① 什麼是大數據,看完這篇就明白了
什麼是大數據
如果從字面上解釋的話,大家很容易想到的可能就是大量的數據,海量的數據。這樣的解釋確實通俗易懂,但如果用專業知識來描述的話,就是指數據集的大小遠遠超過了現有普通資料庫軟體和工具的處理能力的數據。
大數據的特點
海量化
這里指的數據量是從TB到PB級別。在這里順帶給大家科普一下這是什麼概念。
MB,全稱MByte,計算機中的一種儲存單位,含義是「兆位元組」。
1MB可儲存1024×1024=1048576位元組(Byte)。
位元組(Byte)是存儲容量基本單位,1位元組(1Byte)由8個二進制位組成。
位(bit)是計算機存儲信息的最小單位,二進制的一個「0」或一個「1」叫一位。
通俗來講,1MB約等於一張網路通用圖片(非高清)的大小。
1GB=1024MB,約等於下載一部電影(非高清)的大小。
1TB=1024GB,約等於一個固態硬碟的容量大小,能存放一個不間斷的監控攝像頭錄像(200MB/個)長達半年左右。
1PB=1024TB,容量相當大,應用於大數據存儲設備,如伺服器等。
1EB=1024PB,目前還沒有單個存儲器達到這個容量。
多樣化
大數據含有的數據類型復雜,超過80%的數據是非結構化的。而數據類型又分成結構化數據,非結構化數據,半結構化數據。這里再對三種數據類型做一個分類科普。
①結構化數據
結構化的數據是指可以使用關系型資料庫(例如:MySQL,Oracle,DB2)表示和存儲,表現為二維形式的數據。一般特點是:數據以行為單位,一行數據表示一個實體的信息,每一行數據的屬性是相同的。所以,結構化的數據的存儲和排列是很有規律的,這對查詢和修改等操作很有幫助。
但是,它的擴展性不好。比如,如果欄位不固定,利用關系型資料庫也是比較困難的,有人會說,需要的時候加個欄位就可以了,這樣的方法也不是不可以,但在實際運用中每次都進行反復的表結構變更是非常痛苦的,這也容易導致後台介面從資料庫取數據出錯。你也可以預先設定大量的預備欄位,但這樣的話,時間一長很容易弄不清除欄位和數據的對應狀態,即哪個欄位保存有哪些數據。
②半結構化數據
半結構化數據是結構化數據的一種形式,它並不符合關系型資料庫或其他數據表的形式關聯起來的數據模型結構,但包含相關標記,用來分隔語義元素以及對記錄和欄位進行分層。因此,它也被稱為自描述的結構。半結構化數據,屬於同一類實體可以有不同的屬性,即使他們被組合在一起,這些屬性的順序並不重要。常見的半結構數據有XML和JSON。
③非結構化數據
非結構化數據是數據結構不規則或不完整,沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。包括所有格式的辦公文檔、文本、圖片、各類報表、圖像和音頻/視頻信息等等。非結構化數據其格式非常多樣,標准也是多樣性的,而且在技術上非結構化信息比結構化信息更難標准化和理解。所以存儲、檢索、發布以及利用需要更加智能化的IT技術,比如海量存儲、智能檢索、知識挖掘、內容保護、信息的增值開發利用等。
快速化
隨著物聯網、電子商務、社會化網路的快速發展,全球大數據儲量迅猛增長,成為大數據產業發展的基礎。根據國際數據公司(IDC)的監測數據顯示,2013年全球大數據儲量為4.3ZB(相當於47.24億個1TB容量的移動硬碟),2014年和2015年全球大數據儲量分別為6.6ZB和8.6ZB。近幾年全球大數據儲量的增速每年都保持在40%,2016年甚至達到了87.21%的增長率。2016年和2017年全球大數據儲量分別為16.1ZB和21.6ZB,2018年全球大數據儲量達到33.0ZB。預測未來幾年,全球大數據儲量規模也都會保持40%左右的增長率。在數據儲量不斷增長和應用驅動創新的推動下,大數據產業將會不斷豐富商業模式,構建出多層多樣的市場格局,具有廣闊的發展空間。
核心價值
大數據的核心價值,從業務角度出發,主要有如下的3點:
a.數據輔助決策:為企業提供基礎的數據統計報表分析服務。分析師能夠輕易獲取數據產出分析報告指導產品和運營,產品經理能夠通過統計數據完善產品功能和改善用戶體驗,運營人員可以通過數據發現運營問題並確定運營的策略和方向,管理層可以通過數據掌握公司業務運營狀況,從而進行一些戰略決策;
b.數據驅動業務:通過數據產品、數據挖掘模型實現企業產品和運營的智能化,從而極大的提高企業的整體效能產出。最常見的應用領域有基於個性化推薦技術的精準營銷服務、廣告服務、基於模型演算法的風控反欺詐服務徵信服務,等等。
c.數據對外變現:通過對數據進行精心的包裝,對外提供數據服務,從而獲得現金收入。市面上比較常見有各大數據公司利用自己掌握的大數據,提供風控查詢、驗證、反欺詐服務,提供導客、導流、精準營銷服務,提供數據開放平台服務,等等。
大數據能做什麼?
1、海量數據快速查詢(離線)
能夠在海量數據的基礎上進行快速計算,這里的「快速」是與傳統計算方案對比。海量數據背景下,使用傳統方案計算可能需要一星期時間。使用大數據 技術計算只需要30分鍾。
2.海量數據實時計算(實時)
在海量數據的背景下,對於實時生成的最新數據,需要立刻、馬上傳遞到大數據環境,並立刻、馬上進行相關業務指標的分析,並把分析完的結果立刻、馬上展示給用戶或者領導。
3.海量數據的存儲(數據量大,單個大文件)
大數據能夠存儲海量數據,大數據時代數據量巨大,1TB=1024*1G 約26萬首歌(一首歌4M),1PB=1024 * 1024 * 1G約2.68億首歌(一首歌4M)
大數據能夠存儲單個大文件。目前市面上最大的單個硬碟大小約為10T左右。若有一個文件20T,將 無法存儲。大數據可以存儲單個20T文件,甚至更大。
4.數據挖掘(挖掘以前沒有發現的有價值的數據)
挖掘前所未有的新的價值點。原始企業內數據無法計算出的結果,使用大數據能夠計算出。
挖掘(演算法)有價值的數據。在海量數據背景下,使用數據挖掘演算法,挖掘有價值的指標(不使用這些演算法無法算出)
大數據行業的應用?
1.常見領域
2.智慧城市
3.電信大數據
4.電商大數據
大數據行業前景(國家政策)?
2014年7月23日,國務院常務會議審議通過《企業信息公示暫行條例(草案)》
2015年6月19日,國家主席、總理同時就「大數據」發表意見:《國務院辦公廳關於運用大數據加強對市場主體服務和監管的若干意見》
2015年8月31日,國務院印發《促進大數據發展行動綱要》。國發〔2015〕50號
2016年12月18日,工業和信息化部關於印發《大數據產業發展規劃》
2018年1月23日。中央全面深化改革領導小組會議審議通過了《科學數據管理辦法》
2018年7月1日,國務院辦公廳印發《關於運用大數據加強對市場主體服務和監管的若干意見》
2019年政府工作報告中總理指出「深化大數據、人工智慧等研發應用,培育新一代信息技術、高端裝備、生物醫葯、新能源汽車、新材料等新興產業集群,壯大數字經濟。」
總結
我國著名的電商之父,阿里巴巴創始人馬雲先生曾說過,未來10年,乃至20年,將是人工智慧的時代,大數據的時代。對於現在正在學習大數據的我們來說,未來對於我們更是充滿了各種機遇與挑戰。
python學習網,大量的免費python視頻教程,歡迎在線學習!
② 什麼是大數據
中國發展門戶網訊 隨著新一代信息技術的迅猛發展和深入應用,數據的數量、規模不斷擴大,數據已日益成為土地、資本之後的又一種重要的生產要素,和各個國家和地區爭奪的重要資源,誰掌握數據的主動權和主導權,誰就能贏得未來。奧巴馬政府將數據定義為「未來的新石油」,認為一個國家擁有數據的規模、活性及解釋運用的能力將成為綜合國力的重要組成部分,對數據的佔有和控制將成為繼陸權、海權、空權之外的另一個國家核心權力。此後,一個全新的概念——大數據開始風靡全球。
大數據的概念與內涵
「大數據」的概念早已有之,1980年著名未來學家阿爾文•托夫勒便在《第三次浪潮》一書中,將大數據熱情地贊頌為「第三次浪潮的華彩樂章」。但是直到近幾年,「大數據」才與「雲計算」、「物聯網」一道,成為互聯網信息技術行業的流行詞彙。2008年,在谷歌成立10周年之際, 著名的《自然》雜志出版了一期專刊,專門討論未來的大數據處理相關的一系列技術問題和挑戰,其中就提出了「Big Data」的概念。2011年5 月,在「雲計算相遇大數據」 為主題的EMC World 2011 會議中,EMC 也拋出了Big Data概念。所以,很多人認為,2011年是大數據元年。
此後,諸多專家、機構從不同角度提出了對大數據理解。當然,由於大數據本身具有較強的抽象性,目前國際上尚沒有一個統一公認的定義。維基網路認為大數據是超過當前現有的資料庫系統或資料庫管理工具處理能力,處理時間超過客戶能容忍時間的大規模復雜數據集。全球排名第一的企業數據集成軟體商Informatica認為大數據包括海量數據和復雜數據類型,其規模超過傳統資料庫系統進行管理和處理的能力。亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。網路搜索的定義為:"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。互聯網周刊的定義為:"大數據"的概念遠不止大量的數據(TB)和處理大量數據的技術,或者所謂的"4個V"之類的簡單概念,而是涵蓋了人們在大規模數據的基礎上可以做的事情,而這些事情在小規模數據的基礎上是無法實現的。換句話說,大數據讓我們以一種前所未有的方式,通過對海量數據進行分析,獲得有巨大價值的產品和服務,或深刻的洞見,最終形成變革之力。
綜合上述不同的定義,我們認為,大數據至少應包括以下兩個方面:一是數量巨大,二是無法使用傳統工具處理。因此,大數據不是關於如何定義,最重要的是如何使用。它強調的不僅是數據的規模,更強調從海量數據中快速獲得有價值信息和知識的能力。
大數據4V特徵
一般認為,大數據主要具有以下四個方面的典型特徵:規模性(Volume)、多樣性(Varity)、高速性(Velocity)和價值性(Value),即所謂的「4V」。
1.規模性。大數據的特徵首先就體現為「數量大」,存儲單位從過去的GB到TB,直至PB、EB。隨著信息技術的高速發展,數據開始爆發性增長。社交網路(微博、推特、臉書)、移動網路、各種智能終端等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB;臉書約10億的用戶每天產生的日誌數據超過300TB。迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。
2.多樣性。廣泛的數據來源,決定了大數據形式的多樣性。大數據大體可分為三類:一是結構化數據,如財務系統數據、信息管理系統數據、醫療系統數據等,其特點是數據間因果關系強;二是非結構化的數據,如視頻、圖片、音頻等,其特點是數據間沒有因果關系;三是半結構化數據,如HTML文檔、郵件、網頁等,其特點是數據問的因果關系弱。
3.高速性。與以往的檔案、廣播、報紙等傳統數據載體不同,大數據的交換和傳播是通過互聯網、雲計算等方式實現的,遠比傳統媒介的信息交換和傳播速度快捷。大數據與海量數據的重要區別,除了大數據的數據規模更大以外,大數據對處理數據的響應速度有更嚴格的要求。實時分析而非批量分析,數據輸入、處理與丟棄立刻見效,幾乎無延遲。數據的增長速度和處理速度是大數據高速性的重要體現。
4.價值性。這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識,並運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。
大數據六大發展趨勢
雖然大數據目前仍處在發展的起步階段,尚存在著諸多的困難與挑戰,但我們相信,隨著時間的推移,大數據未來的發展前景非常可觀。
1.數據將呈現指數級增長
近年來,隨著社交網路、移動互聯、電子商務、互聯網和雲計算的興起,音頻、視頻、圖像、日誌等各類數據正在以指數級增長。據有關資料顯示,2011年,全球數據規模為1.8ZB,可以填滿575億個32GB的iPad,這些iPad可以在中國修建兩座長城。到2020年,全球數據將達到40ZB,如果把它們全部存入藍光光碟,這些光碟和424艘尼米茲號航母重量相當。美國互聯網數據中心則指出,互聯網上的數據每年將增長50%,每兩年便將翻一番,目前世界上90%以上的數據是最近幾年才產生的。
2.數據將成為最有價值的資源
在大數據時代,數據成為繼土地、勞動、資本之後的新要素,構成企業未來發展的核心競爭力。《華爾街日報》在一份題為《大數據,大影響》的報告宣傳,數據已經成為一種新的資產類別,就像貨幣或黃金一樣。IBM執行總裁羅睿蘭認為指出,「數據將成為一切行業當中決定勝負的根本因素,最終數據將成為人類至關重要的自然資源。」隨著大數據應用的不斷發展,我們有理由相信大數據將成為機構和企業的重要資產和爭奪的焦點谷歌、蘋果、亞馬遜、阿里巴巴、騰訊等互聯網巨頭正在運用大數據力量獲得商業上更大的成功,並且將會繼續通過大數據來提升自己的競爭力。
3.大數據和傳統行業智能融合
通過對大數據收集、整理、分析、挖掘, 我們不僅可以發現城市治理難題,掌握經濟運行趨勢,還能夠驅動精確設計和精確生產模式,引領服務業的精確化和增值化,創造互動的創意產業新形態。麥當勞、肯德基以及蘋果公司等旗艦專賣店的位置都是建立在數據分析基礎之上的精準選址。網路、阿里、騰訊等通過對海量數據的掌握和分析,為用戶提供更加專業化和個性化的服務。在智慧城市建設不斷深入的情況下,大數據必將在智慧城市中發揮越來越重要的作用。由城市數字化到智慧城市,關鍵是要實現對數字信息的智慧處理,其核心是引入了大數據處理技術,大數據將成為智慧城市的核心智慧引擎。智慧金融、智慧安防、智慧醫療、智慧教育、智慧交通、智慧城管等,無不是大數據和傳統產業融合的重要領域。
4.數據將越來越開放
大數據是人類的共同資源、共同財富,數據開放共享是不可逆轉的歷史潮流。隨著各國政府和企業對開放數據帶來的社會效益和商業價值認識的不斷提升,全球必將很快掀起一股數據開放的熱潮。事實上,大數據的發展需要全世界、全人類的共同協作,變私有大數據為公共大數據,最終實現私有、企業自有、行業自有的全球性大數據整合,才不至形成一個個毫無價值的「數據孤島」。大數據越關聯越有價值,越開放越有價值。尤其是公共事業和互聯網企業的數據開放數據將越來越多。目前,美歐等發達國家和地區的政府都在政府和公共事業上的數據做出了表率。中國政府也將一方面帶頭力促數據公開共享,另一方面,還通過推動建設各類大數據服務交易平台,為數據使用者提供豐富的數據來源和數據的應用。
5.大數據安全將日受重視
大數據在經濟社會中應用日益廣泛的同時,大數據的安全也必將受到更多的重視。大數據時代,在我們用數據挖掘和數據分析等大數據技術獲取有價值信息的同時,「黑客」也可以利用這些大數據技術最大限度地收集更多有用信息,對其感興趣的目標發起更加「精準的」攻擊。近年來,個人隱私、企業商業信息甚至是國家機密泄露事件時有發生。對此,美歐等發達國家紛紛制定完善了保護信息安全、防止隱私泄露等相關法律法規。可以預見,在不久的將來,其他國家也會迅速跟進,以更好地保障本國政府、企業乃至居民的數據安全。
6.大數據人才將備受歡迎
隨著大數據的不斷發展及其應用的日益廣泛,包括大數據分析師、數據管理專家、大數據演算法工程師、數據產品經理等在內的具有豐富經驗的數據分析人員將成為全社會稀缺的資源和各機構爭奪的人才。據著名國際咨詢公司Gartner預測,2015年全球大數據人才需求將達到440萬人,而人才市場僅能夠滿足需求的三分之一。麥肯錫公司則預測美國到2018年需要深度數據分析人才44萬—49萬,缺口為14萬—19萬人。有鑒於此,美國通過國家科學基金會,鼓勵研究性大學設立跨學科的學位項目,為培養下一代數據科學家和工程師做准備,並設立培訓基金支持對大學生進行相關技術培訓,召集各個學科的研究人員共同探討大數據如何改變教育和學習等。英國、澳大利亞、法國等國家也類似地對大數據人才的培養做出專項部署。IBM 等企業也開始全面推進與高校在大數據領域的合作,力圖培養企業發展需要的既懂業務知識又具分析技能的復合型數據人才。(武鋒:國家信息中心)
③ 查個人網貸大數據去哪
你好,支付寶大數據只能查支付寶自己的小貸業務,對於其他的大數據就查不出來了,需要專業的機構來查詢。
現在我們國家一共有三種資料庫。
央行徵信,網貸資料庫,雲網速查。
央行徵信只統計正規網貸的借款數據信息。
網貸資料庫一般統計不上徵信的網貸,基本上不上徵信的網貸都會上傳到網貸資料庫。
雲網速查統計一些P2P網貸平台的借款數據信息。
央行徵信只統計正規網貸的借款數據信息。
普遍來說,如果想要查詢網貸數據報告,那麼只需要查詢網貸數據與央行徵信即可。
一、央行的徵信查詢,需要自己帶上本人身份證件,去當地營業網點自助查詢機查詢,當場出具個人信用報告。
二、查詢網貸數據就相對簡單了比如徽,信找雲網速查就可以快速獲取報告,能夠查看到用戶的申請次數,網貸數據,網黑指數分,命中風險提示,法院起訴信息,仲裁案件信息,失信人信息等數據。還能知道網貸逾期詳情,包括逾期天數、逾期金問額以及逾期平台等。
希望能幫到你
④ 什麼是大數據它有哪些特點
1、大數據(Big Data)又稱為巨量資料,指需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
2、特點:大數據分析相比於傳統的數據倉庫應用,具有數據量大、查詢分析復雜等特點。
⑤ 大數據的分析與處理方法解讀
大數據的分析與處理方法解讀
越來越多的應用涉及到大數據,這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以,大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於此,大數據分析的方法理論有哪些呢?
大數據分析的五個基本方面
(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
AnalyticVisualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
SemanticEngines(語義引擎)
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
DataMiningAlgorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
大數據處理
大數據處理數據時代理念的三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。具體的大數據處理方法其實有很多,但是根據長時間的實踐,筆者總結了一個基本的大數據處理流程,並且這個流程應該能夠對大家理順大數據的處理有所幫助。整個處理流程可以概括為四步,分別是採集、導入和預處理、統計和分析,以及挖掘。
採集
大數據的採集是指利用多個資料庫來接收發自客戶端的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的K-Means、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,還有,常用數據挖掘演算法都以單線程為主。
⑥ 大數據資料庫有哪些
問題一:大數據技術有哪些 非常多的,問答不能發link,不然我給你link了。有譬如Hadoop等開源大數據項目的,編程語言的,以下就大數據底層技術說下。
簡單以永洪科技的技術說下,有四方面,其實也代表了部分通用大數據底層技術:
Z-Suite具有高性能的大數據分析能力,她完全摒棄了向上升級(Scale-Up),全面支持橫向擴展(Scale-Out)。Z-Suite主要通過以下核心技術來支撐PB級的大數據:
跨粒度計算(In-Databaseputing)
Z-Suite支持各種常見的匯總,還支持幾乎全部的專業統計函數。得益於跨粒度計算技術,Z-Suite數據分析引擎將找尋出最優化的計算方案,繼而把所有開銷較大的、昂貴的計算都移動到數據存儲的地方直接計算,我們稱之為庫內計算(In-Database)。這一技術大大減少了數據移動,降低了通訊負擔,保證了高性能數據分析。
並行計算(MPP puting)
Z-Suite是基於MPP架構的商業智能平台,她能夠把計算分布到多個計算節點,再在指定節點將計算結果匯總輸出。Z-Suite能夠充分利用各種計算和存儲資源,不管是伺服器還是普通的PC,她對網路條件也沒有嚴苛的要求。作為橫向擴展的大數據平台,Z-Suite能夠充分發揮各個節點的計算能力,輕松實現針對TB/PB級數據分析的秒級響應。
列存儲 (Column-Based)
Z-Suite是列存儲的。基於列存儲的數據集市,不讀取無關數據,能降低讀寫開銷,同時提高I/O 的效率,從而大大提高查詢性能。另外,列存儲能夠更好地壓縮數據,一般壓縮比在5 -10倍之間,這樣一來,數據佔有空間降低到傳統存儲的1/5到1/10 。良好的數據壓縮技術,節省了存儲設備和內存的開銷,卻大大了提升計算性能。
內存計算
得益於列存儲技術和並行計算技術,Z-Suite能夠大大壓縮數據,並同時利用多個節點的計算能力和內存容量。一般地,內存訪問速度比磁碟訪問速度要快幾百倍甚至上千倍。通過內存計算,CPU直接從內存而非磁碟上讀取數據並對數據進行計算。內存計算是對傳統數據處理方式的一種加速,是實現大數據分析的關鍵應用技術。
問題二:大數據使用的資料庫是什麼資料庫 ORACLE、DB2、SQL SERVER都可以,關鍵不是選什麼資料庫,而是資料庫如何優化! 需要看你日常如何操作,以查詢為主或是以存儲為主或2者,還要看你的數據結構,都要因地制宜的去優化!所以不是一句話說的清的!
問題三:什麼是大數據和大數據平台 大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據平台是為了計算,現今社會所產生的越來越大的數據量。以存儲、運算、展現作為目的的平台。
問題四:常用大型資料庫有哪些 FOXBASE
MYSQL
這倆可算不上大型資料庫管理系統
PB 是資料庫應用程序開發用的ide,根本就不是資料庫管理系統
Foxbase是dos時代的產品了,進入windows時代改叫foxpro,屬於桌面單機級別的小型資料庫系統,mysql是個中輕量級的,但是開源,大量使用於小型網站,真正重量級的是Oracle和DB2,銀行之類的關鍵行業用的多是這兩個,微軟的MS SQLServer相對DB2和Oracle規模小一些,多見於中小型企業單位使用,Sybase可以說是日薄西山,不行了
問題五:幾大資料庫的區別 最商業的是ORACLE,做的最專業,然後是微軟的SQL server,做的也很好,當然還有DB2等做得也不錯,這些都是大型的資料庫,,,如果掌握的全面的話,可以保證數據的安全. 然後就是些小的資料庫access,mysql等,適合於中小企業的資料庫100萬數據一下的數據.如有幫助請採納,謝!
問題六:全球最大的資料庫是什麼 應該是Oracle,第一,Oracle為商業界所廣泛採用。因為它規范、嚴謹而且服務到位,且安全性非常高。第二,如果你學習使用Oracle不是商用,也可以免費使用。這就為它的廣泛傳播奠定了在技術人員中的基礎。第三,Linux/Unix系統常常作為伺服器,伺服器對Oracle的使用簡直可以說極其多啊。建議樓梗多學習下這個強大的資料庫
問題七:什麼是大數據? 大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托・邁爾-舍恩伯格及肯尼斯・庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法[2])大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
說起大數據,就要說到商業智能:
商業智能(Business Intelligence,簡稱:BI),又稱商業智慧或商務智能,指用現代數據倉庫技術、線上分析處理技術、數據挖掘和數據展現技術進行數據分析以實現商業價值。
商業智能作為一個工具,是用來處理企業中現有數據,並將其轉換成知識、分析和結論,輔助業務或者決策者做出正確且明智的決定。是幫助企業更好地利用數據提高決策質量的技術,包含了從數據倉庫到分析型系統等。
商務智能的產生發展
商業智能的概念經由Howard Dresner(1989年)的通俗化而被人們廣泛了解。當時將商業智能定義為一類由數據倉庫(或數據集市)、查詢報表、數據分析、數據挖掘、數據備份和恢復等部分組成的、以幫助企業決策為目的技術及其應用。
商務智能是20世紀90年代末首先在國外企業界出現的一個術語,其代表為提高企業運營性能而採用的一系列方法、技術和軟體。它把先進的信息技術應用到整個企業,不僅為企業提供信息獲取能力,而且通過對信息的開發,將其轉變為企業的競爭優勢,也有人稱之為混沌世界中的智能。因此,越來越多的企業提出他們對BI的需求,把BI作為一種幫助企業達到經營目標的一種有效手段。
目前,商業智能通常被理解為將企業中現有的數據轉化為知識,幫助企業做出明智的業務經營決策的工具。這里所談的數據包括來自企業業務系統的訂單、庫存、交易賬目、客戶和供應商資料及來自企業所處行業和競爭對手的數據,以及來自企業所處的其他外部環境中的各種數據。而商業智能能夠輔助的業務經營決策既可以是作業層的,也可以是管理層和策略層的決策。
為了將數據轉化為知識,需要利用數據倉庫、線上分析處理(OLAP)工具和數據挖掘等技術。因此,從技術層面上講,商業智能不是什麼新技術,它只是ETL、數據倉庫、OLAP、數據挖掘、數據展現等技術的綜合運用。
把商業智能看成是一種解決方案應該比較恰當。商業智能的關鍵是從許多來自不同的企業運作系統的數據中提取出有用的數據並進行清理,以保證數據的正確性,然後經過抽取(Extraction)、轉換(Transformation)和裝載(Load),即ETL過程,合並到一個企業級的數據倉庫里,從而得到企業數據的一個全局視圖,在此基礎上利用合適的查詢和分析工具、數據挖掘工具、OLAP工具等對其進行分析和處理(這時信息變為輔助決策的知識),最後將知識呈現給管理者,為管理者的決策過程提供支持。
企業導入BI的優點
1.隨機查詢動態報表
2.掌握指標管理
3.隨時線上分析處理
4.視覺化之企業儀表版
5.協助預測規劃
導入BI的目的
1.促進企業決策流程(Facilitate the Business Decision-Making Process):BIS增進企業的資訊整合與資訊分析的能力,匯總公司內、外部的資料,整合成有效的決策資訊,讓企業經理人大幅增進決策效率與改善決策品質。
......>>
問題八:資料庫有哪幾種? 常用的資料庫:oracle、sqlserver、mysql、access、sybase 2、特點。 -oracle: 1.資料庫安全性很高,很適合做大型資料庫。支持多種系統平台(HPUX、SUNOS、OSF/1、VMS、 WINDOWS、WINDOWS/NT、OS/2)。 2.支持客戶機/伺服器體系結構及混合的體系結構(集中式、分布式、 客戶機/伺服器)。 -sqlserver: 1.真正的客戶機/伺服器體系結構。 2.圖形化用戶界面,使系統管理和資料庫管理更加直觀、簡單。 3.具有很好的伸縮性,可跨越從運行Windows 95/98的膝上型電腦到運行Windows 2000的大型多處理器等多種平台使用。 -mysql: MySQL是一個開放源碼的小型關系型資料庫管理系統,開發者為瑞典MySQL AB公司,92HeZu網免費贈送MySQL。目前MySQL被廣泛地應用在Internet上的中小型網站中。提供由於其體積小、速度快、總體擁有成本低,尤其是開放源碼這一特點,許多中小型網站為了降低網站總體擁有成本而選擇了MySQL作為網站資料庫。 -access Access是一種桌面資料庫,只適合數據量少的應用,在處理少量數據和單機訪問的資料庫時是很好的,效率也很高。 但是它的同時訪問客戶端不能多於4個。 -
問題九:什麼是大數據 大數據是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 大數據首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機理解自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(putational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
要理解大數據這一概念,首先要從大入手,大是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的......>>
問題十:國內真正的大數據分析產品有哪些 國內的大數據公司還是做前端可視化展現的偏多,BAT算是真正做了大數據的,行業有硬性需求,別的行業跟不上也沒辦法,需求決定市場。
說說更通用的數據分析吧。
大數據分析也屬於數據分析的一塊,在實際應用中可以把數據分析工具分成兩個維度:
第一維度:數據存儲層――數據報表層――數據分析層――數據展現層
第二維度:用戶級――部門級――企業級――BI級
1、數據存儲層
數據存儲設計到資料庫的概念和資料庫語言,這方面不一定要深鑽研,但至少要理解數據的存儲方式,數據的基本結構和數據類型。SQL查詢語言必不可少,精通最好。可從常用的selece查詢,update修改,delete刪除,insert插入的基本結構和讀取入手。
Access2003、Access07等,這是最基本的個人資料庫,經常用於個人或部分基本的數據存儲;MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
SQL Server2005或更高版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台。
BI級別,實際上這個不是資料庫,而是建立在前面資料庫基礎上的,企業級應用的數據倉庫。Data Warehouse,建立在DW機上的數據存儲基本上都是商業智能平台,整合了各種數據分析,報表、分析和展現!BI級別的數據倉庫結合BI產品也是近幾年的大趨勢。
2、報表層
企業存儲了數據需要讀取,需要展現,報表工具是最普遍應用的工具,尤其是在國內。傳統報表解決的是展現問題,目前國內的帆軟報表FineReport已經算在業內做到頂尖,是帶著數據分析思想的報表,因其優異的介面開放功能、填報、表單功能,能夠做到打通數據的進出,涵蓋了早期商業智能的功能。
Tableau、FineBI之類,可分在報表層也可分為數據展現層。FineBI和Tableau同屬於近年來非常棒的軟體,可作為可視化數據分析軟體,我常用FineBI從資料庫中取數進行報表和可視化分析。相對而言,可視化Tableau更優,但FineBI又有另一種身份――商業智能,所以在大數據處理方面的能力更勝一籌。
3、數據分析層
這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
Excel軟體,首先版本越高越好用這是肯定的;當然對excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體;
SAS軟體:SAS相對SPSS其實功能更強大,SAS是平台化的,EM挖掘模塊平台整合,相對來講,SAS比較難學些,但如果掌握了SAS會更有價值,比如離散選擇模型,抽樣問題,正交實驗設計等還是SAS比較好用,另外,SAS的學習材料比較多,也公開,會有收獲的!
JMP分析:SAS的一個分析分支
XLstat:Excel的插件,可以完......>>
⑦ 資料庫里多大的文件算是「大數據文件」
這個有兩種:
一、指數據記錄非常多,成百上萬千萬級的數據。
二、資料庫文件非常大,如資料庫保存圖片等等都會非常大!
⑧ 大數據量的系統的資料庫結構如何設計
1、把你表中經常查詢的和不常用的分開幾個表,也就是橫向切分
2、把不同類型的分成幾個表,縱向切分
3、常用聯接的建索引
4、伺服器放幾個硬碟,把數據、日誌、索引分盤存放,這樣可以提高IO吞吐率
5、用優化器,優化你的查詢
6、考慮冗餘,這樣可以減少連接
7、可以考慮建立統計表,就是實時生成總計表,這樣可以避免每次查詢都統計一次
mrzxc 等說的好,考慮你的系統,注意負載平衡,查詢優化,25 萬並不大,可以建一個表,然後按mrzxc 的3 4 5 7 優化。 速度,影響它的因數太多了,且數據量越大越明顯。
1、存儲 將硬碟分成NTFS格式,NTFS比FAT32快,並看你的數據文件大小,1G以上你可以採用多資料庫文件,這樣可以將存取負載分散到多個物理硬碟或磁碟陣列上。
2、tempdb tempdb也應該被單獨的物理硬碟或磁碟陣列上,建議放在RAID 0上,這樣它的性能最高,不要對它設置最大值讓它自動增長
3、日誌文件 日誌文件也應該和數據文件分開在不同的理硬碟或磁碟陣列上,這樣也可以提高硬碟I/O性能。
4、分區視圖 就是將你的數據水平分割在集群伺服器上,它適合大規模OLTP,SQL群集上,如果你資料庫不是訪問特別大不建議使用。
5、簇索引 你的表一定有個簇索引,在使用簇索引查詢的時候,區塊查詢是最快的,如用between,應為他是物理連續的,你應該盡量減少對它的updaet,應為這可以使它物理不連續。
6、非簇索引 非簇索引與物理順序無關,設計它時必須有高度的可選擇性,可以提高查詢速度,但對表update的時候這些非簇索引會影響速度,且佔用空間大,如果你願意用空間和修改時間換取速度可以考慮。
7、索引視圖 如果在視圖上建立索引,那視圖的結果集就會被存儲起來,對與特定的查詢性能可以提高很多,但同樣對update語句時它也會嚴重減低性能,一般用在數據相對穩定的數據倉庫中。
8、維護索引 你在將索引建好後,定期維護是很重要的,用dbcc showcontig來觀察頁密度、掃描密度等等,及時用dbcc indexdefrag來整理表或視圖的索引,在必要的時候用dbcc dbreindex來重建索引可以受到良好的效果。 不論你是用幾個表1、2、3點都可以提高一定的性能,5、6、8點你是必須做的,至於4、7點看你的需求,我個人是不建議的。打了半個多小時想是在寫論文,希望對你有幫助。
⑨ 資料庫 大數據操作
下面以關系資料庫系統為例,介紹改善用戶查詢計劃的方法。 1.合理使用索引 索引是資料庫中重要的數據結構,它的根本目的就是為了提高查詢效率。現在大多數的資料庫產品都採用IBM最先提出的ISAM索引結構。索引的使用要恰到好處,其使用原則如下: ●在經常進行連接,但是沒有指定為外鍵的列上建立索引,而不經常連接的欄位則由優化器自動生成索引。 ●在頻繁進行排序或分組(即進行group by或order by操作)的列上建立索引。 ●在條件表達式中經常用到的不同值較多的列上建立檢索,在不同值少的列上不要建立索引。比如在雇員表的「性別」列上只有「男」與「女」兩個不同值,因此就無必要建立索引。如果建立索引不但不會提高查詢效率,反而會嚴重降低更新速度。 ●如果待排序的列有多個,可以在這些列上建立復合索引(compound index)。 ●使用系統工具。如Informix資料庫有一個tbcheck工具,可以在可疑的索引上進行檢查。在一些資料庫伺服器上,索引可能失效或者因為頻繁操作而使得讀取效率降低,如果一個使用索引的查詢不明不白地慢下來,可以試著用tbcheck工具檢查索引的完整性,必要時進行修復。另外,當資料庫表更新大量數據後,刪除並重建索引可以提高查詢速度。 2.避免或簡化排序 應當簡化或避免對大型表進行重復的排序。當能夠利用索引自動以適當的次序產生輸出時,優化器就避免了排序的步驟。以下是一些影響因素: ●索引中不包括一個或幾個待排序的列; ●group by或order by子句中列的次序與索引的次序不一樣; ●排序的列來自不同的表。 為了避免不必要的排序,就要正確地增建索引,合理地合並資料庫表(盡管有時可能影響表的規范化,但相對於效率的提高是值得的)。如果排序不可避免,那麼應當試圖簡化它,如縮小排序的列的范圍等。 3.消除對大型錶行數據的順序存取 在嵌套查詢中,對表的順序存取對查詢效率可能產生致命的影響。比如採用順序存取策略,一個嵌套3層的查詢,如果每層都查詢1000行,那麼這個查詢就要查詢10億行數據。避免這種情況的主要方法就是對連接的列進行索引。例如,兩個表:學生表(學號、姓名、年齡……)和選課表(學號、課程號、成績)。如果兩個表要做連接,就要在「學號」這個連接欄位上建立索引。 還可以使用並集來避免順序存取。盡管在所有的檢查列上都有索引,但某些形式的where子句強迫優化器使用順序存取。下面的查詢將強迫對orders表執行順序操作: SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008 雖然在customer_num和order_num上建有索引,但是在上面的語句中優化器還是使用順序存取路徑掃描整個表。因為這個語句要檢索的是分離的行的集合,所以應該改為如下語句: SELECT * FROM orders WHERE customer_num=104 AND order_num>1001 UNION SELECT * FROM orders WHERE order_num=1008 這樣就能利用索引路徑處理查詢。 4.避免相關子查詢 一個列的標簽同時在主查詢和where子句中的查詢中出現,那麼很可能當主查詢中的列值改變之後,子查詢必須重新查詢一次。查詢嵌套層次越多,效率越低,因此應當盡量避免子查詢。如果子查詢不可避免,那麼要在子查詢中過濾掉盡可能多的行。 5.避免困難的正規表達式 MATCHES和LIKE關鍵字支持通配符匹配,技術上叫正規表達式。但這種匹配特別耗費時間。例如:SELECT * FROM customer WHERE zipcode LIKE 「98_ _ _」 即使在zipcode欄位上建立了索引,在這種情況下也還是採用順序掃描的方式。如果把語句改為SELECT * FROM customer WHERE zipcode >「98000」,在執行查詢時就會利用索引來查詢,顯然會大大提高速度。 另外,還要避免非開始的子串。例如語句:SELECT * FROM customer WHERE zipcode[2,3]>「80」,在where子句中採用了非開始子串,因而這個語句也不會使用索引。 6.使用臨時表加速查詢 把表的一個子集進行排序並創建臨時表,有時能加速查詢。它有助於避免多重排序操作,而且在其他方面還能簡化優化器的工作。例如: SELECT cust.name,rcvbles.balance,……other columns FROM cust,rcvbles WHERE cust.customer_id = rcvlbes.customer_id AND rcvblls.balance>0 AND cust.postcode>「98000」 ORDER BY cust.name 如果這個查詢要被執行多次而不止一次,可以把所有未付款的客戶找出來放在一個臨時文件中,並按客戶的名字進行排序: SELECT cust.name,rcvbles.balance,……other columns FROM cust,rcvbles WHERE cust.customer_id = rcvlbes.customer_id AND rcvblls.balance>0 ORDER BY cust.name INTO TEMP cust_with_balance 然後以下面的方式在臨時表中查詢: SELECT * FROM cust_with_balance WHERE postcode>「98000」 臨時表中的行要比主表中的行少,而且物理順序就是所要求的順序,減少了磁碟I/O,所以查詢工作量可以得到大幅減少。 注意:臨時表創建後不會反映主表的修改。在主表中數據頻繁修改的情況下,注意不要丟失數據。 7.用排序來取代非順序存取 非順序磁碟存取是最慢的操作,表現在磁碟存取臂的來回移動。SQL語句隱藏了這一情況,使得我們在寫應用程序時很容易寫出要求存取大量非順序頁的查詢。 有些時候,用資料庫的排序能力來替代非順序的存取能改進查詢。 實例分析 下面我們舉一個製造公司的例子來說明如何進行查詢優化。製造公司資料庫中包括3個表,模式如下所示: 1.part表 零件號?????零件描述????????其他列 (part_num)?(part_desc)??????(other column) 102,032???Seageat 30G disk?????…… 500,049???Novel 10M network card??…… …… 2.vendor表 廠商號??????廠商名??????其他列 (vendor _num)?(vendor_name) (other column) 910,257?????Seageat Corp???…… 523,045?????IBM Corp?????…… …… 3.parven表 零件號?????廠商號?????零件數量 (part_num)?(vendor_num)?(part_amount) 102,032????910,257????3,450,000 234,423????321,001????4,000,000 …… 下面的查詢將在這些表上定期運行,並產生關於所有零件數量的報表: SELECT part_desc,vendor_name,part_amount FROM part,vendor,parven WHERE part.part_num=parven.part_num AND parven.vendor_num = vendor.vendor_num ORDER BY part.part_num 如果不建立索引,上述查詢代碼的開銷將十分巨大。為此,我們在零件號和廠商號上建立索引。索引的建立避免了在嵌套中反復掃描。關於表與索引的統計信息如下: 表?????行尺寸???行數量?????每頁行數量???數據頁數量 (table)?(row size)?(Row count)?(Rows/Pages)?(Data Pages) part????150?????10,000????25???????400 Vendor???150?????1,000???? 25???????40 Parven???13????? 15,000????300?????? 50 索引?????鍵尺寸???每頁鍵數量???頁面數量 (Indexes)?(Key Size)?(Keys/Page)???(Leaf Pages) part?????4??????500???????20 Vendor????4??????500???????2 Parven????8??????250???????60 看起來是個相對簡單的3表連接,但是其查詢開銷是很大的。通過查看系統表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理順序存放的。parven表沒有特定的存放次序。這些表的大小說明從緩沖頁中非順序存取的成功率很小。此語句的優化查詢規劃是:首先從part中順序讀取400頁,然後再對parven表非順序存取1萬次,每次2頁(一個索引頁、一個數據頁),總計2萬個磁碟頁,最後對vendor表非順序存取1.5萬次,合3萬個磁碟頁。可以看出在這個索引好的連接上花費的磁碟存取為5.04萬次。
⑩ Oracle資料庫大數據量表如何優化
要看數據多到何種程度。
比如一個表的筆數只是幾百,如果不需要和其他
大表
關聯查詢數據,連
索引
都不用建。
如果是幾十萬級別的表,一般正確建索引就可以。
如果是千萬級別的表,不但要正確建索引,而且要定時手工進行收集
統計信息
維護,不建議系統自動維護,以免影響
使用性能
。
如果是億以上級別的表,則可考慮按一定條件拆分表
資料
,將舊資料歸檔,這樣可改善生成表的使用。
資料庫優化的同時,
程序
也要進行相應優化,程序和
數據科學
搭配,才能使性能達到最佳。