Ⅰ 如果我們的研究主題為大數據,應檢索哪些文獻
1.[期刊論文]數據科學與大數據技術專業的教材建設探索
期刊:《新聞文化建設》 | 2021 年第 002 期
摘要:隨著大數據時代的到來,信息技術蓬勃發展,國家大力推進大數據產業的發展,鼓勵高校設立數據科學和數據工程相關專業。在趨勢的推動下,許多高校成立了數據科學與大數據技術專業。本文通過研究數據科學與大數據技術專業的發展現狀,探索新專業下人才培養的課程設置及教材建設等問題,同時介紹高等教育出版社在數據科學與大數據技術專業教材建設方面的研發成果。
關鍵詞:數據科學與大數據技術專業;課程設置;教材建設
鏈接:https://www.zhangqiaokeyan.com/academic-journal-cn_detail_thesis/0201289060336.html
---------------------------------------------------------------------------------------------------
2.[期刊論文]數據科學與大數據技術專業課程體系探索
期刊:《科教文匯》 | 2021 年第 002 期
摘要:該文闡述了數據科學與大數據專業的設置必要性、專業的培養目標和知識能力結構,最後探索了數據科學與大數據專業的技術性課程體系設置方法.希望該文內容對數據科學與大數據技術專業的培養方案制訂和課程體系構造具有一定的指導意義和參考價值.
關鍵詞:數據科學;大數據技術;課程體系
鏈接:https://www.zhangqiaokeyan.com/academic-journal-cn_science-ecation-article-collects_thesis/0201284684572.html
---------------------------------------------------------------------------------------------------
3.[期刊論文]數據科學與大數據技術專業實驗實踐教學探析
期刊:《長春大學學報(自然科學版)》 | 2021 年第 001 期
摘要:近些年各種信息數據呈爆炸式增長,在這種背景下,國家在2015年印發了關於大數據技術人才培養的相關文件,每年多個高校的大數據相關專業獲批.數據量的增長對數據處理的要求越來越高,各行業涉及信息數據的范圍越來越廣,對大數據專業人才的需求越來越多.為了應對社會需求,如何科學地規劃數據科學與大數據專業的本科教育,尤其在當前注重實踐操作的背景下,如何制定適合的實驗實踐教學方案,更好滿足社會需求.
關鍵詞:數據科學;大數據;實踐教學
鏈接:https://www.zhangqiaokeyan.com/academic-journal-cn_journal-changchun-university_thesis/0201288750604.html
Ⅱ 網路安全與大數據技術應用探討論文
網路安全與大數據技術應用探討論文
摘要: 隨著互聯網技術的高速發展與普及,現如今互聯網技術已經廣泛應用於人們工作與生活之中,這給人們帶來了前所未有的便利,但與此同時各種網路安全問題也隨之顯現。基於此,本文主要介紹了大數據技術在網路安全領域中的具體應用,希望在網路系統安全方面進行研究的同時,能夠為互聯網事業的持續發展提供可行的理論參考。
關鍵詞: 網路安全;大數據技術;應用分析
前言
隨著近年來互聯網技術的不斷深入,網路安全事故也隨之頻頻發生。出於對網路信息安全的重視,我國於2014年成立了國家安全委員會,正式將網路安全提升為國家戰略部署,這同時也表示我國網路信息安全形勢不容樂觀,網路攻擊事件處於高發狀態。木馬僵屍病毒、惡意勒索軟體、分布式拒絕服務攻擊、竊取用戶敏感信息等各類網路攻擊事件的數量都處於世界前列。時有發生的移動惡意程序、APT、DDOS、木馬病毒等網路攻擊不僅會嚴重阻礙網路帶寬、降低網路速度、並且對電信運營商的企業聲譽也會產生一定影響。根據大量數據表明,僅僅依靠傳統的網路防範措施已經無法應對新一代的網路威脅,而通過精確的檢測分析從而在早期預警,已經成為現階段網路安全能力的關鍵所在。
1網路安全問題分析
網路安全問題不僅涉及公民隱私與信息安全,更關乎國事安全,例如雅虎的信息泄露,導致至少五億條用戶信息被竊;美國棱鏡門與希拉里郵件門等等事件都使得網路安全問題進一步升級、擴大。隨著互聯網構架日益復雜,網路安全分析的數據量也在與日俱增,在由TB級向PB級邁進的過程,不僅數據來源豐富、內容更加細化,數據分析所需維度也更為廣泛。伴隨著現階段網路性能的增長,數據源發送速率更快,對安全信息採集的速度要求也就越高,版本更新延時等導致的Odav等漏洞日漸增多,網路攻擊的影響范圍也就進一步擴大;例如APT此類有組織、有目標且長期潛伏滲透的多階段組合式攻擊更加難以防範,唯有分析更多種類的安全信息並融合多種手段進行檢測抵禦。在傳統技術架構中,大多使用結構化資料庫來進行數據存儲,但由於數據存儲的成本過高,系統往往會將原始數據進行標准化處理後再進行存儲,如此易導致數據的丟失與失真以及歷史數據難以保存而造成的追蹤溯源困難;同時對於嘈雜的大型、非結構化數據集的執行分析以及復雜查詢效率很低,導致數據的實時性及准確性難以保證,安全運營效率不高,因此傳統網路安全技術已經難以滿足現階段網路安全分析的新要求。大數據技術這一概念最初由維克托.邁爾.舍恩伯格與肯尼斯.庫克耶在2008年出版的《大數據時代》一書中提出的,大數據是指不採用隨機分析法,而是對所有的數據進行綜合分析處理。大數據技術作為現階段信息架構發展的趨勢之首,其獨有的高速、多樣、種類繁多以及價值密度低等特點,近年來被廣泛應用於互聯網的多個領域中。大數據的戰略意義在於能夠掌握龐大的數據信息,使海量的原始安全信息的存儲與分析得以實現、分布式資料庫相比傳統資料庫的存儲成本得以降低,並且數據易於在低廉硬體上的水平擴展,極大地降低了安全投入成本;並且伴隨著數據挖掘能力的大幅提高,安全信息的採集與檢測響應速度更加快捷,異構及海量數據存儲的支持打造了多維度、多階段關聯分析的基礎,提升了分析的深度與廣度。對於網路安全防禦而言,通過對不同來源的數據進行綜合管理、處理、分析、優化,可實現在海量數據中極速鎖定目標數據,並將分析結果實時反饋,對於現階段網路安全防禦而言至關重要。
2大數據在網路安全中的應用
將大數據運用到網路安全分析中,不僅能夠實現數據的優化與處理,還能夠對日誌與訪問行為進行綜合處理,從而提高事件處理效率。大數據技術在網路安全分析的效果可從以下幾點具體分析:
2.1數據採集效率
大數據技術可對數據進行分布式地採集,能夠實現數百兆/秒的採集速度,使得數據採集速率得到了極大的提高,這也為後續的關聯分析奠定了基礎。
2.2數據的存儲
在網路安全分析系統中,原始數據的存儲是至關重要的,大數據技術能夠針對不同數據類型進行不同的數據採集,還能夠主動利用不同的方式來提高數據查詢的效率,比如在對日誌信息進行查詢時適合採用列式的存儲方式,而對於分析與處理標准化的數據,則適合採用分布式的模式進行預處理,在數據處理後可將結果存放在列式存儲中;或者也可以在系統中建立起MapRece的查詢模塊,在進行查詢的時候可直接將指令放在指定的節點,完成處理後再對各個節點進行整理,如此能夠確保查詢的速度與反應速度。
2.3實時數據的分析與後續數據的處理
在對實時數據的分析中,可以採用關聯分析演算法或CEP技術進行分析,如此能夠實現對數據的採集、分析、處理的綜合過程,實現了更高速度以及更高效率的處理;而對於統計結果以及數據的處理,由於這種處理對時效性要求不高,因此可以採用各種數據處理技術或是利用離線處理的方式,從而能夠更好地完成系統風險、攻擊方面的分析。
2.4關於復雜數據的分析
在針對不同來源、不同類型的復雜數據進行分析時,大數據技術都能夠更好的完成數據的分析與查詢,並且能夠有效完成復雜數據與安全隱患、惡意攻擊等方面的處理,當網路系統中出現了惡意破壞、攻擊行為,可採用大數據技術從流量、DNS的角度出發,通過多方面的數據信息分析實現全方位的防範、抵禦。
3基於大數據技術構建網路系統安全分析
在網路安全系統中引入大數據技術,主要涉及以下三個模塊:
3.1數據源模塊
網路安全系統中的`數據及數據源會隨著互聯網技術的進步而倍增技術能夠通過分布式採集器的形式,對系統中的軟硬體進行信息採集,除了防火牆、檢測系統等軟體,對設備硬體的要求也在提高,比如對伺服器、存儲器的檢查與維護工作。
3.2數據採集模塊
大數據技術可將數據進行對立分析,從而構建起分布式的數據基礎,能夠做到原始數據從出現到刪除都做出一定說明,真正實現數據的訪問、追溯功能,尤其是對數據量與日俱增的今天而言,分布式數據存儲能夠更好地實現提高資料庫的穩定性。
3.3數據分析模塊
對網路安全系統的運營來說,用戶的業務系統就是安全的最終保障對象,大數據分析能夠在用戶數據產生之初,及時進行分析、反饋,從而能夠讓網路用戶得到更加私人化的服務體驗。而對於用戶而言,得其所想也會對網路系統以及大數據技術更加的信任,對於個人的安全隱私信息在系統上存儲的疑慮也會大幅降低。當前網路與信息安全領域正在面臨著全新的挑戰,企業、組織、個人用戶每天都會產生大量的安全數據,現有的安全分析技術已經難以滿足高效率、精確化的安全分析所需。而大數據技術靈活、海量、快速、低成本、高容量等特有的網路安全分析能力,已經成為現階段業界趨勢所向。而對互聯網企業來說,實現對數據的深度「加工處理」,則是實現數據增值的關鍵所在,對商業運營而言是至關重要的。
4結語
在當下時代,信息數據已經滲透到各個行業及業務領域中,成為重要的社會生產因素。正因如此,互聯網數據產生的數量也在與日倍增中,這給網路安全分析工作帶來了一定難度與壓力,而大數據技術則能夠很好的完善這一問題。在網路系統中應用大數據技術不僅能夠滿足人們對數據處理時所要求的高效性與精準性,並且能夠在此基礎上構建一套相對完善的防範預警系統,這對維護網路系統的安全起著非常關鍵的作用,相信大數據技術日後能夠得到更加廣泛的應用。
參考文獻:
[1]魯宛生.淺談網路安全分析中大數據技術的應用[J].數碼世界,2017.
[2]王帥,汪來富,金華敏等.網路安全分析中的大數據技術應用[J].電信科學,2015.
[3]孫玉.淺談網路安全分析中的大數據技術應用[J].網路安全技術與應用,2017.
;Ⅲ 大數據和人工智慧論文
隨著大數據和人工智慧技術的發展,未來的保險保障將不僅僅能提供經濟補償,還能實現損失干預,具體到人身險方面,以下是我精心整理的大數據和人工智慧論文的相關資料,希望對你有幫助!
基於大數據和人工智慧的被保險人行為干預
【摘要】隨著大數據和人工智慧技術的發展,未來的保險保障將不僅僅能提供經濟補償,還能實現損失干預,具體到人身險方面,則可以實現對被保險人行為的干預,降低給付發生的概率和額度,提高人民健康水平。基於此,文章介紹了利用大數據和人工智慧技術對被保險人行為干預的優點及干預方式,並預期可能實現的干預結果,最後對保險公司進行被保險人行為干預提出了階段建議。
【關鍵詞】大數據 人工智慧 行為干預
近年來隨著大數據和人工智慧技術的發展,越來越多的領域應用這些技術來提高自身的專業水平。保險作為基於大數法則進行風險管理的一種方式,對數據的處理和應用要求更高。目前大數據技術在保險業的應用主要是精準營銷、保險產品開發和理賠服務等,但在保險中的防災防損方面的應用還不夠。如果能夠深入挖掘大數據在被保險人行為方面的研究,再結合人工智慧進行智能幹預,則可以對被保險人實現有效的風險管理,提高被保險人的身體健康狀況,從而極大程度的提升客戶效用,提高社會整體福利水平。
一、被保險人行為干預簡介
行為干預是通過對環境進行控制從而使個體產生特定行為的方式,目前主要在教育,醫療等方面發揮作用。但在被保險人管理方面,行為干預應用很少。現行的對被保險人的管理主要集中在投保審核的過程中,而在投保後提供的服務和干預很少,一般也就是提供健康體檢等服務,而對被保險人投保後的日常生活行為方式,健康隱患則基本處於放任自流的狀況。而被保險人行為干預則是通過對被保險人日常生活行為,飲食習慣等進行實時數據收集和分析,然後制定干預方式進行針對化管理的模式。
二、利用大數據和人工智慧進行被保險人行為干預的優點
實現精準、良好的對被保險人的行為干預,需要利用大數據和人工智慧技術。大數據相比傳統數據具有海量、高速、多樣等特點,它實現了對信息的全量分析而不是以前的抽樣分析。在被保險人行為干預模式中,需要對每一個個體的日常生活作息,行為,飲食,身體健康指標的進行實時數據採集,然後進行分析,這用傳統的數據統計方法是難以做到的。利用大數據技術進行分析能從海量信息中獲取被保險人的風險狀況,從而為精準干預提供基礎。簡單的干預難以實現特定的干預結果,而人工智慧則讓干預顯得更加自然,讓被保險人更加易於接受,從而很大程度上提高了干預效果。
三、如何利用大數據和人工智慧進行被保險人行為干預
利用大數據和人工智慧進行被保險人的行為干預主要有以下步驟:
首先利用人工智慧設備進行被保險人數據收集,除了目前的手機APP,網路等軟體和設備上的數據能夠被收集外,未來人工智慧家居能提供更多的被保險人信息。例如提供體重、坐姿等數據的椅子,提供飲食時間和品種的筷子,提供身體運動和健康數據的智能穿戴式設備等等。數據收集後,需要利用大數據技術對海量數據進行清洗,去噪等技術處理,然後對數據進行分析。第三步是根據數據分析結果,制定具體的行為干預方案。最後一步是根據制定的方法,利用人工智慧進行干預,如智能椅子調整坐姿,智能廚具減少含油量,針對性的健康食譜推薦,鍛煉提醒,智能家居輔助鍛煉等等。與此同時,新一輪的數據收集又開始了,整個過程是連續進行,不斷循環的。
四、利用大數據和人工智慧進行被保險人行為干預的預期成果
對被保險人來說,這種干預方式能有效的進行健康管理。未來的健康保險將成為個人真正的健康管家,從日常生活行為,到身體機能都能提供很好的干預,並且讓良好生活方式的養成更加容易,從而提高自身的健康狀況,達到更好的生活狀況。但另一方面,全面數據化,智能化的方式可能會帶來很大的數據泄露風險,所以如果保護客戶私密數據是另一個值得研究的問題。另外,對於投保前健康狀況較差的客戶,或者是對行為干預較為抵制,干預效果較差的客戶,可能需要承擔更多的保費。當然對於優質客戶和樂於提升和改變的客戶則可以享受到更加優惠的費率。也就是說在大數據和人工智慧技術下,客戶進行了進步一步細分。
對保險人來說,行為干預能夠降低被保險人的風險,很多疾病能實現防範於未然,降低賠償程度。另外,藉助大數據和人工智慧,保險人還能根據分析結果,被保險人對干預的反應等進行客戶的進一步分類,從而實現區塊化管理。但這對保險公司也提出了更高的技術要求,尤其在前期,可能會帶來加大的成本。
五、保險公司推進被保險人行為干預的建議
對於保險公司來說,目前的一些人工智慧技術還未能實現,或者成本高昂,難以普及。所以現階段對保險公司來說首先是提高大數據能力。
具體來說,首先是利用大數據對公司已有客戶信息進行數據挖掘,包括承保數據,理賠數據等,從而一定程度挖掘出客戶的特徵,並提供服務。如根據挖掘出的性別差異,地區差異,年齡差異等,提供不同的生活建議。
如果公司已經充分進行了自身客戶已有數據的挖掘,則可以利用目前的手機APP,佩戴設備進行數據的進一步收集。例如,利用薄荷、飲食助手、微信運動、春雨掌上醫生、血糖記錄、小米手環等數據進行用戶數據收集。同時可以針對被保險人開發專門的手機APP,集數據收集和服務於一身。
更進一步,保險公司可以嘗試與其他高科技企業合作,開發一些智能穿戴式設備,智能家居等,逐步實現對被保險人的行為干預。
參考文獻
[1]彼得・迪亞曼迪斯.將會被人工智慧和大數據重塑的三個行業[J].中國青年,2015,23:41.
[2]王和,鞠松霖.基於大數據的保險商業模式[J].中國金融,2014,15:28-30.
[4]尹會岩.保險行業應用大數據的路徑分析[J].上海保險,2014,12:10-16.
下一頁分享更優秀的<<<大數據和人工智慧論文
Ⅳ 管理會計在大數據時代的發展論文
管理會計在大數據時代的發展論文
摘要 :互聯網為海量的大數據提供媒介,大數據使人們生活和工作方式悄然改變。在經濟體制轉型期,市場機遇與挑戰並存,企業價值管理已是重中之重。本文在梳理歸納管理會計的相關研究基礎上,提出了大數據時代管理會計向預測會計、價值創造及多元化戰略三個方向的轉變,以期對企業的價值創造有所幫助。
關鍵詞 :大數據;管理會計;發展
自改革開放以來我國管理會計才獲得重大發展。國有企業是計劃經濟體制下企業主要形式,管理會計自然為其成本中心,企業成本核算及績效考核是該時期的焦點。市場經濟的發展使企業注重效率,管理會計開始側重企業內部的管理核算工作。大數據時代已經來臨,而大數據的運用恰好為管理者提供信息決策依據,以此提高企業核心競爭力使企業可持續發展。故本文對大數據時代管理會計發展與變化的闡述也具有重要意義。
1文獻回顧
1.1戰略成本管理方面
Kennethsimmonds於上世紀80年代最早提出戰略成本管理,他從企業在市場中競爭地位的視角出發對戰略成本管理進行了研究,認為企業需要對自己和對手進行全面分析來決策提供信息。後來各國的學者不斷將其研究深化,並形成了豐富的理論成果。Ingram等(2004)認為全球化的競爭使商業模式對管理會計產生影響,指出傳統固定成本法容易導致不良營銷和運營決策不精確信息,完全變動法也會因短視思維而影響公司長期發展。韋恩.J.莫爾斯等(2005)認為管理會計是一種管理工具而非一種單純的會計方法,要實現顧客價值最大化的目標,需要企業從價值鏈的視角促進企業與供應商和購買者之間的合作關系,把成本管理重點放在流程管理而不是部門預算和成本上。郭曉梅(2005)也提到傳統的管理會計只重視生產過程忽視價值鏈,只重視成本降低而不考慮企業戰略目標,只重視成本發生結果而不進行動因分析,從而無法適應戰略管理需要。
1.2管理會計運用方面
RRFullerton等(2013)通過案例研究制定了精益製造環境下企業管理會計和控制措施的理論框架。後來他們對美國244個公司調查數據顯示,精益生產實施程度和簡化戰略報告系統正相關,而與庫存跟蹤則是負相關且依賴於高管支持程度。JJermias等(2013)描述印度尼西亞管理會計的實施程度及管理會計人員未來五年將發生的變化,並通過實證研究發現管理會計的創新和公司規模、存續時間以及績效等有關,其創新水平可通過層次結構和組織設計預測,其使用面向過程比面向功能更加有效。VenkatNarayanan(2014)通過對東南亞公司案例研究,介紹了環境管理會計及實施方法,並指出環境管理會計不僅要進行企業內部成本核算和信息決策,同時考慮環境因素對環境業績和財務業績做出評價。
1.3大數據與管理會計聯系方面
李思志等(2006)認為建立基於數據挖掘方法的財務報表分析模型有助於廣大投資者決策。塗錕斌(2009)指出銀行在實施客戶為中心的戰略目標時要對客戶全面分析,管理會計系統對大量數據的處理分析可為銀行發展和轉型提供支持。鄧國清(2013)認為大數據對傳統決策分析、風險管理、信用管理和作業成本管理強烈沖擊,同時闡述基於結果分析向過程分析的轉變、單類型結構化數據向多類型轉變以及階段性月度報告向實時報告轉變等方面的管理會計變革。湯煬(2013)針對醫院傳統財務管理信息系統偏重業務操作的局限性及積累的海量數據現狀,提出基於大數據思想的財務管理和決策系統。其他學者也表明大數據不僅改變了我們的生活和思維方式,而且對企業供應鏈和會計工作帶來革新(AMcAfee,EBrynjolfsson,2012;MAWaller,SEFawcett,2013)。
2大數據時代管理會計的變化
2.1從成本核算會計向預測會計轉變
多數企業生產活動一般按照產品耗費形式劃分為生產成本和期間費用。該分配方法是以產品數量為基礎的,機械化和信息化加速易導致製造費用增加和直接人工費用減少,最終使分配率不準確而產品成本模糊化。目前企業逐步推進的作業成本法通過對成本對象進行成本追蹤來明晰成本動因,從而提高成本核算的准確性。管理會計從單純的成本核算開始向戰略管理會計發展,已經不再是追求成本結果而不知成本動因的情況,更適合企業管理者的決策。隨著經濟體制深化改革及經濟進入新常態,市場機遇和挑戰並存,企業發現機會和識別風險非常重要。計算機系統已能夠進行會計核算,管理者需要的是會計人員通過數據分析並發現背後價值。管理會計也就需要利用趨勢分析、時間序列分析等方法來分析數據間的相關性,建立對銷售、成本和投融資預測,從而為決策提供科學的依據。會計從核算功能向預測方向轉變將成為管理會計的發展方向。
2.2從增值作業向價值鏈價值創造轉變
決策者在業務分析中往往考慮資源取得成本及產品或勞務銷售價格,使增值分析時聚焦內部價值鏈和產品成本。在經濟全球化競爭時代,波特戰略已不能完全適應社會發展需要,企業要開辟出競爭邊界外的「藍海」並進行價值鏈分析,充分考慮與供應商和顧客的關系,從而實現企業的價值創造。以前,大多運營商沒有發現已經積累的大量數據的潛在價值,只有部分企業利用這些數據發送垃圾簡訊使顧客感到個人隱私泄露的憤慨。而蘋果公司與運營商簽訂的合約中要求提供大量有用數據,並對其處理分析得到了用戶體驗的相關數據。蘋果公司應用程序AppStore在2013年的銷售額就超過100億美元,可想而知首創用戶體驗模式銷售帶來的.高額利益,且大多數價值凝聚於蘋果的品牌形象而非固定資產等。從蘋果的成功可以看出,價值鏈中注重與供應商和顧客的合作關系非常重要,可以幫助企業真正發現創造價值的秘密。所以,企業要從傳統會計的增值作業分析向價值鏈創造價值轉變,充分利用數據資源使企業價值最大化。
2.3從單一戰略向多元化戰略轉變
存貨是企業重要的流動資產,存貨的同時必然發生的采購成本、儲存成本和短缺成本等會降低利潤。傳統管理會計要求企業根據自身條件假設並綜合考慮存貨成本,計算出企業存貨經濟訂貨量來實現最佳存貨量和其他費用的降低。在信息化的大數據時代,按照經濟批量訂貨對某些企業來說仍然不合理,因為那樣沒有減少企業費用支出且會增加存貨成本,例如存貨倉庫費用、保管費、損失費等。沃爾瑪作為零售業巨頭,它的成功不僅與強大的市場勢力有關,還和網路帶來的巨大資料庫是分不開的。沃爾瑪注重信息化建設,擁有專門的衛星和遍布全球的大型伺服器,通過把零售環節的商品記錄為數據而徹底改變了零售行業。沃爾瑪讓供應商監控產品銷售速率、數量以及存貨情況,迫使供應商照顧自己的物流系統及供貨事項,沃爾瑪也因此避免存貨風險並降低成本費用。此外,沃爾瑪實驗室也曾試用Facebook好友喜好來實現銷售。在大數據時代,企業應該從傳統的成本降低及差異化戰略向利用信息數據分析發現事物間的相關關系轉變,從企業單一戰略向多元化戰略的轉變,從而使有效有利信息資源促進銷售增長。
3結論
互聯網信息化把人類帶入大數據時代,這些大數據以雲計算為基礎的信息經過存儲、整理、分類、挖掘正在悄無聲息的實現這背後隱藏的巨大價值。大數據正改變著人類生活、工作和思維方式,企業作為社會活動重要參與者,其商業模式等也發生改變,現代會計也因此再次走上改革之路。
參考文獻:
[1]維克托.邁爾-舍恩伯格,肯尼斯.庫克耶.大數據時代[M].浙江人民出版社,2013.
[2]韋恩.J.莫爾斯,詹姆斯.R.戴維斯,阿爾.L.哈特格雷夫斯.管理會計:側重於戰略管理[M].上海:上海財經大學出版社,2005.
;Ⅳ 大數據論文
大數據論文【1】大數據管理會計信息化解析
摘要:
在大數據時代下,信息化不斷發展,信息化手段已經在我國眾多領域已經得到較為廣泛的應用和發展,在此發展過程,我國的管理會計信息化的應用和發展也得到了非常多的關注。
同時也面臨著一些問題。
本文通過分析管理會計信息化的優勢和應用現狀以及所面臨的的問題,以供企業在實際工作中對這些問題的控制和改善進行參考和借鑒。
關鍵詞:
大數據;管理會計信息化;優勢;應用現狀;問題
在這個高速發展的信息時代,管理會計的功能已經由提供合規的信息不斷轉向進行價值創造的資本管理職能了。
而管理會計的創新作為企業管理創新的重要引擎之一,在大數據的時代下,管理會計的功能是否能夠有效的發揮,與大數據的信息化,高效性、低廉性以及靈活性等特點是密不可分的。
一、大數據時代下管理會計信息化的優勢及應用現狀
在大數據時代下,管理者要做到有效地事前預測、事後控制等管理工作,在海量類型復雜的數據中及時高效的尋找和挖掘出價值密度低但是商業價值高的信息。
而管理會計信息化就能夠被看做是大數據信息系統與管理會計的一個相互結合,可以認為是通過一系列系統有效的現代方法,
不斷挖掘出有價值的財務會計方面的信息和其他非財務會計方面的綜合信息,隨之對這些有價值的信息進行整理匯總、分類、計算、對比等有效的分析和處理,
以此能夠做到滿足企業各級管理者對各個環節的一切經濟業務活動進行計劃、決策、實施、控制和反饋等的需求。
需要掌控企業未來的規劃與發展方向就能夠通過預算管理信息化來實現;需要幫助管理者優化企業生產活動就能夠通過成本管理信息化對
供產銷一系列流程進行監控來實現;需要對客觀環境的變化進行了解以此幫助管理者為企業制定戰略性目標能夠通過業績評價信息化來實現。
(一)預算管理信息化
在這個高速發展的信息時代下,預算管理對於企業管理而言是必不可少的,同時對企業的影響仍在不斷加強。
正是因為企業所處的環境是瞬息萬變,與此同此,越來越多的企業選擇多元化發展方式,選擇跨行業經營的模式,經營范圍的跨度不斷增大。
這就需要企業有較強的市場反應能力和綜合實力,對企業的預算管理提出了新的發展挑戰要求。
雖然不同企業的經營目標各不相同,但對通過環境的有效分析和企業戰略的充分把握,從而進行研究和預測市場的需求是如出一轍的。
企業對需求的考量進而反應到企業的開發研發、成本控制以及資金流安排等各個方面,最終形成預算報表的形式來體現企業對未來經營活動和成果的規劃與預測,
從而完成對企業經營活動事後核算向對企業經營活動全過程監管控制的轉變。
然而從2013國務院國資委研究中心和元年諾亞舟一起做的一項針對大型國有企業的調研結果中得出,僅僅有4成的企業完成了預算管理的信息化應用,
大型的國有企業在預算管理信息化應用這方面的普及率都不高,足以說明我國整體企業的應用情況也不容樂觀。
所以從整體上來講,預算管理信息化的應用並未在我國企業中獲得廣泛的普及。
(二)成本管理信息化
企業由傳統成本管理企業向精益成本管理企業轉換是企業發展壯大的必然選擇。
而基於大數據信息系統能夠為企業提供對計劃、協調、監控管理以及反饋等過程中各類相關成本進行全面集成化管理。
而進行成本管理的重中之重就是對企業價值鏈進行分析以及對企業價值流進行管理。
企業能夠通過成本管理信息化對有關生產經營過程中的原材料等進行有效地信息記錄及進行標示,並結合在財務信息系統中產生的單獨標簽,
使與企業有關的供應商、生產經營過程和銷售等的過程全都處於企業的監控。
以此企業可以做到掌握生產經營的全過程,即能夠通過財務信息系統實時了解到原材料的消耗,產品的入庫及出庫等一切企業生產經營活動。
同時,結合價值鏈的分析和價值流管理,企業通過將生產過程進行有效地分解,形成多條相互連接的價值鏈,運用信息化手段對企業的
每條價值鏈的成本數進行有效的追蹤監管和綜合分析,以此為基礎為企業提出改進方案,並使用歷史成本進行預測,達到減少企業的不需要的損失及浪費,最終達到優化生產經營過程。
雖然成本管理信息化是企業發展的一個重要趨勢,以大數據信息技術為基礎的信息系統可以使得企業完成全面的成本管理,給企業的成本管理帶來了巨大的推動力。
然而信息化在成本控制方面的實施效果並不是很理想。
(三)業績評價信息化
業績評價是對企業財務狀況以及企業的經營成果的一種反饋信息,當企業的績效處於良好狀態,代表企業的發展狀況良好,
也反映了企業現階段人才儲備充足,發展處於上升期,由此企業定製擴張戰略計劃。
而當企業的績效不斷減少,代表企業的發展狀況在惡化,也反映了企業的人才處在流失狀態,企業在不斷衰退,此時企業應該制定收縮戰略計劃。
企業進行業績評價信息化的建設,通過對信息系統中的各類相關數據進行綜合分析,有效地將對員工的業績評價與企業的財務信息、顧客反饋、學習培訓等各方面聯系在一起。
對於企業而言,具備一套完善且與企業自身相適應的業績評級和激勵體系是企業財務信息系統的一個重要標志,也是企業組織內部關系成熟的一種重要表現。
然而,如今對於具備專業的業績評價信息化工具平衡分卡等在企業的發展過程中並未得到廣泛的應用。
其中最大的原因應該是對業績評價的先進辦法對於數據信息的要求比較簡單,通常可以由傳統方式獲得。
所以,現如今能夠完全將業績評價納入企業信息系統,並能夠利用業績評價信息化來提高企業管理效率的企業數量並不多。
二、大數據時代下管理會計信息化存在的主要問題
(一)企業管理層對管理會計信息化不重視
我國企業管理層對企業管理會計信息化建設存在著不重視的問題。
首先,對管理會計信息化概念和建設意義沒有正確的認識,有甚至由於對於企業自身的認識不夠充分,會對管理會計信息化的趨勢產生了質疑和抵觸心理。
再者,只有在一些發展較好的企業中進行了管理會計信息化的建設工作及應用,但是,企業應用所產生的效果並不是很理想,進而促使管理會計信息化在企業的發展速度緩慢。
(二)管理會計信息化程度較低
大數據時代下,信息化手段已經在我國眾多領域已經得到較為廣泛的應用和發展,在此發展過程,我國的管理會計信息化的應用和發展也得到了非常多的關注。
但是,由於管理會計在我國受重視程度不夠,企業在進行管理會計信息化建設的過程中對與軟體的設計和應用也要求較高,所以與管理會計信息化建設相關的基礎建設還相對較落後。
(三)管理會計信息化理論與企業經管機制不協調
雖然隨著國家政策鼓勵和扶持,很多行業的不斷涌現出新的企業,企業數量不斷增多,但是由於這些企業在規模以及效益等方面都存在著較大的差距,同時在管理決策方面也產生了顯著地差別。
很多企業在發展的過程中並沒有實現真正的權責統一,產生了管理層短視行為,沒有充分考慮企業的長遠利益等管理水平低下的問題。
三、管理會計信息化建設的措施
(一)適應企業管理會計信息化發展的外部環境
企業在進行管理會計信息化建設時,要結合企業所處的外部環境進行全方面的規劃和建設。
在企業進行規劃和建設時,國家的法律法規等相關政策占據著十分重要的位置,需要對市場經濟發展的相關法律法規進行充分理解和考慮,為企業管理會計信息化建設提供好的法律環境。
管理會計信息化系統的正常運轉要求企業處於相對較好的環境之中,以此充分發揮出其應有的作用。
(二)管造合適的管理會計信息化發展內部環境
企業管理會計信息化的良好發展要求企業能夠提供良好的內部環境。
樹立有效推進企業管理會計信息化建設的企業文化,企業文化作為企業股東、懂事、管理層以及每個員工的價值觀念體現,
有利於各級員工都能夠正確認識到管理會計信息化建設的重要性,接受管理會計信息化的價值取向。
再者,企業要儲備足夠的管理會計人才,為管理會計信息化的建設提供源源不斷的血液。
同時,為企業管理會計信息化建設提供強大的資金保障。
最後,對企業內部控制體系不斷完善,為企業創造長足的生命力,為管理會計信息化賴以生存的環境。
(三)開發統一的企業信息化管理平台
在大數據時代下,信息化不斷發展,對於企業而言,會同時使用多種不同的信息系統進行組合使用,並且這種情況在未來也可能將持續下去,企業需要建立綜合統一的企業信息化管理平台。
四、結束語
管理會計信息化已經成為企業發展的重要趨勢。
同時也面對著一些問題。
因此,相應的措施和不斷地完善和改進是必不可少的,以此才能夠促進管理會計信息化的不斷發展。
作者:李瑞君 單位:河南大學
參考文獻:
[1]馮巧根.
管理會計的理論基礎與研究範式[J].
會計之友,2014(32).
[2]張繼德,劉向芸.
我國管理會計信息化發展存在的問題與對策[J].
會計之友,2014(21).
[3]韓向東.
管理會計信息化的應用現狀和成功實踐[J].
會計之友,2014(32).
大數據論文【2】大數據會計信息化風險及防範
摘要:
隨著科學技術的不斷進步和社會經濟的不斷發展,大數據時代的發展速度加快,同時也推動著會計信息化的發展進程,提高了企業會計信息化工作的效率和質量,資源平台的共享也大大降低了會計信息化的成本。
但大數據時代下會計信息化的發展也存在一定的風險。
本文將會對大數據時代下會計信息化中所存在的風險給予介紹,並制定相應的防範對策,從而使大數據時代在避免給會計
信息化造成不良影響的同時發揮其巨大優勢來促進會計信息化的發展進程。
關鍵詞:
大數據時代;會計信息化;風險;防範
前言
近年來經濟全球化進程不斷加快,經濟與科技的迅猛發展,我國在經歷了農業、工業和信息時代以後終於踏入了大數據時代。
大數據是指由大量類型繁多、結構復雜的數據信息所組成的`數據集合,運用雲計算的數據處理模式對數據信息進行集成共享、
交叉重復使用而形成的智力能力資源和信息知識服務能力。
大數據時代下的會計信息化具有極速化、規模性、智能性、多元化、和即時高效等特點,這使得會計從業人員可以更方便快捷的使用數
據信息,並在降低經濟成本的同時有效實現資源共享,信息化效率逐漸增強。
但同時大數據時代下的會計信息化也面臨著風險,應及時有效地提出防範對策,以確保會計信息化的長久發展。
一、大數據時代對會計信息化發展的影響
(一)提供了會計信息化的資源共享平台
進入大數據時代以來,我國的科學技術愈加發達,會計信息化也在持續地走發展和創新之路,網路信息資源平台的建立使數據與信息資源可以共同分享,平台使用者之間可以相互借鑒學習。
而最為突出的成就便是會計電算化系統的出現,它改變了傳統會計手工做賬的方式,實現了記賬、算賬和報賬的自動化模式,
提高了會計數據處理的正確性和規范性,為信息化管理打下基礎,推進了會計技術的創新和進一步發展。
但是“信息孤島”的出現證明了會計電算化並沒有給會計信息化的發展帶來實質性的變化。
Ⅵ 大數據的產生與發展現狀研究
摘 要:大數據的產生給未來信息技術帶來新的機遇與挑戰。大數據對數據處理的有效性、實時性提出了更高要求,需要根據大數據的特點對當前數據處理技術實施變革,從而形成更有益於大數據採集、存儲、處理、管理、分析、共享的新興技術。本文從大數據的產生與發展、特徵、主要應用以及大數據所帶來的挑戰等方面進行闡述與分析。
關鍵詞 :大數據 物聯網 信息處理 海量計算
一、大數據的產生與發展現狀
隨著物聯網、雲計算等信息技術的飛速發展,大數據技術(Big Data)也越發進入人們的視線。大數據是用傳統方法或工具很難處理或分析的數據信息。目前,人們對大數據的理解還不夠全面和深入,關於大數據的含義也沒有一個統一的定義。亞馬遜大數據科學家John Rauser認為:大數據是超過任何一台計算機處理能力的龐大數據量。Informatica 的中國區首席顧問但彬指出:大數據是海量數據與復雜類型的數據的結合。而維基網路則把大數據定義成諸多大而復雜的、難以用當前資料庫處理的數據集合。
大數據研究受到國內外學術界和工業界的廣泛關注,已成為當今信息時代全世界討論的熱點。2008年,Nature雜志就推出大數據專刊,計算社區聯盟也在同一年發表了報告《Big data computing; Creating revolutionary breakthroughs in commerce, science and society》,報告闡述了解決大數據問題所需的關鍵技術以及所面臨的挑戰。美國奧x政府於2012年3月在白宮網站發布了《大數據研究和發展倡議》,提出了通過收集、處理海量、復雜的數據信息,從而提升能力,加快科學和工程領域的創新步伐,轉變學習教育模式,強化美國本土的安全」。2011年1月,微軟公司同惠普公司合作開發了一系列能夠提升生產力,同時提高決策速度的設備。此外,歐盟委員會也提出駕駁大數據浪潮的戰略思路,日本發布的《面向 2020 的 ICT綜合戰略》也提出需要構造大量豐富的數據基礎。
近年來,我國也積極開展對大數據的研究。2011年10月,工信部確認京滬深杭等 5 城市為「雲計算中心」試點城市。2012年6月,中國計算機學會青年計算機科技論壇也舉辦了「大數據時代,智謀未來」學術報告研討會。大數據及其科學研究方法涉及應用領域很廣,並將與國計民生密切相關的科學決策、金融工程以及知識經濟領域緊緊接合。
二、大數據的特點
目前,企業界和學術界都一致認為,大數據具有4個「V」特徵,即:容量(Volume)、種類(Variety)、速度(Velocity)和至關重要的`價值(Value)。
(1) 容量(Volume)巨大。海量的數據集從TB 級別提升到PB 級別。
(2) 種類(Variety)繁多。大數據數據源有多種,數據格式和種類不同於以前所規定的結構化數據范疇。
(3)價值(Value)密度低。如視頻的例子,在不間斷連續監控的過程中,可能有意義的數據僅有一兩秒。
(4)速度(Velocity)快。包含大量實時、在線數據處理分析的需求1秒鍾定律。
三、大數據應用的領域
大數據產業的發展將推動全球經濟由粗放型向集約型轉變,這將對提升企業整體競爭力和政府監管能力具有意義深遠的影響。
商業作為大數據的重要應用領域。沃爾瑪公司通過對消費者購物行為等一系列非結構化數據的分析,了解不同顧客的購物習慣,公司從所銷售的數據進行分析,從而選出適合在一起搭配出售的商品;淘寶也針對買家開設了大數據平台,為客戶量身打造了一整套完善的網購體驗產品。
大數據在金融業也起到了至關重要的作用。美國Equifax公司利用大數據技術,通過對其的資料庫中與財務有關的記錄海量信息進行索引處理和交叉分享,從而得到客戶的個人信用等級,以推斷出客戶的支付需求與能力。
隨著大數據在醫療與生命科學研究過程中的廣泛應用和不斷擴展。2010年,中國公布的《十二五規劃》指出:要重點建設國家級、省級和地市級三級醫療衛生信息平台,建設電子病歷和電子檔案兩個最為基礎的資料庫。各級醫院也將在醫療信息倉庫、數據中心等領域加大投入,醫療數據信息的存儲將愈加被關注,醫療信息中心的關注焦點也將由傳統的計算領域轉為存儲領域。
除此之外,大數據在製造業領域也有著廣闊的應用。製造業企業積累了廣泛的數據信息,在開展對業務數據進行技術管理的同時,企業需要通過大數據處理技術來幫助決策者從資料庫儲存的海量信息中找到有價值的信息,並且對其進行分析處理,從而增強決策的正確性、規避風險。
四、大數據所面臨的挑戰
大數據技術使人們能夠更好地利用之前不能使用的各個數據類型,找出被忽略的信息,促進企業組織更加高效、智能。但隨著對大數據研究的不斷深入,人們也更加意識到當大數據技術向人們敞開「方便之門」的同時,也帶來了眾多的挑戰:
(1)大數據需要更為專業化的管理技術人才。
(2) 大數據的合理利用需要解決容量大、類別多和時效性高的數據處理問題。
(3)大數據的利用對信息安全提出了更高要求。
(4)大數據的集成與管理問題。
這些挑戰已成為關繫到未來大數據發展的重要因素,同時也成為未來引領大數據發展的推動力。
五、結束語
大數據已經逐步滲透到人們工作生活的諸多領域中,對於大數據的研究也在不斷的深化。本文針對大數據的產生與發展、特徵、主要應用以及大數據所帶來的挑戰等方面進行闡述與分析。大數據的發展還處於初級階段,還有更為廣闊的空間需要人們不斷開拓,如何合理地利用大數據、更加高效地處理大數據來為人們服務仍需要廣大研究者不斷地研究和探索。
參考文獻:
[1]劉智慧,張泉靈.大數據技術研究綜述[J].浙江大學學報,2014,46(6):957- 972.
[2]嚴霄鳳,張德馨.大數據研究[J].計算機技術與發展,2013,23(4):168-172.
[3]劉俊.基於大數據流的Multi-Agent系統模型研究[J].計算機技術與發展, 2007,17(5):166-169.
Ⅶ 大數據驅動公共管理學科現代化論文
大數據驅動公共管理學科現代化論文
在各領域中,大家肯定對論文都不陌生吧,藉助論文可以有效提高我們的寫作水平。相信許多人會覺得論文很難寫吧,以下是我整理的大數據驅動公共管理學科現代化論文,供大家參考借鑒,希望可以幫助到有需要的朋友。
摘要 :
我們目前所處的是一個由數據主宰的大數據時代,數據的共享正改變著我們的工作和生活。而在該時代中,公共管理有著極為深刻的影響,政府部門應該清楚地認識到公共管理學科的重要性,並以科學的態度來面對該學科所面臨的機遇和挑戰,並且分析大數據對公共管理學科所產生的影響,反思傳統管理模式中存在的不足之處,對公共管理行為模式進行改進,從而有效地促進大數據時代下公共管理學科的發展與進步。
關鍵詞:
大數據驅動;公共管理;改革方式
引言:
在公共管理的實施過程中,工程的使用不只意味著管理的過程,因為這需要對各個公共資源進行再分配。行使這個權利的時候是需要調配各種公共資源,在國家法律法規體系下,安排各種公共資源,保障各項資源的有效運轉。需要注意的是,必須以群眾的利益作為基本前提,防止公共資源的濫用甚至其他嚴重的後果發生。在整個大數據不斷發展的情況下,公共資源的使用,有了更多透明化的監督過程,可以對這些公共資源進行科學合理的配置。
在未來,公共學科的發展變得越來越高效,公共學科也是建立在現代高新技術的基礎上,針對目前公共管理存在的弊端,和高新技術進行深入分析,將這些找到的矛盾用人文學科的思想得以解決。在公共管理學科的發展歷程之中,各種數據的處理是極為重要的。只有有效利用大數據處理的方法,才能夠更好地促進公共管理,將公共政策和現代數據結合,促進我國的公共管理不斷進步。在現代化的發展歷程之後,我們還應該不斷關注公共學科的發展特點,探討公共學科可能出現的風險問題,不斷提高科學決策的准確度,根據大數據的分析結果,促進公共學科的改進。
一、大數據的實際內涵以及其發展概述
在運用大數據技術時,部門研究者認為大數據是一種統計模式,是運用各種現代信息技術進行自動記錄和延續擴充的過程,而非人工設計的數據。不過,這類觀點是以大數據統計為出發點,然而實際上大數據並不僅僅只是進行數據資源的整理和收集,更重要的是對數據進行分析[1]。
二、大數據對公共管理學科的驅動機制
大數據的發展給公共管理的影響是深遠的,從大數據的發展可以不斷提高公共管理的效率,大數據的深入發展,能夠幫助我們先入進行公共管理。在未來,要促進公共學科的發展,就需要依靠大數據,在大數據的幫助之下,深入挖掘公共管理的實質,幫助我們找到科學的管理項目,從而為公共決策做出准確的判斷。以往在公共學科的時候還沒有發揮大數據的價值,缺乏一定大數據的思想。發展是一個緩慢過程,在這個公共學科的成長過程中,我們必須研究大數據的專業特徵。利用公共學科的機制,回到數據的創新作用。總地來說,可以從以下幾個方面找到大數據的影響。
(一)巨大數據體量對公共管理學科的影響到時候就意味著更多的海量數據。這些數據的發展不僅擁有著較大的體量,還意味著公共管理的難度也在增加。公共管理需要依靠大數據技術,但是卻要利用好,到時候做好分析的腳本研究。改善傳統的思維,讓我們用現代的思想為公共管理做出更多的分析。大數據在現代的應用是深遠的,我們要利用各種各樣的大數據技術,更多的大數據手段找到公共學科的真正內涵。從而為到時候去建設提供物質基礎,這些基本的數據出發,讓政府面臨更多的公共決策類型,公共管理樣本的採集為大數據做出了更多的支持。基礎的公共管理樣本可以成為數據的來源,也為公共管理學科發展做出深入的影響。為進一步找到目前存在的問題,就需要對公共決策的數據進行整合,從而發揮學科的時代性特徵,達到公共管理的具體目標[2]。
(二)多樣化的數據對公共管理學科產生的影響大數據時代不只是大數據的數量增加,更多的是數據的種類。公共學科要掌握更高的管理方法,就需要研究現在的數據種類,利用公共學科的深入特點找到管理的不同類型,從而實現較高的管理目標。大數據時代是一個多種類型的時代,在過去的時代中不需要這樣多的信息,也不會利用現在的存儲資源。然而目前的公共管理,需要我們更多的存儲空間是處於到時候去時代之中所面臨的管理種類是多種多樣的,類型也是十分廣泛。在這些眾多的種類中,我們面臨多種形式的公共資源,必須要深入研究,採取適合於公共管理學科的應對方法,促進我公共管理學科的深入發展,找到承載的.問題,找到學科的管理方向,從而豐富各種類型的表達方式和存儲方法[3]。
(三)低密度的數據價值對公共管理學科的影響大數據時代不僅意味著數據的多樣化,但需要很多的載體承擔這些數據。我們需要提高存儲的空間,對目前的存儲空間進行深入探索,不斷進行改革,從根本上提高存在的空間數據。加強存儲空間的創新。首先,現在都很多數據看似已經傳出,然而卻沒有經過深入的加工,且沒有一定的壓縮功能,這些數據在存儲的時候造成了較多的空間佔用,空間資源在一定程度上造成了一些無用的數據存儲。面對這種情況我們要找到數據存儲的內在問題,從根本上提高存儲的有效性,並且加強數據之間的傳遞和流通。目前的現狀來看,很多大數據還沒有取得較好的效果,信息的關注還停留在過去階段,這些數據本身價值不好發揮。數據在挖掘的過程中必須依託公共管理學科的知識。融入現代大數據的技術,對數據的價值進行深入發掘和研究,也是公共管理學科的研究型態,幫助我們深入數據的內部,積極探索數據存儲的類型,釋放更多的空間[4]。
三、大數據驅動下公共管理學科的未來發展
我們目前所處的大數據時代依然處於不斷發展的狀態,通過上文的分析不難發現,大數據不斷的以其龐大的數據體系和繁多的數據類型來影響著公共管理學科的發展,因此,公共管理學科也應該隨著大數據時代的發展而做出改變和創新[5]。
(一)公共治理模式與大數據的結合公共學科的管理,需要深入考量學科的特點,對公共治理存在的問題進行深入分析,依託現代大數據的功能,擴大數據的包容性,加強信息的獲取渠道探索。利用更多的公眾信息平台引導熱點話題,從而能夠找到公共管理存在的弊端。在施行公共管理時,應該充分地考慮大數據對公共管理和公共治理之間的影響進行分析。大數據時代極大的擴張了人們的信息獲取渠道,在此基礎上,社會個體可以通過各類信息平台來討論熱點話題,由於各類言論會在互聯網中迅速蔓延,在輿論的壓力下,公眾的言論和態度將會直接影響到政府作出的公共決策。比如,政府可以對一些觀點和言論進行審核,利用大數據來進行思維分析[6]。
(二)重新認識公共管理決策在這項研究中,實證分析是提出比較四個案例的公眾參與風險相關的決策。本研究選取的案例均涉及政府決策者願意與公共利益團體合作的廢物管理沖突,但每一案例的公眾參與程度和性質有所不同。與公眾參與有關的沖突在所有四個案件中都出現。針對傳統問題解決方法的不足,我們開發了一個更廣泛的分析框架來解釋這些沖突。沖突分析考慮對手關系的歷史、權力分配、對解決沖突的態度、隱藏的議程、各種談判策略以及對談判協議的承諾(或缺乏承諾)。雖然這種方法是為了分析的目的而制定的,但我們認為,這種方法對於解決此類沖突也具有特定的相關性。沖突管理的概念,作為提高公眾參與質量的一種方法。沖突管理的主要特點是:
(1)賦予公眾權力;
(2)「良好」(公平)的解決辦法;
(3)各方積極支持最終決定。在公共管理的過程中,由於大數據時代的各個特點,公共管理必須進行適當的改革創新,從而更好地應對未來的挑戰和機遇。
(三)准確滿足公眾訴求公共管理決策和決策的一個明顯方面基本上沒有引起決策內容的注意。我們通過對預算削減和信息技術決策提出以下問題來檢驗決策內容的影響:內容如何影響決策所需的時間?內容如何影響參與者?內容如何影響所採用的決策標准?內容如何影響決策過程和繁文縟節中使用的信息質量?結果表明,信息技術和預算削減決策在重要方面有所不同。對於信息技術決策而言,成本效益不是一個重要的標准,平均決策時間要長得多,決策通常被視為永久和穩定的。對於削減決策,成本效益是一個重要的標准,決策的速度要快得多,而且被視為不穩定和多變的。令人驚訝的是,決策內容似乎並不影響參與者的數量。在大數據時代到來以前,群眾與政府之間缺乏有效的溝通手段,導致群眾與政府之間存在隔閡。在如今的大數據時代下,政府和群眾之間的溝通交流更加的順暢,政府能夠實時了解到群眾所反饋的一些信息,並且在短時間內進行整理和收集,從而使各項公共資源的配比能夠科學有效的實施,最大限度地保證群眾的利益[7]。
四、結語
公共管理行為涉及的范圍非常廣泛,公權力的使用者應該謹慎運用每一項公共管理的權利,滿足人民群眾的利益訴求,即使給出反饋和針對性的公共管理決策。因此,在未來的發展中,公共管理學科的研究領域將不僅僅是為政府的公共決策提供支撐和依據,而是幫助政府更加理性的收集數據,在龐大的數據體量基礎上對各項數據資源進行整合,從而提高公共管理和服務質量,使公共管理對人們利益實現最大化。
參考文獻:
[1]王博.大數據驅動的公共管理學科現代化[J].湖南工業職業技術學院學報,2018,18(5):30—33.
[2]黃欣卓,李大宇.大數據驅動的公共管理學科現代化———《公共管理學報》高端學術研討會視點[J].公共管理學報,2018,15(1).
[3]黃欣卓,李大宇.大數據驅動的公共管理學科現代化———《公共管理學報》高端學術研討會視點[J].公共管理學報,2018,15(1):147—152.
[4]王琳.大數據時代下我國政府公共關系能力建設研究[D].重慶:重慶大學,2017.
[5]王陳程.大數據驅動的公共管理創新[J].山西青年,2019,(2):234.
[6]秦浩.大數據驅動的公共政策轉型[J].中國共產黨政幹部論壇,2020,(2):62—65.
[7]張黎黎.大數據技術與公共管理範式的轉型[J].中文信息,2019,(5):255.
;