導航:首頁 > 網路數據 > 大數據做金融澳大利亞

大數據做金融澳大利亞

發布時間:2023-06-17 12:38:02

① 做大數據真的能賺錢嗎

未至科技數據來中心解決方案是以自組織價值鏈分析模型為理論指導,結合組織戰略規劃和面向對象的方法論,對組織信息化戰略進行規劃重造立足數據,以數據為基礎建立組織信息化標准,提供面向數據採集、處理、挖掘、分析、服務為組織提供一整套的基礎解決方案。未至數據中心解決方案採用了當前先進的大數據技術,基於Hadoop架構,利用HDFS、Hive、Impala等大數據技術架構組件和公司自有ETL工具等中間件產品,建立了組織內部高性能、高效率的信息資源大數據服務平台,實現組織內數億條以上數據的秒級實時查詢、更新、調用、分析等信息資源服務。未至數據中心解決方案將,為公安、教育、旅遊、住建等各行業業務數據中心、城市公共基礎資料庫平台、行業部門信息資源基礎資料庫建設和數據資源規劃、管理等業務提供了一體化的解決方案。

② 做大數據分析師能掙多少錢

二、大數據分析師的薪水在世界各地是否一致?

如您所料,大數據分析師角色的薪水因地點而異。數據科學中心確定以下十一個國家是大數據分析師薪酬最高的國家 ; 美國,瑞士,瑞典,新加坡,丹麥,加拿大,澳大利亞,荷蘭,德國,中國和英國。毫不奇怪,該列表與經濟發達國家的當前中位收入排名緊密相關。我們還可以查看與國家的平均薪資相比,以及與Web開發或UX設計等技術領域中其他流行的高薪專業相比,大數據分析師的薪水如何累積。讓我們更深入地看一下歐洲和北美的兩個最大市場。德國和美國。

德國的大數據分析師每年的收入在32,000歐元至60,000歐元之間,具體取決於企業的資歷水平,行業,所在地和成熟度。德國大數據分析師的中位收入略低於4萬4千歐元,比德國3萬歐元以上的中位收入高出30%以上。它還可以很好地衡量其他技術工作;例如,它高於網路開發人員的平均工資,即41k歐元。在美國,大數據分析師的收入要比德國同行高得多。平均薪資為$ 60k(約€53k),比$ 43k的平均收入高出20%以上,與網路開發人員的預期收入相同一般。紐約的薪水在50,000至96,000美元之間,而舊金山的平均薪水在65,000至120,000美元之間。在整個池塘中,倫敦的大數據分析師職位的薪水在24,000英鎊至47,000英鎊之間,中國大數據分析師的薪水在5萬左右。



大數據分析師的薪水范圍。

四、大數據分析師根據他們的行業而獲得不同的薪水嗎?

成為大數據分析師的美妙之處在於,幾乎所有行業都可以找到這樣的角色。大多數企業都根據自己的數據制定決策,因此他們需要一名大數據分析師才能做到這一點。

LinkedIn將采礦業列為大數據分析師薪酬最高的行業,在美國,這些職位的平均薪酬為106,000美元至117,000美元。科學和公用事業部門的薪水也高於平均水平,平均薪金範圍為74,000美元至80,000美元。在薪資范圍的低端,從事製造業和金融業的大數據分析人員的薪水預計在55,000美元至65,000美元之間。

五、頂尖高科技公司向大數據分析師支付的工資

由於提供的高薪水,經常尋求在世界頂級科技公司擔任大數據分析師的角色。蘋果和Facebook 向其大數據分析師支付的薪水遠高於平均水平。除了薪水美麗,設備齊全的辦公室外,如果需要高超的學習經驗,從事技術工作也將是不可思議的。員工可以體驗快速變化,同時獲得對塑造我們世界的技術的見識。

鑒於科技公司每天都會收集大量數據,因此大數據分析師在科技行業中扮演著重要角色也就不足為奇了。做大數據分析師能掙多少錢亞馬遜的工作大數據分析人員可以在美國得到報酬高達$ 106,000名,與Facebook提供類似數額,根據的確。在倫敦,亞馬遜的大數據分析師薪水高達38,000英鎊。在倫敦為Google工作的大數據分析師可以期望得到更高的薪水,工資在42,000英鎊到52,000英鎊之間。對於那些在網路、騰訊、阿里北京辦公室工作的人來說,薪水可能高達95,000美元。

③ 數學專業的本科,女生,想去澳洲讀研。問問,金融數學,精算專業,統計專業,大數據專業,哪個好謝謝!

你好,本人是加拿大統計學碩士。我個人認為,興趣應該作為首要的因素考慮。如專果你有很好的物理基礎屬,並且對金融感興趣,那就可以選金融數學。
如果你希望職業規劃上相對穩定,並且不怕畢業後十年都不停准備考證的枯燥的話,那可以走精算路線。代價是,對口的行業很狹窄。
統計學專業和大數據專業可以看做是包含關系,大數據這個方向粗略地分為兩大方向:大數據架構師和大數據分析師。根據你數學本科的背景,我建議走大數據分析師的方向較為穩妥,也就是選統計學。不過選擇統計學也有相對應的代價,那就是未來就業不像精算那樣路線穩定,會比精算多一些不安全感,沒有多少現成的成熟路線可以沿用借鑒,很可能走彎路犯錯。但是好處是,這個行業處於混沌的發展初期,發展空間大,如果你真有本事的話,比較容易闖出自己的天地。
總的來說,如果你興趣很寬泛,並且數學很好,那就選統計學吧。如果你想要穩妥穩定,那就選精算吧。如果你對金融方面有執念,並且有較好的物理基礎,那可以選金融。

④ 大數據和人工智慧在互聯網金融領域有哪些應用


數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性
(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化
(Capitalization)。


大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金
融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。


數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融
機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。

為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。

1.價值導向與內嵌式變革—BCG對大數據的理解

「讓數據發聲!」—隨著大數據時代的來臨,這個聲音正在變得日益響亮。為了在喧囂背後探尋本質,我們的討論將從大數據的定義開始。

1.1成就大數據的「第四個V」

大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。


雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層
面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機
處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了
大數據。


另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深
入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這
些都還不是構成「大量數據」的主體。機器之間交互處理時沉澱下來的數據才是使數據量級實現跨越式增長的主要原因。「物聯網」是當前人們將現實世界數據化的
最時髦的代名詞。海量的數據就是以這樣的方式源源不斷地產生和積累。

「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?

BCG認為,成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。

1.2變革中的數據運作與數據推動的內嵌式變革

多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?


無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與
模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角
色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。


因此,BCG認為,大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時
間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構
就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。

具體而言,與傳統的數據應用相比,大數據在四個方面(「4C」)改變了傳統數據的運作模式,為機構帶來了新的價值。

1.2.1數據質量的兼容性(Compatibility):大數據通過「量」提升了數據分析對「質」的寬容度


在「小數據」時代,數據的獲取門檻相對較高,這就導致「樣本思維」占據統治地位。人們大多是通過抽樣和截取的方式來捕獲數據。同時,人們分析數據的手段
和能力也相對有限。為了保證分析結果的准確性,人們通常會有意識地收集可量化的、清潔的、准確的數據,對數據的「質」提出了很高的要求。而在大數據時代,
「全量思維」得到了用武之地,人們有條件去獲取多維度、全過程的數據。但在海量數據出現後,數據的清洗與驗證幾乎成為了不可能的事。正是這樣的困境催生了
數據應用的新視角與新方法。類似於分布式技術的新演算法使數據的「量」可以彌補「質」的不足,從而大大提升了數據分析對於數據質量的兼容能力。

1.2.2數據運用的關聯性(Connectedness):大數據使技術與演算法從「靜態」走向「持續」


在大數據時代,對「全量」的追求使「實時」變得異常重要,而這一點也不僅僅只體現在數據採集階段。在雲計算、流處理和內存分析等技術的支撐下,一系列新
的演算法使實時分析成為可能。人們還可以通過使用持續的增量數據來優化分析結果。在這些因素的共同作用下,人們一貫以來對「因果關系」的追求開始松動,而
「相關關系」正在逐步獲得一席之地。

1.2.3數據分析的成本(Cost):大數據降低了數據分析的成本門檻


大數據改變了數據處理資源稀缺的局面。過去,數據挖掘往往意味著不菲的投入。因此,企業希望能夠從數據中發掘出「大機會」,或是將有限的數據處理資源投
入到有可能產生大機會的「大客戶、大項目」中去,以此獲得健康的投入產出比。而在大數據時代,數據處理的成本不斷下降,數據中大量存在的「小機會」得見天
日。每個機會本身帶來的商業價值可能並不可觀,但是累積起來就會實現質的飛躍。所以,大數據往往並非意味著「大機會」,而是「大量機會」。

1.2.4數據價值的轉化(Capitalization):大數據實現了從數據到價值的高效轉化


在《互聯網金融生態系統2020:新動力、新格局、新戰略》報告中,我們探討了傳統金融機構在大變革時代所需採取的新戰略思考框架,即適應型戰略。採取
適應型戰略有助於企業構築以下五大優勢:試錯優勢、觸角優勢、組織優勢、系統優勢和社會優勢,而大數據將為金融機構建立這些優勢提供新的工具和動力。從數
據到價值的轉化與機構的整體轉型相輔相成,「內嵌式變革」由此而生。


例如,金融機構傳統做法中按部就班的長周期模式(從規劃、立項、收集數據到分析、試點、落地、總結)不再適用。快速試錯、寬進嚴出成為了實現大數據價值
的關鍵:以低成本的方式大量嘗試大數據中蘊藏的海量機會,一旦發現某些有價值的規律,馬上進行商業化推廣,否則果斷退出。此外,大數據為金融機構打造「觸
角優勢」提供了新的工具,使其能夠更加靈敏地感知商業環境,更加順暢地搭建反饋閉環。此外,數據的聚合與共享為金融機構搭建生態系統提供了新的場景與動
力。

2.應用場景與基礎設施—縱覽海內外金融機構的大數據發展實踐


金融行業在發展大數據能力方面具有天然優勢:受行業特性影響,金融機構在開展業務的過程中積累了海量的高價值數據,其中包括客戶身份、資產負債情況、資
金收付交易等數據。以銀行業為例,其數據強度高踞各行業之首—銀行業每創收100萬美元,平均就會產生820GB的數據。

2.1大數據的金融應用場景正在逐步拓展

大數據發出的聲音已經在金融行業全面響起。作為行業中的「巨無霸」,銀行業與保險業對大數據的應用尤其可圈可點。

2.1.1海外實踐:全面嘗試

2.1.1.1銀行是金融行業中發展大數據能力的「領軍者」


在發展大數據能力方面,銀行業堪稱是「領軍者」。縱觀銀行業的六個主要業務板塊(零售銀行、公司銀行、資本市場、交易銀行、資產管理、財富管理),每個
業務板塊都可以藉助大數據來更深入地了解客戶,並為其制定更具針對性的價值主張,同時提升風險管理能力。其中,大數據在零售銀行和交易銀行業務板塊中的應
用潛力尤為可觀。


BCG通過研究發現,海外銀行在大數據能力的發展方面基本處於三個階段:大約三分之一的銀行還處在思考大數據、理解大數據、制定大數據戰略及實施路徑的
起點階段。還有三分之一的銀行向前發展到了嘗試階段,也就是按照規劃出的路徑和方案,通過試點項目進行測驗,甄選出許多有價值的小機會,並且不停地進行試
錯和調整。而另外三分之一左右的銀行則已經跨越了嘗試階段。基於多年的試錯經驗,他們已經識別出幾個較大的機會,並且已經成功地將這些機會轉化為可持續的
商業價值。而且這些銀行已經將匹配大數據的工作方式嵌入到組織當中。他們正在成熟運用先進的分析手段,並且不斷獲得新的商業洞察。


銀行業應用舉例1:將大數據技術應用到信貸風險控制領域。在美國,一家互聯網信用評估機構已成為多家銀行在個人信貸風險評估方面的好幫手。該機構通過分
析客戶在各個社交平台(如Facebook和Twitter)留下的數據,對銀行的信貸申請客戶進行風險評估,並將結果賣給銀行。銀行將這家機構的評估結
果與內部評估相結合,從而形成更完善更准確的違約評估。這樣的做法既幫助銀行降低了風險成本,同時也為銀行帶來了風險定價方面的競爭優勢。


相較於零售銀行業務,公司銀行業務對大數據的應用似乎缺乏亮點。但實際上,大數據在公司銀行業務的風險領域正在發揮著前所未有的作用。在傳統方法中,銀
行對企業客戶的違約風險評估多是基於過往的營業數據和信用信息。這種方式的最大弊端就是缺少前瞻性,因為影響企業違約的重要因素並不僅僅只是企業自身的經
營狀況,還包括行業的整體發展狀況,正所謂「覆巢之下,焉有完卵」。但要進行這樣的分析往往需要大量的資源投入,因此在數據處理資源稀缺的環境下無法得到
廣泛應用,而大數據手段則大幅減少了此類分析對資源的需求。西班牙一家大型銀行正是利用大數據來為企業客戶提供全面深入的信用風險分析。該行首先識別出影
響行業發展的主要因素,然後對這些因素一一進行模擬,以測試各種事件對其客戶業務發展的潛在影響,並綜合評判每個企業客戶的違約風險。這樣的做法不僅成本
低,而且對風險評估的速度快,同時顯著提升了評估的准確性。


銀行業應用舉例2:用大數據為客戶制定差異化產品和營銷方案。在零售銀行業務中,通過數據分析來判斷客戶行為並匹配營銷手段並不是一件新鮮事。但大數據
為精準營銷提供了廣闊的創新空間。例如,海外銀行開始圍繞客戶的「人生大事」進行交叉銷售。這些銀行對客戶的交易數據進行分析,由此推算出客戶經歷「人生
大事」的大致節點。人生中的這些重要時刻往往能夠激發客戶對高價值金融產品的購買意願。一家澳大利亞銀行通過大數據分析發現,家中即將有嬰兒誕生的客戶對
壽險產品的潛在需求最大。通過對客戶的銀行卡交易數據進行分析,銀行很容易識別出即將添丁的家庭:在這樣的家庭中,准媽媽會開始購買某些葯品,而嬰兒相關
產品的消費會不斷出現。該行面向這一人群推出定製化的營銷活動,獲得了客戶的積極響應,從而大幅提高了交叉銷售的成功率。


客戶細分早已在銀行業得到廣泛應用,但細分維度往往大同小異,包括收入水平、年齡、職業等等。自從開始嘗試大數據手段之後,銀行的客戶細分維度出現了突
破。例如,西班牙的一家銀行從Facebook和Twitter等社交平台上直接抓取數據來分析客戶的業余愛好。該行把客戶細分為常旅客、足球愛好者、高
爾夫愛好者等類別。通過分析,該行發現高爾夫球愛好者對銀行的利潤度貢獻最高,而足球愛好者對銀行的忠誠度最高。此外,通過分析,該行還發現了另外一個小
客群:「敗家族」,即財富水平不高、但消費行為奢侈的人群。這個客群由於人數不多,而且當前的財富水平尚未超越貴賓客戶的門檻,因此往往被銀行所忽略。但
分析顯示這一人群能夠為銀行帶來可觀的利潤,而且頗具成長潛力,因此該行決定將這些客戶升級為貴賓客戶,深入挖掘其潛在價值。


在對公業務中,銀行同樣可以藉助大數據形成更有價值的客戶細分。例如,在BCG與一家加拿大銀行的合作項目中,項目組利用大數據分析技術將所有公司客戶
按照行業和企業規模進行細分,一共建立了上百個細分客戶群。不難想像,如果沒有大數據的支持,這樣深入的細分是很難實現的。然後,項目組在每個細分群中找
出標桿企業,分析其銀行產品組合,並將該細分群中其他客戶的銀行產品組合與標桿企業進行比對,從而識別出差距和潛在的營銷機會。項目組將這些分析結果與該
行的對公客戶經理進行分享,幫助他們利用這些發現來制定更具針對性的銷售計劃和話術,並取得了良好的效果。客戶對這種新的銷售方式也十分歡迎,因為他們可
以從中了解到同行的財務狀況和金融安排,有助於對自身的行業地位與發展空間進行判斷。


銀行業應用舉例3:用大數據為優化銀行運營提供決策基礎。大數據不僅能在前台與中台大顯身手,也能惠及後台運營領域。在互聯網金融風生水起的當
下,「O2O」(OnlineToOffline)成為了銀行的熱點話題。哪些客戶適合線上渠道?哪些客戶不願「觸網」?BCG曾幫助西班牙一家銀行通過
大數據技術應用對這些問題進行了解答。項目組對16個既可以在網點也可以在網路與移動渠道上完成的關鍵運營活動展開分析,建立了12個月的時間回溯深度,
把客戶群體和運營活動按照網點使用強度以及非網點渠道使用潛力進行細分。分析結果顯示,大約66%的交易活動對網點的使用強度較高,但同時對非網點渠道的
使用潛力也很高,因此可以從網點遷移到網路或移動渠道。項目組在客戶細分中發現,年輕客戶、老年客戶以及高端客戶在運營活動遷移方面潛力最大,可以優先作
為渠道遷徙的對象。通過這樣的運營調整,大數據幫助銀行在引導客戶轉移、減輕網點壓力的同時保障了客戶體驗。


BCG還曾利用專有的大數據分析工具NetworkMax,幫助一家澳大利亞銀行優化網點布局。雖然銀行客戶的線上活動日漸增多,但金融業的鐵律在互聯
網時代依然適用,也就是說在客戶身邊設立實體網點仍然是金融機構的競爭優勢。然而,網點的運營成本往往不菲,如何實現網點資源的價值最大化成為了每家銀行
面臨的問題。在該項目中,項目組結合銀行的內部數據(包括現有的網點分布和業績狀況等)和外部數據(如各個地區的人口數量、人口結構、收入水平等),對
350多個區域進行了評估,並按照主要產品系列為每個區域制定市場份額預測。項目組還通過對市場份額的驅動因素進行模擬,得出在現有網點數量不變的情況下
該行網點的理想布局圖。該行根據項目組的建議對網點布局進行了調整,並取得了良好的成效。這個案例可以為許多銀行帶來啟示:首先,銀行十分清楚自身的網點
布局,有關網點的經營業績和地址的信息全量存在於銀行的資料庫中。其次,有關一個地區的人口數量、人口結構、收入水平等數據都是可以公開獲取的數據。通過
應用大數據技術來把這兩組數據結合在一起,就可以幫助銀行實現網點布局的優化。BCG基於大數據技術而研發的Network
Max正是用來解決類似問題的工具。


銀行業應用舉例4:創新商業模式,用大數據拓展中間收入。過去,坐擁海量數據的銀行考慮的是如何使用數據來服務其核心業務。而如今,很多銀行已經走得更
遠。他們開始考慮如何把數據直接變成新產品並用來實現商業模式,進而直接創造收入。例如,澳大利亞一家大型銀行通過分析支付數據來了解其零售客戶的「消費
路徑」,即客戶進行日常消費時的典型順序,包括客戶的購物地點、購買內容和購物順序,並對其中的關聯進行分析。該銀行將這些分析結果銷售給公司客戶(比如
零售業客戶),幫助客戶更准確地判斷合適的產品廣告投放地點以及適合在該地點進行推廣的產品。這些公司客戶過去往往需要花費大量金錢向市場調研公司購買此
類數據,但如今他們可以花少得多的錢向自己的銀行購買這些分析結果,而且銀行所提供的此類數據也要可靠得多。銀行通過這種方式獲得了傳統業務之外的收入。
更重要的是,銀行通過這樣的創新為客戶提供了增值服務,從而大大增強了客戶粘性。

⑤ 大數據技術在金融行業有哪些應用前景

經過多年的發展與積累,金融領域已具備海量數據,正在步入大數據時代的初級階段版,因權此金融大數據正受到銀行、保險、證券企業的追捧。隨著大數據技術的完善,大數據在金融領域發揮的作用將越來越大,在應用廣度和深度上還有很大的進步空間,金融大數據發展勢頭強勁。
金融領域具備海量數據,非常適合與大數據技術相結合,因此金融大數據正受到銀行、保險、證券企業的追捧。通過互聯網、雲計算等信息技術來處理海量數據,從而更好地了解客戶、創新服務。
目前,金融行業主要如信用卡、防欺詐、電子支付業務等,對大數據有比較大的需求。因此,隨著金融行業大數據應用的加強已經深入,前瞻產業研究院預計,到2017-2022年,金融行業大數據應用市場規模年均復合增長率為55.21%,到2022年,中國金融行業大數據應用市場規模為497億元。
不過,金融大數據還面臨著不少阻礙,如內部各業務間存在信息孤島現象、外部大數據整合難度大等。相信在大數據起到更大效果時,金融大數據的推進不會太大問題,未來前景廣闊。

⑥ 大數據技術在金融行業有哪些應用前景

一般來說,現在用於信用評級和項目風控的比較多,它對於金融行業最大的推動,是把行業中抵押或質押融資轉換為純信用貸款。國內現在主流的資金機構,比如銀行,是必須要抵押物的,包括新興的P2P行業大部分都是這樣,很多徵信機構或者一些大型企業現在會利用大數據技術做金融項目的風控,供應鏈金融和消費金融就是其中的典型。

⑦ 大數據技術在金融行業有哪些應用前景

大數據金融市場前景廣闊,深度開發大數據金融工具,或將重構整個金融行業。預計未來5到回10年,金答融大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
伴隨互聯網金融縱深發展,大數據優勢越加凸顯。作為互聯網金融創新的驅動力,大數據金融帶來的方式革新,未來走向精細化和專業化。今後大數據金融行業的努力方向,應該是以完備的大數據為基礎,基於用戶需求提供智能化一站式產品購買及定製化服務,以及數據挖掘、數據整合、數據產品、數據應用及解決方案等。

⑧ 大數據在金融行業的應用與挑戰

大數據在金融行業的應用與挑戰
A 具有四大基本特徵
金融業基本是全世界各個行業中最依賴於數據的,而且最容易實現數據的變現。全球最大的金融數據公司Bloomberg在1981年成立時「大數據」概念還沒有出現。Bloomberg的最初產品是投資市場系統(IMS),主要向各類投資者提供實時數據、財務分析等。
隨著信息時代降臨,1983年估值僅1億美元的Bloomberg以30%股份的代價換取美林3000萬美元投資,先後推出Bloomberg Terminal、News、Radio、TV等各類產品。1996年Bloomberg身價已達20億美元,並以2億美元從美林回購了10%的股份。2004年Bloomberg在紐約曼哈頓中心建成246米摩天高樓。到2008年次貸危機,美林面臨崩盤,其剩餘20%的Bloomberg股份成為救命稻草。Bloomberg趁美林之危贖回所有股份,估值躍升至225億美元。2016年Bloomberg全球布局192個辦公室,擁有1.5萬名員工,年收入約100億美元,估值約1000億美元,超過同年市值為650億美元的華爾街標桿高盛。
大數據概念形成於2000年前後,最初被定義為海量數據的集合。2011年,美國麥肯錫公司在《大數據的下一個前沿:創新、競爭和生產力》報告中最早提出:大數據指大小超出典型資料庫軟體工具收集、存儲、管理和分析能力的數據集。
具體來說,大數據具有四大基本特徵:
一是數據體量大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量。
二是數據類別大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據。
三是處理速度快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。
四是數據的真實性高,隨著社交數據、企業內容、交易與應用數據等新數據源的興起,傳統數據源的局限被打破,信息的真實性和安全性顯得極其重要。
而相比其他行業,金融數據邏輯關系緊密,安全性、穩定性和實時性要求更高,通常包含以下關鍵技術:數據分析,包括數據挖掘、機器學習、人工智慧等,主要用於客戶信用、聚類、特徵、營銷、產品關聯分析等;數據管理,包括關系型和非關系型數據、融合集成、數據抽取、數據清洗和轉換等;數據使用,包括分布式計算、內存計算、雲計算、流處理、任務配置等;數據展示,包括可視化、歷史流及空間信息流展示等,主要應用於對金融產品健康度、產品發展趨勢、客戶價值變化、反洗錢反欺詐等監控和預警。
B 重塑金融行業競爭新格局
「互聯網+」之後,隨著世界正快速興起「大數據+」,金融行業悄然出現以下變化:
大數據特徵從傳統數據的「3個V」增加到「5個V」。在數量(Volume)、速度(Velocity)、種類(Variety)基礎上,進一步完善了價值(Value)和真實性(Veracity),真實性包括數據的可信性、來源和信譽、有效性和可審計性等。
金融業按經營產品分類變為按運營模式分類。傳統金融業按經營產品劃分為銀行、證券、期貨、保險、基金五類,隨著大數據產業興起和混業經營的發展,現代金融業按運營模式劃分為存貸款類、投資類、保險類三大類別。
大數據市場從壟斷演變為充分市場競爭。全球大數據市場企業數量迅速增多,產品和服務的差異增大,技術門檻逐步降低,市場競爭日益激烈。行業解決方案、計算分析服務、存儲服務、資料庫服務和大數據應用成為市場份額排名最靠前的五大細分市場。
大數據形成新的經濟增長點。Wikibon數據顯示,2016年,全球大數據硬體、軟體和服務整體市場增長22%達到281億美元,預計到2027年,全球在大數據硬體、軟體和服務上的整體開支的復合年增長率為12%,將達到大約970億美元。
數據和IT技術替代「重復性」業務崗位。數據服務公司Eurekahedge通過追蹤23家對沖基金,發現5位對沖基金經理薪金總額為10億美元甚至更高。過去10年,靠數學模型分析金融市場的物理學家和數學家「寬客」一直是對沖基金的寵兒,其實大數據+人工智慧更精於此道。高盛的紐約股票現金交易部門2000年有600名交易員而如今只剩兩人,其任務全由機器包辦,專家稱10年後高盛員工肯定比今天還要少。
美國大數據發展走在全球前列。美國政府宣稱:「數據是一項有價值的國家資本,應對公眾開放,而不是將其禁錮在政府體制內。」作為大數據的策源地和創新引領者,美國大數據發展一直走在全球最前列。自20世紀以來,美國先後出台系列法規,對數據的收集、發布、使用和管理等做出具體的規定。2009年,美國政府推出Data.gov政府數據開放平台,方便應用領域的開發者利用平台開發應用程序,滿足公共需求或創新創業。2010年,美國國會通過更新法案,進一步提高了數據採集精度和上報頻度。2012年3月,奧巴馬政府推出《大數據研究與開發計劃》,大數據迎來新一輪高速發展。
英國是歐洲金融中心,大數據成為其領先科技之一。2013年,英國投資1.89億英鎊發展大數據。2015年,新增7300萬英鎊,創建了「英國數據銀行」data.gov.uk網站。2016年,倫敦舉辦了超過22000場科技活動,同年,英國數字科技投資逾68億英鎊,而收入則超過1700億英鎊。另外,英國統計局利用政府資源開展「虛擬人口普查」,僅此一項每年節省5億英鎊經費。
C 打造高效金融監管體系
大數據用已發生的總體行為模式和關聯邏輯預測未來,決策未來,作為現代數字科技的核心,其靈魂就是——預測。
偵測、打擊逃稅、洗錢與金融詐騙
全球每年因欺詐造成的經濟損失約3.7萬億美元,企業因欺詐受損通常為年營收額的5%。全球最大軟體公司之一美國SAS公司與稅務、海關等政府部門和全球各國銀行、保險、醫療保健等機構合作,有效應對日益復雜化的金融犯罪行為。如在發放許可之前,通過預先的數據分析檢測客戶是否有過行受賄、欺詐等前科,再確定是否發放借貸或海關通關。SAS開發的系統已被國際公認為統計分析的標准軟體,在各領域廣泛應用。英國政府利用大數據檢測行為模式檢索出200億英鎊的逃稅與詐騙,追回了數十億美元損失。被福布斯評為美國最佳銀行的德克薩斯資本銀行(TCBank),不斷投資大數據技術,反金融犯罪系統與銀行發展同步,近3年資產從90億美元增至210億美元。荷蘭第三大人壽保險公司CZ依靠大數據對騙保和虛假索賠行為進行偵測,在支付賠償金之前先期阻斷,有效減少了欺詐發生後的司法補救。
大數據風控建立客戶信用評分、監測對照體系
美國注冊舞弊審核師協會(ACFE)統計發現,缺乏反欺詐控制的企業會遭受高額損失。美國主流個人信用評分工具FICO能自動將借款人的歷史資料與資料庫中全體借款人總體信用習慣相比較,預測借款人行為趨勢,評估其與各類不良借款人之間的相似度。美國SAS公司則通過集中瀏覽和分析評估客戶銀行賬戶的基本信息、歷史行為模式、正在發生行為模式(如轉賬)等,結合智能規則引擎(如搜索到該客戶從新出現的國家為特有用戶轉賬,或在新位置在線交易等),進行實時反欺詐分析。
美國一家互聯網信用評估機構通過分析客戶在Facebook、Twitter等社交平台留下的信息,對銀行的信貸和投保申請客戶進行風險評估,並將結果出售給銀行、保險公司等,成為多家金融機構的合作夥伴。
D 數據整合困難
應用經濟指標預測系統分析市場走勢
IBM使用大數據信息技術成功開發了「經濟指標預測系統」,該系統基於單體數據進行提煉整合,通過搜索、統計、分析新聞中出現的「新訂單」等與股價指標有關的單詞來預測走勢,然後結合其他相關經濟數據、歷史數據分析其與股價的關系,從而得出行情預測結果。
追蹤社交媒體上的海量信息評估行情變化
當今搜索引擎、社交網路和智能手機上的微博、微信、論壇、新聞評論、電商平台等每天生成幾百億甚至千億條文本、音像、視頻、數據等,涵蓋廠商動態、個人情緒、行業資訊、產品體驗、商品瀏覽和成交記錄、價格走勢等,蘊含巨大財富價值。
2011年5月,規模為4000萬美元的英國對沖基金DC Markets,通過大數據分析Twitter的信息內容來感知市場情緒指導投資,首月盈利並以1.85%的收益率一舉戰勝其他對沖基金僅0.76%的平均收益率。
美國佩斯大學一位博士則利用大數據追蹤星巴克、可口可樂和耐克公司在社交媒體的圍觀程度對比其股價,證明Facebook、Twitter和 Youtube上的粉絲數與股價密切相關。
提供廣泛的投資選擇和交易切換
日本個人投資理財產品Money Design在應用程序Theo中使用演算法+人工智慧,最低門檻924美元,用戶只需回答風險承受水平、退休計劃等9個問題,就可使用35種不同貨幣對65個國家的1.19萬只股票進行交易和切換,年度管理費僅1%。Money Design還能根據用戶投資目標自動平衡其賬戶金額,預計2020年將超過2萬億美元投資該類產品。
利用雲端資料庫為客戶提供記賬服務
日本財富管理工具商Money Forward提供雲基礎記賬服務,可管理工資、收付款、寄送發票賬單、針對性推送理財新項目等,其軟體系統連接並整合了2580家各類金融機構的各類型帳戶,運用大數據分析的智能儀表盤顯示用戶當前財富狀況,還能分析用戶以往的數據以預測未來的金融軌跡。目前其已擁有50萬商家和350萬個體用戶,並與市值2.5萬億美元的山口金融集團聯合開發新一款APP。
為客戶定製差異化產品和營銷方案
金融機構迫切需要掌握更多用戶信息,繼而構建用戶360度立體畫像,從而對細分客戶進行精準營銷、實時營銷、智慧營銷。
一些海外銀行圍繞客戶「人生大事」,分析推算出大致生活節點,有效激發其對高價值金融產品的購買意願。如一家澳大利亞銀行通過大數據分析發現,家中即將誕生嬰兒的客戶對壽險產品的潛在需求最大,於是通過銀行卡數據監控准媽媽開始購買保胎葯品和嬰兒相關產品等現象,識別出即將添丁的家庭,精準推出定製化金融產品套餐,受到了客戶的積極響應,相比傳統的簡訊群發模式大幅提高了成功率。
催生並支撐人工智慧交易
「量化投資之王」西蒙斯被公認為是最能賺錢的基金經理人,自1988年創立文藝復興科技公司的旗艦產品——大獎章基金以來,其憑借不斷更新完善的大數據分析系統,20年中創造出35%的年均凈回報率,比索羅斯同期高10%,比股神巴菲特同期高18%,成為有史以來最成功的對沖基金,並於1993年基金規模達2.7億美元時停止接受新投資。在美國《Alpha》雜志每年公布的對沖基金經理排行榜上,西蒙斯2005年、2006年分別以15億美元、17億美元凈收入穩居全球之冠,2007年以13億美元位列第五,2008年再以25億美元重返榜首。
推動金融產品和服務創新
E 面臨三大挑戰
目前,全球各行業數據量的增長速度驚人,在我國尤其集中在金融、交通、電信、製造業等重點行業,信息化的不斷深入正在進一步催生更多新的海量數據。
據統計,2015年中國的數據總量達到1700EB以上,同比增長90%,預計到2020年這一數值將超過8000EB。以銀行業為例,每創收100萬元,銀行業平均產生130GB的數據,數據強度高踞各行業之首。但在金融企業內部數據處於割裂狀態,業務條線、職能部門、渠道部門、風險部門等各個分支機構往往是數據的真正擁有者,缺乏順暢的共享機制,導致海量數據往往處於分散和「睡眠」狀態,雖然金融行業擁有的數據量「富可敵國」,但真正利用時卻「捉襟見肘」。
數據安全暗藏隱患
大數據本質是開放與共享,但如何界定、保護個人隱私權卻成為法律難題。大數據存儲、處理、傳輸、共享過程中也存在多種風險,不僅需要技術手段保護,還需相關法律法規規范和金融機構自律。多項實際案例表明,即使無害的數據大量囤積也會滋生各種隱患。安全保護對象不僅包括大數據自身,也包含通過大數據分析得出的知識和結論。在線市場平台英國Handshake.uk.com就嘗試允許用戶協商個人數據被品牌分享所得的報酬。
人才梯隊建設任重道遠
人才是大數據之本。與信息技術其他細分領域人才相比,大數據發展對人才的復合型能力要求更高,需要掌握計算機軟體技術,並具備數學、統計學等方面知識以及應用領域的專業知識。

閱讀全文

與大數據做金融澳大利亞相關的資料

熱點內容
手機網站幻燈片代碼 瀏覽:549
上海雲動網路 瀏覽:435
無效的ps文件什麼意思 瀏覽:522
中國移動app如何查家庭網 瀏覽:699
微信顯示未注冊 瀏覽:977
粒子匯聚圖像教程 瀏覽:619
pdf文件能替換圖片 瀏覽:727
製表位不居中word 瀏覽:265
dell驅動盤裝驅動程序 瀏覽:577
編程中如何創建密碼 瀏覽:135
林納斯托瓦茲使用什麼編程語言 瀏覽:132
安卓qq不能指紋支付密碼 瀏覽:476
sap原因代碼 瀏覽:242
數據反饋有什麼好處 瀏覽:502
iphone4612激活 瀏覽:466
蘭州電信寬頻升級 瀏覽:317
linux內核所有進程共享 瀏覽:901
怎怎樣下載內容到文件管理里 瀏覽:303
word試圖打開鎖定文件 瀏覽:971
linux文件找不到 瀏覽:310

友情鏈接