導航:首頁 > 網路數據 > 大數據實施方法

大數據實施方法

發布時間:2023-06-16 02:48:28

1. 大數據分析如何實現

搭建大數據分析平台的工作是循序漸進的,不同公司要根據自身所處階段選擇合適的平台形態,沒有必要過分追求平台的分析深度和服務屬性,關鍵是能解決當下的問題。

大數據分析平台是對大數據時代的數據分析產品(或稱作模塊)的泛稱,諸如業務報表、OLAP應用、BI工具等都屬於大數據分析平台的范疇。與用戶行為分析平台相比,其分析維度更集中在核心業務數據,特別是對於一些非純線上業務的領域,例如線上電商、線下零售、物流、金融等行業。而用戶行為分析平台會更集中分析與用戶及用戶行為相關的數據。

企業目前實現大數據分析平台的方法主要有三種:

(1)采購第三方相關數據產品

例如Tableau、Growing IO、神策、中琛魔方等。此類產品能幫助企業迅速搭建數據分析環境,不少第三方廠商還會提供專業的技術支持團隊。但選擇此方法,在統計數據的廣度、深度和准確性上可能都有所局限。例如某些主打無埋點技術的產品,只能統計到頁面上的一些通用數據。

隨著企業數據化運營程度的加深,這類產品可能會力不從心。該方案適合缺少研發資源、數據運營初中期的企業。一般一些創業公司、小微企業可能會選擇此方案。

(2)利用開源產品搭建大數據分析平台

對於有一定開發能力的團隊,可以採用該方式快速且低成本地搭建起可用的大數據分析平台。該方案的關鍵是對開源產品的選擇,選擇正確的框架,在後續的擴展過程中會逐步體現出優勢。而如果需要根據業務做一些自定義的開發,最後還是繞不過對源碼的修改。

(3)完全自建大數據分析平台

對於中大型公司,在具備足夠研發實力的情況下,通常還是會自己開發相關的數據產品。自建平台的優勢是不言而喻的,企業可以完全根據自身業務需要定製開發,能夠對業務需求進行最大化的滿足。

對於平台型業務,開發此類產品也可以進行對外的商業化,為平台上的B端客戶服務。例如淘寶官方推出的生意參謀就是這樣一款成熟的商用數據分析產品,且與淘寶業務和平台優勢有非常強的結合。

在搭建大數據分析平台之前,要先明確業務需求場景以及用戶的需求,通過大數據分析平台,想要得到哪些有價值的信息,需要接入的數據有哪些,明確基於場景業務需求的大數據平台要具備的基本的功能,來決定平台搭建過程中使用的大數據處理工具和框架。

2. 如何實施政府大數據平台

隨著信息技術的飛速發展,各領域的數據量都在爆發式增長,尤其在雲計算、物聯網、移動互聯網等it技術得到廣泛應用之後,數據的增長實現了從量變到質變的轉型,大數據如浪潮般席捲而來,人類社會進入大數據時代。大數據不僅僅只是一次顛覆性的技術革命,更是一場思維方式、行為模式與治理理念的全方位變革,尤其在政府治理領域,大數據帶來了巨大的變革潛力和創新空間。在「全面深化改革,推進國家治理體系和治理能力現代化」的時代背景下,應充分重視大數據在政府治理中的重要價值,牢牢抓住大數據為政府治理提供的創新機遇,切實提高各級政府部門的治理能力。
一、大數據為政府治理理念轉型帶來新機遇
治理理念的轉型是提升政府治理能力的前提,理念的轉型需要新文化、新思維的融入,大數據所蘊含的數據文化與數據思維恰好可以為治理理念轉型提供突破口,基於大數據探索政府治理的多元、多層、多角度特徵,最終實現以政府為主體的政府管制理念向以協同共治、公共服務為導向的政府治理理念的轉型。在大數據時代,政府治理的依據不再是個人經驗和長官意志,而是實實在在的數據,在過去深入群眾、實地調研考察的基礎上,系統採集的客觀數據和實證分析的科學結果將成為最為重要的政府決策依據。「尊重事實、推崇理性、強調精確」的特徵和「用數據說話、用數據決策、用數據管理、用數據創新」的理念將成為政府治理理念轉型的核心要義。
二、大數據為政府治理模式創新帶來新機遇
大數據通過把數學演算法運用於海量數據,從數據中尋找相關關系,通過這種相關性預測事情發生的可能性,這是大數據方法論的核心思想。此外,依託於大數據技術和平台,通過外包、眾包等靈活的組織方式,可以推動政府治理的組織架構從科層、分割、封閉向開放、協同、合作轉型,因此把大數據的方法和手段引入到政府治理領域,是實現政府治理模式創新的有效路徑。基於上述方法論,大數據為政府治理模式創新帶來的新機遇主要包括:從粗放式管理到精細化治理、從單兵作戰型管理到協作共享型治理、從被動響應型管理到主動預見型治理、從電子政務管理到政府2.0治理、從風險隱蔽型管理到風險防範型治理,最終實現全面數據驅動的治理模式創新。
三、大數據為政府決策科學化帶來新機遇
隨著公共事務的日益復雜,僅憑個人感知已經很難全面了解所有正在發生的事情並做出正確判斷,政府部門想要提高決策的科學性,就需要把大數據思維與技術運用到政府治理與決策中,依靠大規模數據的收集來直觀呈現經濟社會運行規律,通過相應的數據挖掘來輔助政府部門進行科學決策。大數據為政府決策科學化帶來的機遇主要體現在兩個方面:首先,在決策的制定階段,大數據背景下,政府決策不再是個別領導幹部「拍腦袋」做出的,而是通過「用數據說話」,讓聽得見炮火的人(數據)做出決策,這樣的政府決策是在對客觀數據進行科學分析、充分了解客觀現實的基礎上做出的,這樣大大提高了決策的精準性、適用性和科學化水平;其次,在決策實施效果的跟蹤反饋階段,通過物聯網和社交網路的普及,大量的客觀數據能夠快速匯集給決策者,通過這些數據對決策的實施過程和效果進行實時監控,能夠更全面地掌握決策的實施效果和下一步的改進方向。
四、大數據為政府服務效能提升帶來新機遇
提升政府服務效能是政府治理能力提升的重要支撐,也是大數據背景下服務型政府建設的關鍵所在,在政府治理的范疇下,提升政府服務效能主要包括政府部門行政審批的效率提升和公共服務產品的質量提高兩個方面。在提升行政審批效率方面,大數據可以打通各個政府部門的信息孤島,打破各部門數據的條塊分割,通過構建統一的政府行政審批雲平台,讓數據為老百姓「跑腿辦事」,省去了「跑斷腿、磨破嘴,辦事跑十幾個部門,蓋幾十個公章」的苦惱和無奈,這樣既提高了行政審批效率,又節約了政府開支。在提高公共服務產品質量方面,大數據通過對公共服務產品數據和服務對象數據的挖掘、分析,提升公共服務產品供給的精準化、分層化、個性化;通過公共數據的開放和兼容,讓公眾參與到公共服務產品設計、提供和監督等各個環節,實現公共服務產品質量的提高。

3. 我們如何利用大數據

1.第一點,明確數據分析的目的 首先,您必須知道手中的數據要怎麼處理,這意味著您需要清楚需求以及要從數據中獲取什麼。讓我們以產品經理為例。當許多產品經理設計自己的產品時...
2.第二點,必須擴大數據收集方式 關於數據收集,通常有四種方法。它們是從外部行業數據分析報告...
3.第三點,有效消除數據中的干擾數據 具體方法我們可以選擇正確的樣本量,選擇足夠大的數量以...
4.第四點,我們需要合理客觀地看待數據 應該注意的是,在使用大數據時,您不能忽略沉默用戶...

4. 大數據規劃的五個步驟

大數據規劃的五個步驟
數據分析的未來將朝著更為普及化、更為實時的數據分析去邁進,也就是說「針對正確的人,在正確的時間,獲得正確的信息」,從這個意義來說,它已經超越了技術本身,是更為接近業務層面的實時分析。
對於一個成功企業來說,數據整合能力、分析能力和行動能力不可或缺。如果不具備完善的數據整合、分析和行動能力的企業遲早面臨被淘汰的風險。在經營環境發生巨變的情況下,任何企業都必須在大數據規劃上做好准備,這樣才能搶先競爭對手發現市場新的趨勢。
三種能力
我們建議企業和政府機構進行數據整合能力、分析能力和行動能力的建設。對於任何公司的管理層來說,要充分認識到數據的重要性,在管理層充分認識到數據的重要性之後,內部要有足夠的人員和能力去整合、搭建和完善數據管理基礎架構。有了海量數據之後,數據分析師能夠對其進行分析和挖掘,使其產生理想的價值。
數據分析能力通過一定的方法論可以獲得。這個方法論從宏觀的角度來看,是通過數據整合探索出有效的業務價值,進而精確地協助制定商業策略或服務提升的策略,有效地採取正確的行動,來協助業務和服務質量的增長,或是解決業務已知、不確定或發現未知的問題。
另外,數據要實現普及化,不僅掌握在管理層手中,在數據安全和許可權管理的機制下,企業或單位的每一個人都要了解自己的業務具體發生了什麼,為何發生,預測將要發生什麼情況,從而更快、更好地做出決策,最終達到智慧型的管理,通過一些主動式的事件,產生正確的行動,如業務增長的價值措施和辦法,來精確有效地提升業務的增長。
五個步驟
如今大數據已經遠遠超出了IT的范疇,也就是說所有部門都在大數據運用的范疇中。
大數據規劃有五個步驟,首先從業務驅動的角度,相關部門選擇要解決和產生的業務場景。針對需求處理和採取整合這些場景需要的大數據。當然選擇的重點是怎麼使信息快速產生價值。場景因需求不同而包羅萬象:例如企業在精確營銷方面提升業務增長,對於其客戶在購買哪些產品前的黃金路徑統計分析等等。
其次,直接產生的價值需要與已有的客戶關系管理、客戶交易等數據進行結合和關聯,從而為企業產生總體的關鍵價值效益。例如,哪些用戶在購買前確實通過上述統計總結的黃金路徑,而這些用戶和該企業的歷史關系為何,以提供企業下一步精確行動的優先順序等等。
第三,整個企業要建立大數據分析的支持體系、分析的文化、分析數據的人才,徹底形成企業對大數據的綜合管理、探索、共識。大數據能力的建設是企業或政府單位內上下及跨部門就如何提供更加智慧型服務和產品給用戶的議題。
第四,隨著大數據探索范圍的擴大,企業要建立大數據的標准,統一數據格式、採集方法、使用方式,設定一個共享的願景和目的,然後按照階段化的目標去實現願景。例如,有關數據的存儲和處理長期圍繞在關系型的結構數據中,提供更加智慧型服務和產品是需要結合過去難以處理分析的數據,如文本、圖像等等。數據內容快速演變,因此對數據的標准、格式、採集、工具、方法等的治理能力必須與時俱進。
第五,最終建成企業或政府單位內的「統一數據架構」,從各類所需的多元的結構化數據源建立整合能力(採集、存儲、粗加工)。在此基礎上,建設數據探索和分析能力(從整合出來的海量數據里快速探索出價值),之後如何有效、實時、精確地與已有的業務數據結合,產生精確的業務行動能力(進行更深度的利用和提供更智慧型的服務),從而達到「針對正確的人,在正確的時間,正確的方式,提供正確的信息」的目標。

5. 如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

6. 大數據分析方法有哪些

1、因子分析方法


所謂因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奧典型抽因法等等。


2、回歸分析方法


回歸分析方法就是指研究一個隨機變數Y對另一個(X)或一組變數的相依關系的統計分析方法。回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析方法運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。


3、相關分析方法


相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系。


4、聚類分析方法


聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,不需要事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。


5、方差分析方法


方差數據方法就是用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。


6、對應分析方法


對應分析是通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。

7. 大數據分析的基本方法有哪些

1.可視化分析


不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。


2. 數據挖掘演算法


可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。


3. 預測性分析能力


數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。


4. 語義引擎


由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。


5. 數據質量和數據管理


數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

8. 大數據的使用方式有哪些

最常用的四種數據分析方法:描述型分析、診斷型分析、預測型分析和指令型分析。

  1. 描述型分析:發生了什麼?

    這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。

    例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是「描述型分析」方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。

2. 診斷型分析:為什麼會發生?

描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。

良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。

3. 預測型分析:可能發生什麼?

預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。

預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。

在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。

4. 指令型分析:需要做什麼?

數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對「發生了什麼」、「為什麼會發生」和「可能發生什麼」的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。

9. 大數據的應用有幾個步驟,分別是什麼

一般來講,典型的數據分析包含六個步驟,分別是明確思路、收集數據、處理數據、分析數據、展現數據以及撰寫報告,下面尚矽谷具體講一講數據分析的六大步驟。

明確數據分析的目的以及思路是確保數據分析過程有效進行的首要條件。 它作用的是可以為數據的收集、處理及分析提供清晰的指引方向。可以說思路是整個分析流程的起點。首先目的不明確則會導致方向性的錯誤。當明確目的後,就要建分析框架,把分析目的分解成若干個不同的分析要點,即如何具體開展數據分析,需要從哪幾個角度進行分析,採用哪些分析指標。只有明確了分析目的,分析框架才能跟著確定下來,最後還要確保分析框架的體系化,使分析更具有說服力。

這一步其實就是具化分析的內容,把一個需要進行數據分析的事件,拆解成為一個又一個的小指標,這樣一來,就不會覺得數據分析無從下手。而且拆解一定要體系化,也就是邏輯化。簡單來說就是先分析什麼,後分析什麼,使得各個分析點之間具有邏輯聯系。避免不知從哪方面入手以及分析的內容和指標被質疑是否合理、完整。所以體系化就是為了讓你的分析框架具有說服力。可以參照的方法論有,用戶行為理論、PEST分析法、5W2H分析法等等。

6、撰寫報告

數據分析報告其實是對整個數據分析過程的一個總結與呈現。通過報告,把數據分析的起因、過程、結果及建議完整地呈現出來,供決策者參考。一份好的數據分析報告,首先需要有一個好的分析框架,並且圖文並茂,層次明晰,能夠讓閱讀者一目瞭然。另外,數據分析報告需要有明確的結論,沒有明確結論的分析稱不上分析,同時也失去了報告的意義,因為我們最初就是為尋找或者求證一個結論才進行分析的,所以千萬不要舍本求末。最後,好的分析報告一定要有建議或解決方案。

閱讀全文

與大數據實施方法相關的資料

熱點內容
米奇編程有什麼好吃的好痴的圖片 瀏覽:137
嵌入式黑盒測試工具 瀏覽:154
有限狀態自動機代碼 瀏覽:816
hosts文件空內容 瀏覽:254
tcpudp源代碼 瀏覽:737
重裝系統軟體win10嗎 瀏覽:51
spss非線性回歸教程 瀏覽:183
ldb文件是什麼 瀏覽:359
無網路下手機連接投影 瀏覽:431
少兒編程有哪些技巧 瀏覽:569
網路報道失實如何舉報 瀏覽:560
網上什麼相親網站好 瀏覽:205
萊州如何優化網站 瀏覽:563
java封裝ocx 瀏覽:41
qq微信接收文件夾在哪裡 瀏覽:632
語音包文件夾後綴是多少 瀏覽:131
魅族手機app是什麼 瀏覽:887
cad添加保存文件格式 瀏覽:246
電視用什麼app看電影全部免費 瀏覽:311
數控編程培訓班有哪些 瀏覽:998

友情鏈接