導航:首頁 > 網路數據 > 大數據用戶洞察案例

大數據用戶洞察案例

發布時間:2023-06-16 05:00:54

1. 大數據時代的案例分析

個案一
你開心他就買你焦慮他就拋
華爾街「德溫特資本市場」公司首席執行官保羅·霍廷每天的工作之一,就是利用電腦程序分析全球3.4億微博賬戶的留言,進而判斷民眾情緒,再以「1」到「50」進行打分。根據打分結果,霍廷再決定如何處理手中數以百萬美元計的股票。
霍廷的判斷原則很簡單:如果所有人似乎都高興,那就買入;如果大家的焦慮情緒上升,那就拋售。
這一招收效顯著——當年第一季度,霍廷的公司獲得了7%的收益率。
個案二
國際商用機器公司(IBM)估測,這些「數據」值錢的地方主要在於時效。對於片刻便能定輸贏的華爾街,這一時效至關重要。曾經,華爾街2%的企業搜集微博等平台的「非正式」數據;如今,接近半數企業採用了這種手段。
●「社會流動」創業公司在「大數據」行業生機勃勃,和微博推特是合作夥伴。它分析數據,告訴廣告商什麼是正確的時間,誰是正確的用戶,什麼是應該發表的正確內容,備受廣告商熱愛。
●通過喬希·詹姆斯的Omniture(著名的網頁流量分析工具)公司,你可以知道有多少人訪問你的網站,以及他們呆了多長時間——這些數據對於任何企業來說都至關重要。詹姆斯把公司賣掉,進賬18億美元。
●微軟專家吉拉德喜歡把這些「大數據」結果可視化:他把客戶請到辦公室,將包含這些公司的數據圖譜展現出來——有些是普通的時間軸,有些像蒲公英,有些則是鋪滿整個畫面的泡泡,泡泡中顯示這些客戶的粉絲正在談論什麼話題。
●「臉譜」數據分析師傑弗遜的工作就是搭建數據分析模型,弄清楚用戶點擊廣告的動機和方式。
處理和分析工具
用於分析大數據的工具主要有開源與商用兩個生態圈。
開源大數據生態圈:
1、Hadoop HDFS、HadoopMapRece, HBase、Hive 漸次誕生,早期Hadoop生態圈逐步形成。
2、. Hypertable是另類。它存在於Hadoop生態圈之外,但也曾經有一些用戶。
3、NoSQL,membase、MongoDb
商用大數據生態圈:
1、一體機資料庫/數據倉庫:IBM PureData(Netezza), OracleExadata, SAP Hana等等。
2、數據倉庫:TeradataAsterData, EMC GreenPlum, HPVertica 等等。
3、數據集市:QlikView、 Tableau 、 以及國內的Yonghong Data Mart 。

2. 大數據營銷具體是指什麼呢可以列舉一下具體的大數據營銷案例是什麼樣的嗎

大數據營銷是指基於多平台的大量數據,依託大數據技術的基礎上,應用於版互聯網廣告行業的營銷權方式。大數據營銷衍生於互聯網行業,又作用於互聯網行業。依託多平台的大數據採集,以及大數據技術的分析與預測能力,能夠使廣告更加精準有效,給品牌企業帶來更高的投資回報率。

3. 大數據攻略案例分析及結論

大數據攻略案例分析及結論

我們將迎來一個「大數據時代」。與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?

{研究結論}

怎樣才能用起來大數據?障礙如何解決?中國企業家研究院對10多家在大數據應用方面的領先企業進行了采訪調研,更多家企業進行了書面資料調研,我們發現:

■ 當前中國企業的大數據應用可以歸類為:大數據運營、大數據產品、大數據平台三大=領域,前兩者更多是企業內部的應用,後者則在於用大數據來繁榮整個平台企業群落的生態。

■ 大數據營銷的本質是一個影響消費者購物前心理路徑的問題,而這在大數據時代前很難做到。

■ 對於傳統企業而言,要打通線上與線下營銷,實現新的商業模式,如O2O等,離不開大數據。

■ 雖然大數據應用往往集中於大數據營銷,但對於一些企業,大數據的應用早已超越了營銷范疇,全面進入了企業供應鏈、生產、物流、庫存、網站和店內運營等各個環節。

■ 對於大部分企業,由於數據分析人員與業務人員之間的彼此視角與思考方向不同,大數據分析和運營之間存在脫節情況,這是大數據無法用於企業運營最大的阻力

■ 對於大多數互聯網公司來說,大數據量、大用戶量是一個相互促進,強者越強的循環過程。

■ 對於大型互聯網平台,大數據已經成為其生態循環中的血液,對於這些企業,最重要

的不是如何利用大數據改進自身運營,而是利用大數據更好地繁榮平台生態。

■ 對於平台企業,它們的大數據策略正逐漸從大數據運營,向運營大數據轉變,前者和

後者的差別在於,前者只是運營改進的動力,而後者則成為企業實現未來戰略的核心資源。

我們都已被反復告知:我們將迎來一個「大數據時代」。

大數據應用,將和雲計算、3D列印這些技術變革一樣,顛覆既有規則,並成為先行企業的制勝關鍵。

與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?

來自於互聯網、移動互聯網、物聯網感測器、視頻採集系統的數據正海量增長,匯成大數據的海洋,相伴的是海量數據存儲、分析技術的突破性發展,所有這一切都給企業的應用帶來了無限可能性。

許多企業希望將大數據用起來,帶動企業的經營,但不知從哪裡著手。它們不惜重金投資大數據信息系統、分析系統,聘請更多的人才,希望能從這個新趨勢中獲益,不過卻無奈地發現,大數據仍然停留在雲端,沒有帶來多少實際收益。它們找不到大數據與業務結合的突破口。而一些真正將大數據應用於實戰的企業,卻在應用過程中困難重重:大數據無法與業務結合;沒有收集、分析海量數據的能力;經營人員缺少應用大數據的動力;數據來源魚龍混雜難以使用……

中國企業家研究院對當前中國企業大數據應用的狀況進行了歸納分類,以幫助企業了解實際應用大數據時的困局難點,並提供領先企業的典型案例以資借鑒。

表1

表2

大數據運營—企業提升效率的助推力

對於大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自於互聯網、物聯網、各種感測器的海量數據撲面而至。於是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。大數據運營應用中,大數據的應用分為三類:用於企業外部營銷、用於內部運營,以及用於領導層決策。

一、大數據營銷

大數據營銷的本質是影響目標消費者購物前的心理路徑,它主要應用在三個方面:1、大數據渠道優化,2、精準營銷信息推送,3、線上與線下營銷的連接。在消費者購物前,通過各種方式,直接介入其信息收集和決策過程。而這種介入,是建立在對於線上與線下海量用戶數據分析的基礎之上。相比傳統狂轟濫炸或等客上門的營銷,大數據營銷無論在主動性和精準性方面,都有非常大的優勢。它是目前主要的大數據應用領域。

大數據營銷不僅僅是用大數據找出目標顧客,向其發布促銷信息,它還可以做到:

實現渠道優化。根據用戶的互聯網痕跡進行渠道營銷效果優化,就是根據互聯網上顧客的行為軌跡來找出哪個營銷渠道的顧客來源最多,哪個來源顧客實際購買量最多,是否是目標顧客等等,從而調整營銷資源在各個渠道的投放。例如東風日產,它利用對顧客來源的追蹤,來改進營銷資源在各個網路渠道如門戶網站、搜索和微博的投放。

精準營銷信息推送。精準建立在對海量消費者的行為分析基礎之上,消費者網路瀏覽、搜索行為被網路留下,線下的購買和查看等行為可以被門店的POS機和視頻監控記錄,再加上他們在購買和注冊過程中留下的身份信息,在商家面前,正逐漸呈現出消費者信息的海洋。

一些企業通過收集海量的消費者信息,然後利用大數據建模技術,按消費者屬性(如所在地區、性別)和興趣、購買行為等維度,挖掘目標消費者,然後進行分類,再根據這些,對個體消費者進行營銷信息推送。比如孕婦裝品牌十月媽咪通過對自己微博上粉絲評論的大數據分析,找出評論有「喜愛」相關關鍵詞的粉絲,然後打上標簽,對其進行營銷信息推送。京東商城副總經理李曦表示:「用大數據找出不同細分的顧客需求群,然後進行相應的營銷,是京東目前在做的事情。」小也化妝品將自身網站作為收集消費者信息的雷達,對不同消費者推薦相應的肌膚解決方案,創始人肖尚略希望在未來,大數據營銷能替代網站的作用,真正成為面向顧客的前端。

打通線上線下營銷。一些企業將互聯網上海量消費者的行為痕跡數據與線下購買數據打通,實現了線上與線下營銷的協同。比如東風日產,線上與線下的協同營銷方式為:其門戶網站帶來訂單線索,而通過這些線索,服務人員進行電話回訪,從而推動顧客在線下交易。在此過程中,東風日產記錄了消費者進入、瀏覽、點擊、注冊、電話回訪和購買各個環節的數據,實現了一個橫跨線上線下,以大數據分析為支持的,營銷效果不斷優化的閉環營銷通路。而國雙科技,衡量某一地區線下促銷活動的效果,就是看互聯網上,來自這個地區對於促銷內容的搜索量。一些企業,通過鼓勵線下顧客使用微信和Wi-Fi等可追蹤消費者行為和喜好的設備,來打通線上與線下數據流,銀泰百貨計劃鋪設Wi-Fi,鼓勵顧客在商場內使用,然後根據Wi-Fi賬號,找出這個顧客,再通過與其它大數據挖掘公司合作,以大數據的手段,發掘這個顧客在互聯網的歷史痕跡,來了解這個顧客的需求類型。

二、大數據用於內部運營

相比大數據營銷,大數據在內部運營中的應用更深入,對於企業內部的信息化水平,以及數據採集和分析能力的要求更高。本質上,是將企業外部海量消費者數據與企業內部海量運營數據聯系起來,在分析中得到新的洞察,提升運營效率。(詳見P96表5:大數據在內部運營中的應用)

表5

三、大數據用於決策

在大數據時代,企業面對眾多新的數據源和海量數據,能否基於對這些數據的洞察,進行決策,進而將其變成一項企業競爭優勢的來源?同大數據營銷和大數據內部運營相比,運用大數據決策難度最高,因為它需要一種依賴數據的思維習慣。

已有少數企業開始嘗試。比如國內一些金融機構在推出一個金融產品時,會廣泛分析該金融產品的應用情況和效果、目標顧客群數據、各種交易數據和定價數據等,然後決定是否推出某個金融產品。

但是,中國企業家研究院在調研中發現,目前中國企業當中,大數據決策的應用非常之少,許多企業領導者進行決策時,仍習慣於憑借歷史經驗和直覺。

大數據產品——企業利潤滋長的新源泉

大數據除了用於運營外,還能夠與企業產品結合,成為企業產品背後競爭力的核心支持或者直接成為產品。提供大數據產品的企業分為兩類,直接提供大數據產品的企業,以及將大數據作為產品和服務核心支撐的企業。前者主要為大數據產業鏈中提供數據服務的參與者,包括數據擁有者、存儲企業,挖掘企業、分析企業等,後者則主要是那些以大數據為產品核心支撐的企業,它們大多是互聯網企業,其產品和服務先天就有大數據基因,這些企業包括搜索引擎、在線殺毒、互聯網廣告交易平台以及眾多植根於移動互聯網之上,為用戶提供生活和資訊服務的APP等。

表3

表4

一、大數據作為產品核心支持

它們主要在以下幾方面使用大數據:

1、提供信息服務。很多互聯網企業通過對海量互聯網信息和線下信息的整合和分析,為個人和企業提供信息服務,典型的如網路、去哪兒、一淘、高德地圖、春雨醫生等等。在美國,一些互聯網企業甚至根據大數據提供更深度的預測信息服務,美國科技創新公司farecast,通過分析特定航線機票的價格,幫助消費者預測機票價格走勢。

2、分析用戶的個性化需求,藉此提供個性化產品和服務,或者實現更精準的廣告。典型的有移動社交工具陌陌、網路、騰訊、廣告交易平台品友互動以及一些互聯網游戲商。這種應用往往先是收集海量用戶的互聯網行為數據,將用戶分類,根據不同類型的用戶,提供個性化的產品,或者提供個性化的促銷信息。比如網易等門戶網站推出了訂閱模式,讓使用者按照個人喜好方便地定製和整合不同來源的信息。

3、增強產品功能。對於很多互聯網產品,如殺毒軟體、搜索引擎等等,海量數據的處理能夠讓產品變得更聰明更強大,如果沒有大數據,產品的功能就大大減弱。比如奇虎360公司的360殺毒軟體,憑借每天海量的殺毒處理,建立了龐大的病毒庫,這使它能夠更快地發現病毒,而一些小的殺毒軟體公司則無法做到這一點。

4、掌控信用狀況,提供信貸服務。阿里巴巴上匯集了海量中小企業的日常資金與貨品往來,通過對這些往來數據的匯總與分析,阿里巴巴能發現單個企業的資金流與收入情況,分析其信用,找出異常情況與可能發生的欺詐行為,控制信貸風險。

5、實現智能匹配。婚戀網站、交易平台等,利用大數據可以進行精準而高效的配對服務。網易花田會挖掘用戶行為數據,比如點擊哪些異性的頁面,發表什麼樣的評論,建立用戶興趣模型,從而挖掘到用戶所期待另一半的類型,然後主動推薦與對方匹配度比較高的人選。2010年,阿里巴巴嘗試性地推出「輕騎兵」服務,由阿里巴巴將中國各產業集群地的供應商與海外買家的個性采購需求進行快速匹配,所憑借的,就是對供應商的海量交易數據信息的整合與挖掘。

大數據作為產品核心支撐的關鍵在於用戶量。對於大多數互聯網公司來說,用戶量越多,收集的數據越多,憑借更多的數據,其產品與商業模式會不斷改進,進而帶來更多的用戶。

二、大數據直接作為產品

對一些企業,大數據直接成為了產品,這些產品包括海量數據、分析、存儲與挖掘的服務等,目前大數據產業鏈正在形成過程中,出現了一批開放、出售、授權大數據和提供大數據分析、挖掘的公司和機構,前者主要是一些擁有海量數據的公司,將數據服務作為新的盈利來源。如大型的互聯網平台、民航、電信運營商、一些擁有大數據的政府機構等等,後者主要包括一些能夠存儲海量數據或者將海量數據與業務場景結合,進行分析和挖掘,或者提供相關產品的公司,如IBM、SAP、拓而思、天睿公司。它們為大數據應用者們提供海量數據存儲、數據挖掘、圖像視頻、智能分析等服務以及相關系統產品。

大數據平台——企業群落繁榮的滋養劑

相對企業本身對大數據的應用,大數據平台更多是利用大數據來搭建企業生態。一些擁有龐大數據資源的大型互聯網平台,已變為包含海量寄生者的生態系統。在這個生態系統中,它們將海量用戶互聯網行為痕跡和分析提供給平台上的企業,用於它們改善經營,推動整個平台生態繁榮,在這一過程中,它們也收取數據服務費。阿里巴巴就是一個典型的例子,從數據魔方、黃金策到聚石塔,阿里巴巴不斷地為平台上中小電商提供數據產品和服務。

而網路已建成了包括網路指數、司南、風雲榜、數據研究中心和網路統計在內的五大數據體系平台,幫助其營銷平台上的企業了解消費者行為、興趣變化,以及行業發展狀況、市場動態和趨勢、競爭對手動向等信息。

而當大數據從企業內部運營的動力,變成平台企業的產品和服務時,平台企業也在經歷著一個從大數據運營到運營大數據的階段。數據從運營的支持工具,變成了生產資料。此前平台們的關注點,更多的是如何用好現有的大數據。而未來,它們的關注點則更多是如何將大數據這個生產資料管理好、經營好,如何更好地為平台上的企業服務。這就涉及到收集的數據質量怎樣?格式標準是否統一?數據作為一種原材料,其精細化程度如何?是否符合平台上企業應用的具體場景?是平台上企業拿來就能用的,還是還需要平台上的企業再加工?

為解決這些問題,各個平台在積極地努力。比如阿里巴巴建立了數據委員會,在統一數據格式標准、從源頭上保證數據的質量,採集和加工出精細化的數據,確保其能符合平台企業的應用場景等方面,不遺餘力地嘗試。尤其在大數據精細化方面,阿里巴巴更是作為其大數據戰略的重點。這方面,騰訊目前也在加快步伐。比如新版騰訊網出現了「一鍵登錄」的提示,用戶可以在上面通過一些細分標簽,訂閱自己關注的內容。實際上,這也是騰訊收集更精細化的用戶興趣數據的一個有效手段。

Tips

大數據實戰手冊

將大數據應用於內部運營中時,企業會遇到一些常見問題

1企業如何獲取與分析數據?

互聯網是大數據的一個主要來源,一些線下的傳統企業很難獲得。但它們可以:

a 和擁有或能抓取海量數據的平台、企業以及政府機構合作。比如淘寶上的電商就購買淘寶收集的海量數據中與自身運營相關的部分,用於自身業務。再如卡夫通過與IBM合作,在博客、論壇和討論版的內容中抓取了47.9萬條關於自己產品的討論信息,通過大數據分析出消費者對卡夫食品的喜愛程度和消費方式。

b 建立自己在互聯網上的平台,比如朝陽大悅城利用自己的微信、微博等平台收集消費者評論數據。

c 許多傳統企業沒有分析海量數據的能力,此時它們可以和大數據分析和挖掘公司合作,目前市場上已經有天睿公司、IBM、百分點、華勝天成等一批提供大數據分析和挖掘服務的公司,它們是傳統企業進行大數據分析可以藉助的力量。

2 如何避免大數據應用時的部門分割?

對於許多企業,其信息流被各部門彼此分割,數據難以互通,對於這種情況下,大數據的共享和匯集就只是一個泡影,更難以實現大數據的深度應用。

要打通部門之間信息分割的局面,首先要建立統一的、集中的數據系統。就像立白信息與知識總監王永紅所說的,「要真正用好大數據,企業要採用大集中的信息系統。」從更深入的角度來談,企業信息流的部門分割,更在於企業部門之間的分割,比如有一些企業的營銷按照渠道分割,導致對於顧客的大數據收集和分析效果大打折扣。

IBM智慧商務技術總監楊旭青認為,「很多時候由於組織結構問題,大數據分析有效性大大降低了。」這就需要組織與流程層面的重新設計,在這方面,阿里巴巴的部門負責人輪崗制度,對於打破部門壁壘無疑是一劑好葯。而一些企業為了打破部門分割,建立了矩陣型的組織結構,強化部門間的橫向合作,這些無疑為大數據的匯集、共享與應用創造了良好條件。

3 如何讓業務人員重視大數據的應用?

解決這個問題,一方面在於一把手對整個企業數據文化的倡導,比如1號店董事長於剛就要求業務人員無論在開會,還是匯報工作時,都以數據說話,而馬雲更是將大數據提升到了戰略高度。

另一方面,也在於數據部門的帶動,阿里巴巴數據委員會負責人車品覺分享了經驗,「因為運營部門的業務人員很難看到大數據的潛力,可以首先從一些對業務見效快,見效顯著的數據項目出發,通過一兩個項目的成功,調動對方的積極性,然後再逐步一個個地引導。」

4 為何大數據工作與運營需求脫節?

這往往是由於數據人員與業務人員視角、專業知識不同而導致的。大數據人員做了很多努力,但是業務人員卻認為這些努力無關痛癢。如何解決這個問題?

有的企業從組織設計上發力,將大數據納入業務分析部門的管理之下,用業務統馭數據。對於朝陽大悅城,由主要負責戰略和經營分析的部門來管理大數據工作,其中的大數據分析人員則作為支持人員。在負責人張岩看來,大數據要靠商業法則指導,關鍵是找到業務需求的點,然後由數據分析和挖掘人員實現。在具體操作中,大悅城對微信的數據挖掘,挖掘什麼樣的關鍵詞,由業務分析人員確定,而具體挖掘則由數據部門做;有的企業從流程設計上著手,推動業務部門與數據部門人員之間的溝通,建立數據人員工作與效果掛鉤的考核機制。

例如阿里巴巴根據數據挖掘的成效(比如帶來的商品轉化率的提升)來考核數據挖掘師,考核數據分析師則看其分析結果能否出現在經營負責人的報告中。從數據部門自身角度則需要降低運營部門使用數據的障礙和門檻,比如立白集團的數據人員會努力嘗試向運營部門提供更易懂、更生動的圖形化數據分析界面,在立白老闆辦公室上,就有一份「客戶運營健康體檢表」,讓老闆對全國經銷商的當月銷售情況一目瞭然。再如阿里巴巴開發的無線Bi,讓經營人員在手機上也可以看到大數據分析結果,拿車品覺的話說,「以數據之氧氣包圍經營人員。」

以上是小編為大家分享的關於大數據攻略案例分析及結論的相關內容,更多信息可以關注環球青藤分享更多干貨

4. 大數據分析洞察 發揮越來越重要作用

大數據分析洞察 發揮越來越重要作用_數據分析師考試

1.利用每天數十億次的服務定位數據,呈現出一張動態更新的春節人口大遷徙地圖

在北京中關村工作的孫超,今年除夕下午才坐高鐵回山東老家。與往年不同,對這個大學剛畢業的IT工程師來說,這次他知道自己的回家路線是此時全國最熱門的春節遷徙線路之一。他甚至還知道,除夕當天,從北京遷出的人口是最多的,四川、山東和河南是最熱門的目的地,而老家在河南和四川的人是回家最晚的,因為當天這兩個省遷入的人口最多。

這些讓人耳目一新的「知識」來自於「網路地圖春節人口遷徙大數據」項目——利用網路後台每天數十億次基於地理位置服務(LBS)的定位數據進行計算分析,來展現春節前後人口大遷徙的軌跡與特徵。普通網民只需要訪問「qianxi..com」這個網頁,就可以看到一張遷徙地圖,通過選擇不同的路線、城市和時間,了解全國春運的最新動態,包括當前全國春運最熱的線路,最熱門的遷出遷入城市等。

春運是我國乃至全球范圍內最大規模的短期人口遷移活動之一,通訊是人們在遷徙過程中最基本需求之一,因此手機網民與遷徙人群重合度極高,遷徙人群絕大多數都是手機網民。手機上網時使用的定位服務,同時也反映出手機所在位置。網路LBS技術總監顧維灝介紹說,「我們分析的是位置的變化,比如你這會在北京使用手機,過了幾個小時以後發現你在上海使用手機,這就說明你的位置在這幾個小時內在變化。」網路通過雲計算平台的數據處理分析能力,加上精準的定位,打造了一張較為全面、准確、即時的反映人口遷徙狀況的「大遷徙」地圖。

「從這個圖上,可以看出春節人口遷徙的趨勢在哪裡,我們甚至標注了全國300多個地級市,可以即時了解遷徙動態。」顧維灝說,通過時間維度的分析,還可以比較不同日期同一時段遷徙情況的不同。作為一次嘗試,1月25日上線的網路「大遷徙」地圖剛剛在2月14日停止數據更新。

中國傳媒大學調查統計研究所所長沈浩認為,網路本次推出的人口遷徙大數據,用可視化的方式展現了中國春運遷徙的盛況,是一項非常有價值的創新。

「通過網路人口遷徙數據研究春運人口流向,可為交通部門的政策和服務提供參考,其開放後,也可以為普通百姓、企業提供生活、生產的參考,具有很大的社會價值。」沈浩說。

2.手機定位請求就像一個人的足跡,大數據集合了個人用戶碎片行為

網路的「大遷徙」地圖既讓公眾用另一種方式來體驗春運,也給普通人創造了近距離接觸大數據的機會。

「這張圖顯示了移動地圖乃至移動互聯網對日常生活產生的影響。」顧維灝說,移動互聯網之所以「移動」,在我們看來就是可以通過包括定位在內的位置服務,給普通人提供差異化服務。

統計數據顯示,截至去年12月,我國手機網民數量已高達5億,在這個背景下,手機網民產生的定位服務數據量已經是「大數據」的級別。去年8月,網路地圖LBS開放平台就已一天接受35億次的定位服務請求,相當於每秒4萬次。

發現知識正是大數據的真正價值,僅僅存儲數據而不去挖掘內在信息並沒有意義。目前網路LBS開放平台聚集了超過40萬的第三方開發者,為數十萬款APP提供後台定位服務,已覆蓋數億部手機。「有更多的定位需求,就產生更多的數據,我們會根據時間、地點、熱點和區域性,從這些大數據中挖掘出更多知識,產生更多新的產品創意。」顧維灝說,春運遷徙地圖,就是在網路的大數據分析能力基礎之上,去挖掘基於地理位置服務特有的數據和特有的知識,從而誕生的一個創新產品。

做遷徙地圖前,網路還做了幾個有意思的事情。如對北京海淀黃庄地鐵站做了分析,通過定位密度反映出人群密度,發現地鐵D出口基本上沒有什麼人走。這種關於公共設施的數據,就可以分享給相關部門參考優化配置。

專家介紹說,手機定位請求就像一個人的足跡,從這個足跡里,可以看出哪些商鋪是熱門的,或者某類人群更喜歡什麼樣的商鋪,這種分析結果可以用來優化線下和線上的交易,「足跡」也可以用來預測、挖掘城市的路況信息,實時發現或者是預測道路的擁堵情況,避開擁堵,走更順暢的道路。

網路高級副總裁王勁認為,移動互聯網的發展使人們隨時隨地都在創造數據,開發者要充分利用大數據進行智慧化運營,開發出新一代應用。網路中的「足跡」、點擊、瀏覽、留言直接反映消費者的性格、偏好、意願等。大數據也可以看成是每個用戶碎片行為的集合。

大數據不僅體量巨大,而且種類繁多。目前互聯網交互數據佔比越來越大,約為大數據總容量的85%,傳統行業的數據大概只有15%。而由於社會全面數字化,數據產生的來源和類型越來越多,速度越來越快,全球所有信息數據中90%產生於過去兩年,每天新增的數據量有25PB,相當於1500個國家圖書館信息量的總和。

3.大數據的效應不僅僅是在移動互聯網上,將有助於促進信息消費和社會民生

大數據的效用不僅僅是在移動互聯網上,它被認為是繼雲計算、物聯網之後信息技術產業又一次顛覆性的技術變革,對經濟發展、企業的決策、組織和業務流程、個人生活方式都將產生巨大的影響。目前,大數據的開發和利用在國內還處於起步階段,一些電子商務企業利用大數據做一些研究報告和趨勢分析,而從趨勢看,未來大數據將會拓展到科研和政府管理領域。

「大數據時代的來臨對信息技術應用的影響主要有兩個方面:一方面促使數據獲取、數據存儲更廣泛,如出現雲計算、雲存儲;另一方面激發了信息技術挖掘數據的強烈需求,未來發展更趨向於信息的價值提升和決策智能化,例如建設智慧城市。」神州數碼專家史文釗說。

網路董事長兼首席執行官李彥宏認為,大數據目前在兩個方面表現出最重要的價值,一是促進信息消費,加快經濟轉型升級,二是關注社會民生,帶動社會管理創新。

傳統製造業有了大數據,可以從「製造」向「智造」升級——從產品設計端到最終銷售,都可以通過大數據進行智能分析。企業可以快速響應市場需求、科學研發產品,並且精準營銷。目前汽車行業已在藉助大數據,對數億網民與汽車相關的請求進行大數據挖掘,形成行業指數和分析報告,幫助汽車企業了解消費者需求。內容創新方面,手機、電視、冰箱等傳統電子和電器產品,由於有了大數據,產品變得智能化,激發了用戶的新一輪消費需求。消費者的強勁需求,又直接促進了企業利用大數據進行產品形態和內容的創新。

社會管理創新方面,春運遷徙地圖這個普通人親近大數據的案例,是交通領域基於數據的一次新嘗試。未來在教育、就業、公共衛生等眾多關鍵領域,大數據的分析洞察,也將發揮越來越重要的作用。

以上是小編為大家分享的關於大數據分析洞察 發揮越來越重要作用的相關內容,更多信息可以關注環球青藤分享更多干貨

5. 大數據洞察有哪些特色,大數據營銷案例,大數據企業

特色案例分析:
1、浪潮GS助力廣安集團一豬一ID強化食品安全
作為輻射全國的農牧企業集團,多年來廣安集團一直企業信息化進程與企業發展需求不匹配的問題。2013年,廣安集團引入浪潮GS,採用單件管理系統,通過一豬一ID對其成長周期進行全過程監控,促使食品安全可追溯,實現飼養流程精細化、集約化管理,使每年飼料節約了2成左右,為廣安的智慧企業養成之路奠定了基礎。
2、華為大數據一體機服務於北大重點實驗室
經過大量的前期調查,比較和分析准備工作,北大重點實驗室選擇了華為基於高性能伺服器RH5885V2的HANA數據處理平台。HANA提供的對大量實時業務數據進行快速查詢和分析以及實時數據計算等功能,在很大程度上得益於華為RH5885 V2伺服器的高可靠、高性能和高可用性的支撐。
3、神州數碼助張家港市更」智慧」
在張家港實踐的城市案例中,市民登錄由」神州數碼」研發的市民公共信息服務平台後,只要憑借自己的身份證和密碼,即可通過該系統平台進行240餘項」在線預審」服務、130餘項」網上辦事」服務等,還可通過手機及時查看辦事狀態。相比於以前來說,市民辦事的時間最少可以節省一半以上。
4、中科曙光助同濟大學科研領域再創新高
為了滿足爆炸式增長的用戶和數據量,同濟大學攜手中科曙光,在全面整合雲計算平台和現有資產的基礎上,採用 DS800-F20存儲系統、Gridview集群管理系統,以及Hadoop分布式計算平台構建出了業內領先的大數據柔性處理平台,使得同濟大學在信息學科及其交叉學科研究領域邁上一個新台階。
5、中國電信基於物聯網的智能公交解決方案
中國電信提出了基於物聯網的智能公交應用整體解決方案。該方案緊密結合公交行業特點,涵蓋了全球眼視頻監控系統、GPS定位調度系統、無線數據採集系統等技術,是基於物聯網技術的公交行業車輛監控調度管理綜合性解決方案。中國電信智能交通系統利用物聯網技術,提高了公交系統中的人(乘客、司乘人員、管理人員)、公交設施(道路、場站等)和公交車輛等之間的有機聯系,從而最佳地利用了交通系統的時空資源,通過信息資源的合理開發、利用和整合,提高了公交行業運行效率,改善了服務質量,為應對重大突發事件提供了必要的手段,在公交公司的科學運營管理、安全監控等方面發揮了重要的作用,物聯網的應用已成為公交業務發展的必然趨勢。
6、明略數據為稅務部門構建的可視化涉稅分析平台
稅務系統的數據在很長時間內大量來自於納稅人的申報行為數據和報表數據,面向稅務工作人員的是割裂的不同業務系統,信息本身被業務消解為固定的邏輯和處理形式。明略數據為稅務部門構建的可視化涉稅分析平台定位為面向稅務部門的數據服務產品。產品充分利用明略底層大數據平台相關技術,數據挖掘建模技術及明略稅務行業研究專家對稅源管理專業化,風險控制精細化,決策分析智能化的理解,搭建以分析預測為核心的數據應用平台,以幫助稅務部門征管工作更有效、更全面、更精細化的展開。
7、悠易互通汽車行業大數據經驗助奧迪品薦二手車
2015年,奧迪品薦二手車項目通過悠易互通程序化購買平台進行為期5個月的推廣活動,傳播受眾主要以男性以及已有奧迪車主為主,悠易互通規劃的投放策略是,首先,通過人群標簽及關鍵詞,對精準受眾人群進行全網競價;其次,對以上競價成功人群進行優化召回,分析以提高下一輪競價成功率;根據悠易互通汽車行業大數據經驗,消費者的行為路徑為」興趣-認知考慮-轉化」,程序化購買可以通過人群召回的方式將流失人群引導到下一環節,從而促進轉化可能。最終投放結果顯示,悠易互通通過以上策略高效達成客戶KPI,曝光量超過預估13%,點擊量超過KPI 26%,注冊量高達163%。
8、東風風神大數據」動」悉全系目標受眾,打破傳統促銷方式
派擇科技應用底層行為數據管理平台Action DMP支招東風風神全系營銷推廣活動, Action DMP實現全網用戶行為元數據、應用元數據、場景元數據的實時無損解析,精準捕獲各車型目標受眾;通過分析用戶行為場景,了解他們的觸媒習慣,展開品牌與用戶定製化溝通,其中也包括個性化創意載體與溝通渠道組合。項目最終CPL成本較目標降低40%。
9、智子雲大數據挖掘助蘇寧易購訪客」回心轉意」之路
蘇寧易購期望通過智子雲的VRM模型對到站/進APP的流失訪客進行精細劃分,並藉助DSP精準定向能力跨屏鎖定目標人群,找迴流失訪客。首先,建立數據倉庫;其次智子雲個性化推薦引擎Rec-Engine;智子雲智能動態出價引擎Delta-Engine;智子雲全網跨屏LBS定向引擎Loc-Engine不但支持多屏、跨屏投放,還能從訪客轉化率、媒體、地理位置、時段、設備類型、設備號等多個維度建立訪客轉化率預測模型和商品推薦模型;最後,重定向投放,針對每一個到訪訪客計算廣告點擊率和到站轉化率,然後通過自動聚類演算法將訪客人群分檔打分,對不同分值的人群,在綜合媒體環境、競價成功率等因素後,進行實時差異化出價。最終,本次活動找回蘇寧易購的流失訪客9,572,163次,並促成36,748個直接有效訂單;最終投資回報率>3。
10、 「優衣·幸運·穿回家」優衣庫2016春節場景營銷OxO
2016年,優衣庫中國推出了」優衣·幸運·穿回家」的春節主題活動,融入」LifeWear服適人生」品牌理念。結合大數據分析規模化的消費者共性,合適的移動媒介精準傳播,藉助自媒體傳播,連接到店體驗。制定優質的移動媒介策略,結合自媒體、網路廣告、社交媒體平台、零售店和微信支付,精準覆蓋受眾,,一系列線上活動讓優衣庫品牌和冬春裝產品形象直達人心,有效地將線下用戶帶到線上參與互動並積極分享,實現OxO導流,收獲了比較理想的品牌營銷和銷售增長效果。

6. 8個典型案例看懂零售巨頭的「大數據」戰略

8個典型案例看懂零售巨頭的「大數據」戰略_數據分析師考試

未來的零售分析要求零售商藉助集成式業務流程和信息系統,為客戶洞察提供支持,將客戶洞察發展成一種企業級的戰略能力,並根植於企業結構和企業文化中。在這種形勢下,零售商的所有業務職能部門在制定決策時,將把基於情景的客戶洞察作為一個重要依據。

分析公司 EKN 認為,為了真正實現以客戶為中心,零售商需要具備多項關鍵能力,而這些能力均由業務分析驅動。

全渠道集成。如果缺乏相關客戶洞察支持與客戶的互動,零售商將無法實現跨渠道無縫客戶體驗。零售商與客戶互動的聯絡點能為零售商提供豐富的客戶數據,因此,所有聯絡點也成為了零售商的最佳競爭利器。

個性化互動。與網上零售商相比,實體零售商具有兩大優勢:能與客戶進行個人接觸,以及擁有更豐富的歷史記錄和更多樣的客戶數據。如今,「個性化」購物體驗已成為人們津津樂道的話題,而如何巧妙地結合上述兩大優勢,即在行動中及時交付客戶洞察,將成為零售商打造「個性化」購物體驗的基礎。

持續的卓越運營。客戶洞察的應用並非僅局限於面向客戶的使用案例。事實上,如果零售商已經能夠在各個運營職能部門中更成熟地運用分析功能,那麼集成客戶洞察便是他們不容錯過的增量機會。

零售商用例

銷售

瑞士零售商 Globus 使用大數據內存計算和高級分析來獲取寶貴的銷售績效洞察。目前,他們能夠實時處理海量的產品數據,並在幾分鍾內分析不同時間范圍、店鋪和區域內數千種產品的銷售模式與促銷活動。該零售商還向其管理人員提供了這些洞察的訪問許可權,以便他們能夠更迅速地響應市場狀況。

美國零售商 Guess 使用高級分析向其高管提供暢銷產品和可用庫存的實時視圖。該零售商的分析解決方案基於大型客戶數據集,分析銷售額、細分目標客戶,並策劃促銷活動。

市場營銷

沃爾瑪的 Global.com 部門充分利用「快速的大數據」和社交分析,快速識別不斷變化的客戶喜好。該零售商的社交意識(Social Sense)項目能通過社交媒體確定商品的暢銷程度,並幫助顧客發掘潛在需求和感興趣的新產品。同時,藉助 ShoppyCat 工具,他們可根據 Facebook 用戶的愛好和興趣,為這些用戶推薦適合的產品。此外,Global.com 還使用社交基因組(Social Genome)技術,來幫助客戶為朋友挑選禮物。

塔吉特(Target)百貨公司利用預測分析程序,來推斷個體消費者是否具備成為該公司特定營銷活動優質客戶的特質。他們給每位顧客分配了一個獨一無二的客戶識別號碼。該號碼將客戶個人信息、購物行為和喜好整合到一個可跟蹤的實體內。塔吉特還專門成立了一個客戶營銷分析部門,致力於全面了解客戶,超越其他競爭對手,從而獲得競爭優勢。藉助動態數據倉庫(Active Data Warehouse),塔吉特可在整個企業的混合工作負載環境下,基於海量數據管理復雜的用戶查詢。

全渠道

英國零售商巴寶莉(Burberry)集成了旗下所有渠道,包括實體店、網上商店、移動終端以及各大社交網站。他們採用了創新技術和數據分析,用於分析來自所有數據源的數據,旨在實時識別個人客戶並建立客戶檔案。相比過去,巴寶莉的分析速度提高了 14,000 倍,以前需要 5 個小時的請求,現在 1 秒就能完成。不論店員處於什麼位置,他們都能在客戶踏入店內時立即識別客戶信息,了解他們過去的購買記錄,並提供個性化建議。

韓國零售商 NS Shopping 將移動渠道和社交渠道集成到零售環境中,並利用大數據分析,實時、集中地獲取所有渠道的客戶和產品數據。而公司的電子商務團隊和市場營銷團隊將利用這些數據,向顧客提供個性化的產品建議。

供應鏈

美國網上零售商亞馬遜基於非平穩隨機模型,構建了全新的供應鏈流程和系統。該方法能為訂單履行、尋源、產能和庫存決策提供鼎力支持。亞馬遜不僅開發了聯合和協調補貨的新演算法,還基於歷史需求、活動記錄和計劃、各履行中心的預測結果、庫存計劃、采購周期以及采購訂單,在 SKU 級別實施了全新的國家預測方案。

英國零售商樂購(Tesco)採用先進的建模工具,基於歷史銷售數據模擬配送倉庫的運作,從而達到優化庫存的目的。該零售商還組建了一個內部分析團隊,該團隊主要負責通過回歸測試掌握各要素之間的關聯,如天氣數據、特價優惠,及銷售模式等等。

以上是小編為大家分享的關於8個典型案例看懂零售巨頭的「大數據」戰略的相關內容,更多信息可以關注環球青藤分享更多干貨

7. 企業大數據實戰案例

企業大數據實戰案例

一、家電行業

以某家電公司為例,它除了做大家熟知的空調、冰箱、電飯煲外,還做智能家居,產品有成百上千種。在其集團架構中,IT部門與HR、財務等部門並列以事業部形式運作。

目前家電及消費電子行業正值「內憂外患」,產能過剩,價格戰和同質化現象嚴重;互聯網企業涉足,顛覆競爭模式,小米的「粉絲經濟」,樂視的「平台+內容+終端+應用」,核心都是經營「用戶」而不是生產。該公司希望打造極致產品和個性化的服務,將合適的產品通過合適的渠道推薦給合適的客戶,但在CPC模型中當前只具備CP匹配(產品渠道),缺乏用戶全景視圖支持,無法打通「CP(客戶產品)」以及「CC(客戶渠道)」的匹配。

基於上述內外環境及業務驅動,該公司希望將大數據做成所有業務解決方案的樞紐。以大數據DMP作為企業數據核心,充分利用內部數據源、外部數據源,按照不同域組織企業數據,形成一個完整的企業數據資產。然後,利用此系統服務整個企業價值鏈中的各種應用。

那麼問題來了,該公司的數據分散在不同的系統中,更多的互聯網電商數據分散在各大電商平台,無法有效利用,怎麼解決?該公司的應對策略是:1)先從外部互聯網數據入手,引入大數據處理技術,一方面解決外部互聯網電商數據利用短板,另一方面可以試水大數據技術,由於互聯網數據不存在大量需要內部協調的問題,更容易快速出效果;2)建設DMP作為企業統一數據管理平台,整合內外部數據,進行用戶畫像構建用戶全景視圖。

一期建設內容:技術實現上通過定製Spark爬蟲每天抓取互聯網數據(主要是天貓、京東、國美、蘇寧、淘寶上的用戶評論等數據),利用Hadoop平台進行存儲和語義分析處理,最後實現「行業分析」、「競品分析」、「單品分析」 三大模塊。

該家電公司大數據系統一期建設效果,迅速在市場洞察、品牌診斷、產品分析、用戶反饋等方面得到體現。

二期建設目標:建設統一數據管理平台,整合公司內部系統數據、外部互聯網數據(如電商數據)、第三方數據(如外部合作、塔布提供的第三方消費者數據等)。

該公司大數據項目對企業的最大價值是將沉澱的數據資產轉化成生產力。IT部門,通過建設企業統一的數據管理平台,融合企業內外部數據,對於新應用快速支持,起到敏捷IT的作用;業務部門,通過產品、品牌、行業的洞察,輔助企業在產品設計、廣告營銷、服務優化等方面進行優化改進,幫助企業進行精細化運營,基於用戶畫像的精準營銷和個性化推薦,幫助企業給用戶打造極致服務體驗,提升客戶粘性和滿意度;戰略部門,通過市場和行業分析,幫助企業進行產品布局和戰略部署。

二、快消行業

以寶潔為例,在與寶潔中國市場部的合作中發現,並不是一定要先整合內外部數據才能做用戶畫像和客戶洞察。寶潔抓取了主流網站上所有與寶潔評價相關的數據,利用語義分析和建模,掌握不同消費群體的購物喜好和習慣,僅僅利用外部公開數據,快速實現了客戶洞察。

此外,寶潔還在渠道管理上進行創新。利用互聯網用戶評論數據進行社群聆聽,監控與寶潔合作的50個零售商店相關的用戶評論,通過線上數據進行渠道/購物者研究並指導渠道管理優化。

實現過程:

1、鎖定微博、大眾點評等互聯網數據源,採集百萬級別消費者談及的與寶潔購物相關內容;

2、利用自然語言處理技術,對用戶評論進行多維建模,包括購物環境、服務、價值等10多個一級維度和50個二級維度,實現對用戶評論的量化;

3、對沃爾瑪、屈臣氏、京東等50個零售渠道進行持續監控,結果通過DashBoard和周期性分析報告呈現。

因此,寶潔能夠關聯企業內部數據,更有效掌握KA渠道整體情況,甚至進一步掌握KA渠道的關鍵細節、優勢與劣勢,指導渠道評級體系調整,幫助制定產品促銷規劃。

三、金融行業

對於消費金融來說,家電、快消的案例也是適用的,尤其是精準營銷、產品推薦等方面。這里主要分享徵信風控方面的應用。顯然,互聯網金融如果對小額貸款都像銀行一樣做實地考察,並投入大量人力進行分析評判的話,成本是很高的,所以就有了基於大數據的批量的信用評分模型。最終目的也是實現企業畫像和企業中的關鍵人物畫像,再利用數據挖掘、數據建模的方法建立授信模型。宜信的宜人貸、芝麻信用等本質上就是這個架構。

在與金融客戶的接觸中發現,不論銀行還是金融公司,對外部數據的需求都越發迫切,尤其是外部強特徵數據,比如失信記錄、第三方授權後的記錄、網路行為等。

以上是小編為大家分享的關於企業大數據實戰案例的相關內容,更多信息可以關注環球青藤分享更多干貨

8. 國內的數據挖掘,大數據應用的案例有哪些

1. 亞馬遜的「信息公抄司」:果全球哪家襲公司從大數據發掘出了最大價值,截至目前,答案可能非亞馬遜莫屬。亞馬遜也要處理海量數據,這些交易數據的直接價值更大。
作為一家「信息公司」,亞馬遜不僅從每個用戶的購買行為中獲得信息,還將每個用戶在其網站上的所有行為都記錄下來

2. 谷歌的意圖:果說有一家科技公司准確定義了「大數據」概念的話,那一定是谷歌。根據搜索研究公司comScore的數據,僅2012年3月一個月的時間,谷歌處理的搜索詞條數量就高達122億條。谷歌的體量和規模,使它擁有比其他大多數企業更多的應用大數據的途徑。
3.塔吉特的「數據關聯挖掘」:用先進的統計方法,商家可以通過用戶的購買歷史記錄分析來建立模型,預測未來的購買行為,進而設計促銷活動和個性服務避免用戶流失到其他競爭對手那邊。

9. 有哪些大數據分析案例

如下:

1. 大數據應用案例之:醫療行業

1)Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。

在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。

它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。

2)大數據配合喬布斯癌症治療

喬布斯是世界上第一個對自身所有DNA和腫瘤DNA進行排序的人。為此,他支付了高達幾十萬美元的費用。他得到的不是樣本,而是包括整個基因的數據文檔。醫生按照所有基因按需下葯,最終這種方式幫助喬布斯延長了好幾年的生命。

2. 大數據應用案例之:能源行業

1)智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。

通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。

因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

2)丹麥的維斯塔斯風能系統(Vestas Wind Systems)運用大數據,系統依靠的是BigInsights軟體和IBM超級計算機,分析出應該在哪裡設置渦輪發電機,事實上這是風能領域的重大挑戰。在一個風電場20多年的運營過程中,准確的定位能幫助工廠實現能源產出的最大化。

為了鎖定最理想的位置,Vestas分析了來自各方面的信息:風力和天氣數據、湍流度、地形圖、公司遍及全球的2.5萬多個受控渦輪機組發回的感測器數據。這樣一套信息處理體系賦予了公司獨特的競爭優勢,幫助其客戶實現投資回報的最大化。

3. 大數據應用案例之:通信行業—通過大數據分析挽回核心客戶

法國電信-Orange集團旗下的波蘭電信公司Telekomunikacja Polska是波蘭最大的語音和寬頻固網供應商,希望有效的途徑來准確預測並解決客戶流失問題。

他們決定進行客戶細分,方法是構建一張「社交圖譜」- 分析客戶數百萬個電話的數據記錄,特別關注 「誰給誰打了電話」以及「打電話的頻率」兩個方面。「社交圖譜」把公司用戶分成幾大類,如:「聯網型」、「橋梁型」、「領導型」以及「跟隨型」。

這樣的關系數據有助電信服務供應商深入洞悉一系列問題,如:哪些人會對可能「棄用」公司服務的客戶產生較大的影響?挽留最有價值客戶的難度有多大?運用這一方法,公司客戶流失預測模型的准確率提升了47%。

4、大數據應用案例之:零售業—大數據幫零售企業制定促銷策略

北美零售商百思買在北美的銷售活動非常活躍,產品總數達到3萬多種,產品的價格也隨地區和市場條件而異。由於產品種類繁多,成本變化比較頻繁,一年之中,變化可達四次之多。

結果,每年的調價次數高達12萬次。最讓高管頭疼的是定價促銷策略。公司組成了一個11人的團隊,希望透過分析消費者的購買記錄和相關信息,提高定價的准確度和響應速度。

定價團隊的分析圍繞著三個關鍵維度:

1)數量:團隊需要分析海量信息。他們收集了上千萬的消費者的購買記錄,從客戶不同維度分析,了解客戶對每種產品種類的最高接受能力,從而為產品定出最佳價位。

2)多樣性:團隊除了分析了購買記錄這種結構化的數據外,他們也利用社交媒體發帖這種新型的非結構化數據。由於消費者需要在零售商專頁上點贊或留言以獲得優惠券,團隊利用情感分析公式來分析專頁上消費者的情緒,從而判斷他們對於公司的促銷活動是否滿意,並微調促銷策略。

3)速度:為了實現價值最大化,團隊對數據進行實時或近似實時的處理。他們成功地根據一個消費者既往的麥片購買記錄,為身處超市麥片專櫃的他/她即時發送優惠券,為客戶帶來便利性和驚喜。

透過這一系列的活動,團隊提高了定價的准確度和響應速度,為零售商新增銷售額和利潤數千萬美元。

5、大數據應用案例之:網路營銷行業(SEM)

很多企業在做SEM的過程中,都有這樣的感觸:每年都會花費大量的預算在SEM推廣中,但是因為關鍵詞投入產出無法可視化,常常花了很多錢卻不見具體的回報。

在競爭如此激烈的SEM市場中,企業需要一個高效的數據分析工具來盡可能地幫企業優化SEM推廣,例如BDP,來幫企業節省不必要的支出,提升整體的經營績效。

企業可藉助數據平台提供的網路營銷整合解決方案,打通各個搜索引擎營銷(SEM)、在線客服系統和CRM系統,營銷競價人員無需掌握復雜的編程技術,簡單拖拽即可生成報表,觀察每一個關鍵詞的投入和產出,分析每一個頁面的轉化,有效降低投放成本。

通過BDP實況分析數據,可以快速洞悉對手關鍵詞的投放時段、地域及排名,並對其進行可視化的分析,實時監控自己和競爭對手的投放情況,了解對手的投放策略,支持自定義設置數據更新的時間點、監控頻次和時段,及時調整策略。知已知彼,才能百戰不殆。

6、大數據應用案例之:電商行業

意料之外:胸部最大的是新疆妹子。曾經淘寶平台顯示,中國女性購買最多的文胸尺碼為B罩杯。B罩杯佔比達41.45%,其中又以75B的銷量最好,其次是A罩杯,購買佔比達25.26%,C罩杯只有8.96%。

雖然淘寶數據平台不能代表一切,但是結合現實來看,這個也具有普遍的代表性,只能感慨中國女性普遍size。在文胸顏色中,黑色最為暢銷,黑色絕對是百搭,每個女性必備。

從省市排名,胸部最大的是新疆妹子。這些數據都對於文胸店鋪而言是很好的參考,為店鋪的庫存、定價、款式選擇等策略都有奠定數據基礎。

7、大數據應用案例之:娛樂行業

微軟大數據成功預測奧斯卡21項大獎。2013年,微軟紐約研究院的經濟學家大衛•羅斯柴爾德(David Rothschild)利用大數據成功預測24個奧斯卡獎項中的19個,成為人們津津樂道的話題。

今年羅斯柴爾德再接再厲,成功預測第86屆奧斯卡金像獎頒獎典禮24個獎項中的21個,繼續向人們展示現代科技的神奇魔力。

總的來說,大數據的終極目標並不僅僅是改變競爭環境,而是徹底扭轉整個競爭環境,帶來新機遇,企業需要應勢而變。企業只有認識到這一點,使用合適的數據分析產品、聰明地使用和管理數據,才能在長期競爭中成為終極贏家。

閱讀全文

與大數據用戶洞察案例相關的資料

熱點內容
大數據對會計審計有什麼影響 瀏覽:142
文件上的補短板是什麼意思 瀏覽:435
公司保密文件如何歸檔 瀏覽:568
蘋果6手機上傳不了照片 瀏覽:317
win10不能玩codol 瀏覽:758
ps怎麼在文件上加文字 瀏覽:376
手機網站幻燈片代碼 瀏覽:549
上海雲動網路 瀏覽:435
無效的ps文件什麼意思 瀏覽:522
中國移動app如何查家庭網 瀏覽:699
微信顯示未注冊 瀏覽:977
粒子匯聚圖像教程 瀏覽:619
pdf文件能替換圖片 瀏覽:727
製表位不居中word 瀏覽:265
dell驅動盤裝驅動程序 瀏覽:577
編程中如何創建密碼 瀏覽:135
林納斯托瓦茲使用什麼編程語言 瀏覽:132
安卓qq不能指紋支付密碼 瀏覽:476
sap原因代碼 瀏覽:242
數據反饋有什麼好處 瀏覽:502

友情鏈接