求,分析匯總形成公司市場、經營、履約、運營、項目等生產經營關鍵指標和相關數據分析主題、指標,形成指標 資源池,實現決策數據的體系化、指標化和模型化。
3、決策指標體系建設根據某電建集團提供數據的內容和主要特徵,將決策指標體系的指標分為運營指標、經營指標、整體指標、市場指標、履約指標五類一級指標。每類一級指標又分別由若干個二級指標組成。
4、建設決策支持系統通過億信BI工具,基於報表採集的數據和相關信息系統積累的數據, 初步構建管理駕駛艙,滿足面向公司決策層和部門領導的數據分析,可視化圖表化輔助領導管理決策,並集成電建通APP應用,實現決策移動化。
5、搭建自助式BI通過豌豆BI工具搭建自助式 BI。為市場營銷、建設管理、資產運營、財務管理等部門有自助探索數據分析的業務人員提供自助式可視化分析工具。
價值體現 在合作中,億信華辰根據當前數據分析應用的訴求,幫助該電建集團建設決策整體指標、市場指標、履約指標、運營指標五個模塊,提供了從數據採集、數據匯總到指標口徑定義、指標建模、指標數據落地和數據可視化分析於一體的完整的解決方案。決策管理平台以業務分析平台為基礎,以更核心的指標、更直觀的展現方式實現數據的分析與監控,支撐領導層的管理決策。主要包括管理駕駛艙、項目看板專題、市場專題、經營專題、履約專題、運營專題等場景。使數據資源得到充分利用,最大程度的發揮數據價值。
⑵ 關於大數據的幾個問題!
大數據就是大量數據了,比如淘寶網存儲的用戶信息,用戶購買記錄等,這個版數據量達權到PB級了。
大數據帶來的優勢不好說啊,見過這樣的大數據才有感覺。
大數據應用:最直觀還是淘寶、京東這些,有沒有注意到你瀏覽過、買過一些產品之後,有些廣告推送就會給推送相關產品,這就是大數據的應用,通過分析你的購買記錄,分析你可能感興趣的商品,比如你買過嬰兒奶粉,那你對紙尿褲、濕紙巾可能就感興趣,這些都是後台大數據分析平台乾的事情。
同上。
理解不夠深刻,覺得可做的事情挺多,尤其是政府,大數據很有用,比如城市交通狀況的預測、停車引導等等,比如犯罪嫌疑人的追蹤(這個需要多方面的技術配合)。
⑶ o2o餐飲運用了那些大數據技術
以大數據分析技術來進行決策分析也成為了現今餐飲業尋求突破的著力點。以大數據為主導驅動的商業模式創新、市場營銷、運營、戰略規劃研究和實踐將成為未來大數據商業模式研究的核心。Devlin等指出,大數據將在數據結構的技術含義、處理速度和大數據的實際應用價值兩個方面進行演化。本文從現有餐飲O2O的商業模式出發,分析了大數據在其中能滲透的著力點,從大數據的實際應用價值方面,專注與對餐飲O2O商業模式中用戶粘性的增強和用戶體驗加深的研究,並對此提出了新型的餐飲O2O商業模式,構建大數據對商業模式創新的直接與間接影響的理論分析框架,探討在大數據背景下企業商業模式的創新過程,建立大數據引導下新型餐飲
⑷ 大數據有哪些應用
大數據的應用包括:包括電商、傳媒、金融、交通、電信、安防、醫療、製造、汽車、餐飲、能源、娛樂等。
大數據(英語:Big data),又稱為巨量資料,指的是在傳統數據處理應用改逗山軟體不足以處理的大或復雜的數據集的術語改逗山。
數據也可以定義為來自各種來源的大量非結構化或結構化數據。從學術角度而言,大數據的出現促成廣泛主題的新穎研究。這也導致各種大數據統計方法的發展。大數據並沒有統計學的抽樣方法;它只是觀察和追蹤發生的事情。
大數據必須藉由計算機對數據進行統計、比對、解析方能得出客觀結果。美國在2012年就開始著手大數據,奧巴馬更在同年投入2億美金在大數據的開發中,更強調大數據會是之後的未來石油。數據挖掘(data mining)則是在探討用以解析大數據的方法。
⑸ 大數據指的是什麼
大數據是什麼?
在很多人的眼裡大數據可能是一個很模糊的概念,但是,在日常生活中大數據有離我們很近,我們無時無刻不再享受著大數據所給我們帶來的便利,個性化,人性化。全面的了解大數據我們應該從四個方面簡單了解。定義,結構特點,我們身邊有哪些大數據,大數據帶來了什麼,這四個方面了解。
那麼「大數據」到底是什麼呢?
在麥肯錫全球研究所給出的定義中指出:大數據即是一種規模大到在獲取,存儲,管理,分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。簡單而言大數據是數據多到爆表。大數據的單位一般以PB衡量。那麼PB是多大呢?1GB=1024MB ,1PB=1024GB才足以稱為大數據。
如圖:
衡量單位一覽表
其次,大數據具有什麼樣的特點和結構呢?
大數據從整體上看分為四個特點,
第一,大量。
衡量單位PB級別,存儲內容多。
第二,高速。
大數據需要在獲取速度和分析速度上要及時迅速。保證在短時間內更多的人接收到信息。
第二,多樣。
數據的來源是各種渠道上獲取的,有文本數據,圖片數據,視頻數據等。因此數據是多種多樣的。
第三,價值。
大數據不僅僅擁有本身的信息價值,還擁有商業價值。大數據在結構上還分為:結構化,半結構化,非結構化。結構化簡單來講是資料庫,是由二維表來邏輯表達和實現的數據。非結構化即數據結構不規則或不完整,沒有預定義的數據模型。由人類產生的數據大部分是非結構化數據。
⑹ 餐飲行業怎麼才能玩轉大數據
中國餐飲市場這幾年似乎進入了黃金發展期,在北上廣深這樣的一線城市裡,每天都有150
家新開業的餐廳。他們的出現就是為了滿足中國老百姓們變化多端的味蕾需求。但是,很少人觀察到每天倒閉的餐廳也不在少數,畢竟商鋪空間就那麼些,舊的不去,新的不來。
《2016-2021年互聯網對中國餐飲行業的機遇挑戰與應對策略專項咨詢報告》
簡單說說大數據是什麼
先簡單說說對大數據的認識,美國領先的信息技術研究和咨詢公司Gartner 在2001 年就對大數據有過一個定義。之後,著名的商業分析軟體公司SAS
增加了兩項,大致理解如下:
1. 大量來源的數據:交易數據,非結構化的社交媒體數據,感測器、機器之間的交互數據等都是來源不同的大數據;
2. 高速更新的數據:大數據發生的場景和時間都是瞬息萬變。引用感測器、智能檢測方式、RFID 的標記將可以用於記錄這樣高速更新的數據。
3. 多形式的數據:結構化的數據經常以數字化的形式在資料庫中,但是還有文件、郵件、視頻、金融交易、社交媒體帖子、顧客的喜好意見等非結構化的數據;
4. 隨時變化的數據:數據很有可能是高度不連續的,因為有階段性的影響。餐廳中忙碌的時候,大量數據發生,但是非忙碌的時候很多數據就停止更新了。
5. 復雜的數據整合:數據來自多個渠道,要將數據關聯、匹配、清洗和轉變形式是非常大挑戰。
餐飲大數據的挑戰會比線上更加艱巨,因為非結構化的數據佔比非常大。顧客的一言一行都是對商家產品和服務的態度,消費行為也就是在這些態度中表現出來的。支付、點單、評價、拍照分享、使用打折優惠、顧客(會員)管理CRM
等等只是(餐飲)大數據的一些數據節點即決策結果。產生這些數據節點的決策過程更有挖掘價值,能夠反映顧客自身條件,並可以指導如何用產品和服務更好地滿足顧客。
餐飲大數據怎麼玩
要充分挖掘產生數據節點的決策過程,有一個最實用和簡單的方式:將數據節點做更細的分類,找出決策過程中的次級數據節點。
大眾點評已經將原本簡易的總體打分、平均消費、照片的評價體系做的越來越細分,增加了關鍵字可選項評價、推薦菜品評價,門店環境照片、菜品照片、價目表。美國的同類型服務Yelp也將評分應用到了菜品分量(Portion
size)、質量和口味(Quality/Flavor)、價位(Price)、服務(Service)、菜單可選性(Menu
options)、地理位置(Location)、氣氛(Ambience)、雜訊程度(Noise Level)多個維度。
看到餐飲大數據的玩法如此日新月異,應用大數據做營銷的我們這批創業者感到異常興奮。不過,興奮之餘還是會面臨很大的挑戰。大家是否考慮過,這樣復雜和完整的數據有這么容易採集到么?即使大眾點評和Yelp
這樣的平台也不能讓顧客自願、完整、連續地完成評價數據的錄入。退一步說,即使這些數據的採集達到我們滿意的程度(實際上完全不切實際),我們又應該如何使用呢?
一次性提出這么多問題,感覺頭腦要爆炸了,還是一個個來討論吧。
完善數據採集體系永遠是第一步。要採集這么多決策過程中的次級數據節點既是技術問題、產品問題,又是商業模式問題:
1. 讓顧客自願錄入數據,背後的邏輯是數據是相對真實反映顧客自身條件;
2. 讓顧客完整錄入數據,背後的邏輯是產品體驗是符合顧客使用需求和讓顧客感興趣的;
3. 讓顧客連續錄入數據,背後的邏輯是需要有一定的激勵機制對應合適的商業模式。天下有免費午餐,但是沒有永遠免費的午餐;
中國有評價數據平台如大眾點評,支付交易數據平台如支付寶、微信支付、點評閃惠以及和他們對接的POS
產品;還有數百家從事(移動)點單、小票處理業務和提供顧客(會員)管理CRM
產品服務的公司。他們正在為餐飲大數據體系帶來各種嘗試,相信數據採集問題在這樣的競爭環境中一定會很快找到最適合各類業態的解決方案。
那麼問題又來了,大家都在從產品體驗和競爭角度攻克數據採集這個大問題,一旦這個問題被很好的解決,他們又應該如何使用這些大數據呢?大數據應該用來提供更有價值的服務,幫助商家提高運營效率、服務水平和市場營銷水平。
我們認為將(餐飲)大數據應用到市場營銷領域是有很大空間的。參考電商的發展,互聯網作為一個渠道平台,引用的起步領域一般是產業鏈下游——營銷環節。
餐飲大數據營銷
一切營銷的方式原理都逃不過「什麼時候,給什麼人,發送什麼內容」這3 個要素。簡單地說,把大數據的價值輸出到這3 個要素上就可以滿足商家的需求。
如今商家都在玩轉微信營銷,用創意的文案和內容吸引粉絲,促進他們到店消費。仔細一想微信營銷過程中大數據的應用似乎和商家沒有太大關系,或者說微信擁有大量的數據分析基礎,但商家無從上手。營銷話題和內容苦苦思索,發送對象和時間選擇停留在拍腦袋時代。微信營銷不是一門簡單的學問,從事媒體的人玩得轉,每天招呼生意的人就不一定了。大數據的應用需要提供一種日常化、數據化、自動化的顧客營銷方式。服務提供商應該為做生意的人減輕運營負擔,讓他們知道科學的營銷方式和付出的優惠是如何綁定的,效果又是怎麼樣的就足夠了,剩下的工作量就讓計算機和大數據來完成吧。
最近很火爆的人工智慧和圍棋大師對弈,告訴我們一個簡單的邏輯,在有限的規則「四顆棋子可以圍住並吃掉一顆棋子,棋盤上佔有面積大的贏得比賽」之下,人腦是不太可能戰勝不斷學習和處理巨大運算量的電腦。
同樣的道理,日常化營銷內容如(限時、隨機)優惠券、(限時)折扣券、(可分享)紅包、生日/星座關懷、買一送一、第二份半價、四人同行一人免單、特惠商品、消費返現、積分兌換、(VIP)會員許可權等,是在一定范圍內的有限玩法。大數據可以幫助實現告訴運算並科學推薦發送的時間和發送對象。在這一點上,人腦也是無法挑戰電腦的。
永遠需要人的智慧
在沒有規則的情況下,人類智慧依然是不可被替代的。餐飲商家需要應該把更多營銷精力投入到創意事件上,幫助餐廳增加品牌認知度。如西貝策劃的情人節親吻姿態對應不同的折扣。這樣的創意營銷策劃是計算機和大數據也沒有辦法代為實現的,太多非結構、不連續、難整合的數據需要理解,並指導決策。
大數據自動化和人類智慧結合的營銷方式沒有人們想像中的那麼神秘和遙不可及,中國千萬餐飲商家需要的較為通用的解決方案已經可以實現了,是時候讓他們擁抱大數據營銷了。
⑺ 餐飲業都有哪些大數據
你好,很高興為您解答,餐飲業的大數據下面小編總結了以下餐飲大數據請知版悉!
餐廳在籌權備期間的大數據運用:餐廳籌備期間,作為老闆應該從現有的大量數據中提出自己的餐廳籌備計劃。並且計算這個計劃的可行性。在此期間涉及的有當地餐廳數量,當地各餐廳在線訂單,當地商業地皮價格走勢,當地水電氣等商用價格等,當然這些數據很多都是自古以來都要考察的,但你不能不說這是屬於大數據的范疇。
餐廳運營期間的大數據運用:餐廳運營期間,在老客戶的數據分析上和新顧客的數據挖掘上,都需要利用到大數據分析,只有數據維度足夠多,才能更准確得了解顧客。才不會把把衛生巾當禮品送給一群單身男生。
餐廳發展(開分店)的大數據:除了綜合前兩個數據分析進行總結之外,還需要進行新一輪的成本評估和風險評估,這不但涉及到大數據,還涉及金融貸款和資本運作了,那又是個更大的話題了。這都是在互聯網思維下做餐廳的一些大數據運用節點,題主參考就好,至於數據的收集可以通過三餐美食等餐飲管理軟體及其配套的餐飲管理系統,數據的處理系統導入大數據分析演算法來進行生成。
謝謝,望採納!