『壹』 如何利用大數據做好卷煙消費者行為分析
最普遍的介紹:在麥肯錫全球研究所給出的定義中指出:大數據即是一種規模大到在獲取,存儲,管理,分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合。簡單而言大數據是數據多到爆表。大數據的單位一般以PB衡量。那麼PB是多大呢?1GB=1024MB,1PB=1024GB才足以稱為大數據。
大數據特點:大數據從整體上看分為四個特點,第一,大量。
衡量單位PB級別,存儲內容多。
第二,高速。
大數據需要在獲取速度和分析速度上要及時迅速。保證在短時間內更多的人接收到信息。
第二,多樣。
數據的來源是各種渠道上獲取的,有文本數據,圖片數據,視頻數據等。因此數據是多種多樣的。
第三,價值。
大數據不僅僅擁有本身的信息價值,還擁有商業價值。
舉例說明應用場景:在交通設施監控方面運用的的大數據,醫療方面,在人們生活的方面都充斥著大數據的身影。
『貳』 大數據營銷的三個步驟
1、數據層:採集和處理數據
傳統採集數據的過程一般是有限的、有意識的、結構化的進行數據採集,例如問卷調研的形式。你能採集到的數據一定是你能設想到的情況。數據的結構化較好。一般的資料庫Mysql甚至Excel就能滿足數據處理過程。
2、業務層:建模分析數據
使用的數據分析模型,例如基本統計、機器學習、例如數據挖掘的分類、聚類、關聯、預測等演算法,傳統數據和大數據的做法差別不大,例如銀行、通信運營商、零售商早已成熟運用消費者的屬性和行為數據來識別風險和付費可能性。但是由於數據量的極大擴增,演算法也獲得極大優化提升的空間。
3、應用層:解讀數據
數據指導營銷最重要的是解讀。
傳統一般是定義營銷問題之後,採集對應的數據,然後根據確定的建模或分析框架,數據進行分析,驗證假設,進行解讀。解讀的空間是有限的。
而大數據提供了一種可能性,既可以根據營銷問題,封閉性地去挖掘對應數據進行驗證,也可以開放性地探索,得出一些可能與常識或經驗判斷完全相異的結論出來。可解讀的點變得非常豐富。
經驗內容僅供參考,如果您需解決具體問題(尤其法律、醫學等領域),建議您詳細咨詢相關領域專業人士。
來源:網路經驗
『叄』 大數據處理的基本流程有幾個步驟
步驟一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,所以需要在採集端部署大量資料庫才能支撐。
步驟二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
步驟三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
步驟四:挖掘
數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。
該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
『肆』 如何通過顧客大數據分析消費者的行為呢
定位好行業,然後看數據消費具體物品,分析時間點,分析客戶的人群,收集客戶基本的消費場所,這些都是行為裡面的。
『伍』 一步一步教你分析消費者大數據
一步一步教你分析消費者大數據
做過面向消費者產品解決方案的人都知道,每個項目開始前,客戶都會提一些要求或者對現在營銷狀況的顧慮,比如我們想了解一下我們潛在消費者是誰;怎麼發優惠券效果最好;或者,我們應該推出什麼樣子的新產品,能夠贏得消費者口碑和青睞。在量化決策分析法中,這一系列的前期需求,我們把他稱作為:客戶需求或未來期望。
接下來,你需要了解該問題的現狀,比如現有產品或服務的消費者是怎麼樣的,以前發的優惠券效果怎麼樣,現在市場的銷量趨勢如何等等。
當了解了客戶需求和現在的現狀後,我們需要慢慢抽絲剝繭,找出解決方案,填補這個空檔。
一般來說,沒有任何方法論或者經驗的咨詢員或者分析師聽到客戶的這些期望後,他們會開始不知所措,無從下手。他們完全不知道該從哪個角度切入,收集哪些數據,做哪些假設,用什麼方法分析。
其實像這類問題是有方法論的,我們可以用四步循序漸進的方法來搭建現狀與未來的橋梁。
第一步:描述性分析-What
發現問題。我們可以用看病的場景來類比下,病人去看病,說最近不舒服。於是醫生讓病人進一步描述一下怎麼不舒服。這里也是一樣,拿優惠促銷的案例來說,我們會先了解客戶以往有沒有做過類似的促銷案例,什麼時候做的,效果怎麼樣。經由這些的問題產生一系列的KPI。
KPI產生的方法有以下幾種:
1)我們提問,客戶解答
2)從客戶公司資料庫獲得信息(SQL)
3)從外部數據獲得信息(第三方數據加強)
4)競爭夥伴信息
5)政策信息
6)語義分析
7)其他
獲得KPI的工具:
1)問答(座談,電話,Email,簡訊,問卷)
2)資料庫(SQL)
3)Excel
4)R,Python等軟體
5)網站搜索資料
6)自然語言學習
7)其他
分析這些KPI變數:
這些KPI可以是絕對數,百分數,也可以是指數。可以是過去不同時期的對比數據,也可以是不同分組(如:人群分組,模式分組)的對比數據,或者和競爭對手的對比數據等。
通常 KPI分析的方法有:
1)單變數分析(univariate)
2)雙變數分析(bivariate)
3)多變數分析(multivariate)
4)假設驗證(hypothesis)
5)簡單建模(clustering分組)
經過對這些KPI的分析,可以幫助我們形成:
1)已有消費者人物畫像
2)潛在消費者人物畫像
3)忠誠客戶畫像
4)消費者價值分組
5)其他
第二步:診斷性分析(why)
回答問題。我們同樣用醫生看病的例子來類比一下,當醫生問完病人問題,通過問診,X光等等,醫生開始利用自己掌握的知識來對病人的病情做出診斷。
放到分析法中,這一步通常我們需要:
1)了解因果關系
2)了解各因素間敏感性如何
我們需要了解是由哪個原因,或者哪些原因造成了現在的市場現狀。比如在前一個階段,我們得到了50個非常有用的KPI,通過因果關系分析,我們確定了,其中有10個KPI起著重要的作用。結下來,我們會問,這10個因素中,每個因素單獨的貢獻是多少,有些可能非常高,有些可能相對較低。
那這個問題,我們可以通過建模來得到每個因素的貢獻大小,同時模型還能起到剔除高相關變數的作用。還有一種用到模型的原因是,當因素達到上百,上千個的時候,很難用傳統方法在如此多的因素中,甄別出最有用的事那些,這種情況下,也需要用到模型來幫助選變數,最後一個原因是我們可以甄別這個因素是正向促進因素,還是反向促進因素。
通過建模的結果,我們可以得到以下以下關於消費者的模型:
1)忠誠度模型
2)滿意度模型
3)價格敏感度模型
4)歸因模型
5)客戶流失模型
產生這些模型背後的演算法有:
1)線性回歸
2)邏輯回歸
3)決策樹
4)時間序列
5)Random forest,boosting,SVM,PCA等等
第三步:預測分析
預測正確的時機,得到先發制人的營銷效果。有了第一步和第二步的准備,我們需要預測一下,如果我做一些調整,將會有什麼變化和影響。
用到的模型有:
1)意向打分模型
2)品牌忠誠度打分
3)購買渠道偏好模型
4)觸媒使用習慣
6)銷量預測
5)生存分析模型
比如: 意向打分模型 。我們發現,如果用現有的因素,消費者會轉換的傾向可能是60%,但是如果我對一些因素做了一些調整,如:我給現有客戶多發2個廣告,客戶會購買的可能性上升到65%;如果,給客戶多發5個廣告,客戶會購買的可能性上升到85%。通過這樣的調整,我能夠預估,將來的廣告成本,或者轉化帶來的收入等。
又比如: 通過時間序列模型,我們可以預測到明年購買某品牌車型的消費者有10萬人,這樣對明年的生產計劃和營銷計劃就能有一個前期的應對准備。
第四步:決策分析應用
1)提供戰略推薦
2)優化
3)市場模擬
4)A/B測試
第三步的例子提到多發2個廣告,轉化率為65%;多發5個廣告轉化率為85%。那麼如果多發3個?多發4個廣告,結果又會如何呢?學術界一直在尋找最優化完美的答案來解決這個問題:我到底發幾個廣告,才能讓我的利潤達到最大化呢?
我們都知道在做回歸模型的時候,有以下幾個假設條件:
1、隨機誤差項是一個期望值或平均值為0的隨機變數;
2、對於解釋變數的所有觀測值,隨機誤差項有相同的方差;
3、隨機誤差項彼此不相關;
4、解釋變數是確定性變數,不是隨機變數,與隨機誤差項彼此之間互相獨立
5、解釋變數之間不存在精確的線性關系,即解釋變數的樣本觀測值矩陣是滿秩矩陣
6、隨機誤差項服從正態分布
實際上,現實生活中很難達到這種理想的狀態,而且最大化這個概念,從數學角度講,會涉及到優化求極值的問題,很多情況下,我們實際上求到是局部優化(localoptimization)的解,而不是全局優化(globaloptimization)的解。
所以在這種情況下,管理學中衍生出了市場模擬方法來決定最後方案,最有名的一個方法是沙盤模擬,但是這些模擬往往到了真正落地的時候,又會和之前的結果有差距。
所以近些年來,越來越多的公司選擇做A/B測試。當你對幾個方案沒有很大的把握,或者對預測結果不是特別自信的時候,A/B測試的出現,解決了這些顧慮。最近的一個成功的案例是Amazon通過A/B測試的方法,把「order」從賬戶欄,放入了主頁的菜單欄,為公司帶來的非常可觀的營收增長。
A/B測試需要注意的是:
1)樣本的數量
2)人群的選擇
3)時間的跨度
4)顯著性統計
整個決策分析法即是階梯又是一個閉環,根據實際的市場反應,再進行進一步的分析與迭代優化。
讀完整個量化決策分析法後,你應該對以消費者為核心的大數據解決方案有了一定的思路框架。