導航:首頁 > 網路數據 > 大數據創新競爭

大數據創新競爭

發布時間:2023-06-14 23:33:13

❶ 數據發展的歷程

大數據的發展歷程

隨著計算機和網路的發展,信息不斷「爆炸」:


2008年9月4日,《自然》(Nature)刊登了一個名為「Big Data」的專輯。2011年5月,美國著名咨詢公司麥肯錫(McKinsey)發布《大數據:創新、競爭和生產力的下一個前沿》的報告,首次提出了「大數據」概念,認為數據已經成為經濟社會發展的重要推動力。大數據指的是大小超出常規的資料庫工具獲取、存儲、管理和分析能力的數據集。

2013年3月29日,美國奧巴馬政府宣布推出「大數據研究和發展計劃」(Big Data Research and Development Initiative),有人將其比之為柯林頓政府當年提出的「信息高速公路」計劃 。該計劃涉及美國國家科學基金會、衛生研究院、能源部、國防部等6個聯邦政府部門,投資超兩億美元,研發收集、組織和分析大數據的工具及技術。2012年7月日本推出「新ICT戰略研究計劃」,在新一輪IT振興計劃中日本政府把大數據發展作為國家層面戰略提出。這是日本新啟動的2011年大地震族塵一度擱置的政府ICT戰略研究。英國政府也宣稱投資6億英鎊科學資金,並計劃在未輪卜來兩年內在大數據和節能計算研究投資1.89億英鎊。政府把大量的資金投入到計算基礎設施,用以捕捉並分析通過開放式數據革命獲得的數據流,帶動企業投入更多的資金。

2012年3月,我國科技部發布的「十二五國家科技計劃信息技術領域2013年度備選項目徵集指南」把大數據研究列在首位。中國分別舉辦了第一屆(2011年)兆桐禪和第二屆(2012年)「大數據世界論壇」。IT時代周刊等舉辦了「大數據2012論壇」,中國計算機學會舉辦了「CNCC2012大數據論壇」。國家科技部,863計劃信息技術領域2015年備選項目包括超級計算機、大數據、雲計算、信息安全、第五代移動通信系統(5G)等。2015年8月31日,國務院正式印發《促進大數據發展行動綱要》。

❷ 大數據的歷史

一、大數據的陷阱作文

李娜再度奪得大滿貫,超越了張德培的華人大滿貫紀錄,非舉國體制下的奇跡造就了舉國的愉悅。

在總結李娜成功因素的時候,也再次看到了這樣的言論:是大數據起到了重要的作用。但這次李娜奪冠,最靠譜的解釋就是李娜在卡洛斯的幫助下大大提升了心理層面的戰鬥力。

在技術層面領先的前提下,李娜在整場比賽中克服了節奏問題,她具備了一顆冠軍的心臟。2012年9月6日,代表亞洲網球至高水平的中國選手李娜在美國迎戰名將小威廉姆斯。

當時,IBM公司在綜合了美網過去8年的全部比賽數據之後,為參賽球員制定了「Keys to the march」的比賽制勝策略。李娜一方獲得贏球的關鍵包括3個指標:1.一發得分率超過69%;2.4-9拍相持中得分利率要超過48%:3.發球局30-30或40-40時得分率要超過67%。

比賽結果是,李娜潰敗。比賽結束後,IBM高調地宣布李娜僅僅完成了三項制勝策略中的項,而小威廉姆斯則完成了自己三項制勝策略中的兩項。

於是,很多人就順著IBM的思路問,李娜為什麼不照著BM的策略去打球?其實,當當事人的主觀願望不積極的時候,大數據對他們來說不過是噪音而已。同樣,數據也會因為主觀意願具有欺騙性。

我們很多時候都會被誤導,認為大數據的作用是讓歷史提示未來。其實不然。

在網球這樣的領域里,歷史數據甚至常常會成為陷阱。有意思的是,在另一場女子網球比賽中,一位球員做到了IBM為其制定的三項指標中的兩個,她卻失敗了。

而勝利的一方,只完成了一個指標。

二、大數據時代發展歷程是什麼

可按照時間點劃分大數據的發展歷程。

大數據時代發展的具體歷程如下:2005年Hadoop項目誕生。 Hadoop其最初只是雅虎公司用來解決網頁搜索問題的一個項目,後來因其技術的高效性,被Apache Software Foundation公司引入並成為開源應用。

Hadoop本身不是一個產品,而是由多個軟體產品組成的一個生態系統,這些軟體產品共同實現全面功能和靈活的大數據分析。從技術上看,Hadoop由兩項關鍵服務構成:採用Hadoop分布式文件系統(HDFS)的可靠數據存儲服務,以及利用一種叫做MapRece技術的高性能並行數據處理服務。

這兩項服務的共同目標是,提供一個使對結構化和復雜數據的快速、可靠分析變為現實的基礎。2008年末,「大數據」得到部分美國知名計算機科學研究人員的認可,業界組織計算社區聯盟 (puting munity Consortium),發表了一份有影響力的白皮書《大數據計算:在商務、科學和社會領域創建革命性突破》。

它使人們的思維不僅局限於數據處理的機器,並提出:大數據真正重要的是新用途和新見解,而非數據本身。此組織可以說是最早提出大數據概念的機構。

2009年印度 *** 建立了用於身份識別管理的生物識別資料庫,聯合國全球脈沖項目已研究了對如何利用手機和社交網站的數據源來分析預測從螺旋價格到疾病爆發之類的問題。同年,美國 *** 通過啟動://Data.gov網站的方式進一步開放了數據的大門,這個網站向公眾提供各種各樣的 *** 數據。

該網站的超過4.45萬量數據集被用於保證一些網站和智能手機應用程序來跟蹤從航班到產品召回再到特定區域內失業率的信息,這一行動激發了從肯亞到英國范圍內的 *** 們相繼推出類似舉措。2009年,歐洲一些領先的研究型圖書館和科技信息研究機構建立了夥伴關系致力於改善在互聯網上獲取科學數據的簡易性。

2010年2月,肯尼斯ž庫克爾在《經濟學人》上發表了長達14頁的大數據專題報告《數據,無所不在的數據》。庫克爾在報告中提到:「世界上有著無法想像的巨量數字信息,並以極快的速度增長。

從經濟界到科學界,從 *** 部門到藝術領域,很多方面都已經感受到了這種巨量信息的影響。科學家和計算機工程師已經為這個現象創造了一個新詞彙:「大數據」。

庫克爾也因此成為最早洞見大數據時代趨勢的數據科學家之一。2011年2月,IBM的沃森超級計算機每秒可掃描並分析4TB(約2億頁文字量)的數據量,並在美國著名智力競賽電視節目《危險邊緣》「Jeopardy」上擊敗兩名人類選手而奪冠。

後來 *** 認為這一刻為一個「大數據計算的勝利。」 相繼在同年5月,全球知名咨詢公司麥肯錫(McKinsey&pany)肯錫全球研究院(MGI)發布了一份報告——《大數據:創新、競爭和生產力的下一個新領域》,大數據開始備受關注,這也是專業機構第一次全方面的介紹和展望大數據。

報告指出,大數據已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。

報告還提到,「大數據」源於數據生產和收集的能力和速度的大幅提升——由於越來越多的人、設備和感測器通過數字網路連接起來,產生、傳送、分享和訪問數據的能力也得到徹底變革。2011年12 月,工信部發布的物聯網十二五規劃上,把信息處理技術作為4 項關鍵技術創新工程之一被提出來,其中包括了海量數據存儲、數據挖掘、圖像視頻智能分析,這都是大數據的重要組成部分。

2012年1月份,瑞士達沃斯召開的世界經濟論壇上,大數據是主題之一,會上發布的報告《大數據,大影響》(Big Data, Big Impact) 宣稱,數據已經成為一種新的經濟資產類別,就像貨幣或黃金一樣。2012年3月,美國奧巴馬 *** 在白宮網站發布了《大數據研究和發展倡議》,這一倡議標志著大數據已經成為重要的時代特徵。

2012年3月22日,奧巴馬 *** 宣布2億美元投資大數據領域,是大數據技術從商業行為上升到國家科技戰略的分水嶺,在次日的電話會議中, *** 對數據的定義「未來的新石油」,大數據技術領域的競爭,事關國家安全和未來。並表示,國家層面的競爭力將部分體現為一國擁有數據的規模、活性以及解釋、運用的能力;國家數字 *** 體現對數據的佔有和控制。

數字 *** 將是繼邊防、海防、空防之後,另一個大國博弈的空間。2012年4月,美國軟體公司Splunk於19日在納斯達克成功上市,成為第一家上市的大數據處理公司。

鑒於美國經濟持續低靡、股市持續震盪的大背景,Splunk首日的突出交易表現尤其令人們印象深刻,首日即暴漲了一倍多。Splunk是一家領先的提供大數據監測和分析服務的軟體提供商,成立於2003年。

Splunk成功上市促進了資本市場對大數據的關注,同時也促使IT廠商加快大數據布局。2012年7月,聯合國在紐約發布了一份關於大數據政務的白皮書,總結了各國 *** 如何利用大數據更好地服務和保護人民。

這份白皮書舉例說明在一個數據生態系統中,個人、公共部門和私人部門各自的角色、動機和需求:例如通過對價格關注和更好服務的渴望,個人提供數據和眾包信息,並對隱。

三、大數據時代的產生背景

進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。

它已經上過《 *** 》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。 數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。

正如《 *** 》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。哈佛大學社會學教授加里·金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是 *** ,所有領域都將開始這種進程。」

四、大數據時代是什麼意思

大數據時代:最早提出大數據時代到來的是全球知名咨詢公司麥肯錫, 大數據在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。

大數據提出的背景:進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。它已經上過《 *** 》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。

數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。正如《 *** 》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。

哈佛大學社會學教授加里·金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是 *** ,所有領域都將開始這種進程。」 (2)大數據創新競爭擴展閱讀 大數據影響 現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。

隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。

大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。 在現今的社會,大數據的應用越來越彰顯他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。

有了大數據這個概念,對於消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。「大數據」在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。

這些數據的規模是如此龐大,以至於不能用G或T來衡量。大數據到底有多大?一組名為「互聯網上一天」的數據告訴我們,一天之中,互聯網產生的全部內容可以刻滿1.68億張DVD;發出的郵件有2940億封之多(相當於美國兩年的紙質信件數量)。

發出的社區帖子達200萬個(相當於《時代》雜志770年的文字量);賣出的手機為37.8萬台,高於全球每天出生的嬰兒數量37.1萬…… 截止到2012年,數據量已經從TB(1024GB=1TB)級別躍升到PB(1024TB=1PB) EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別。國際數據公司(IDC)的研究結果表明,2008年全球產生的數據量為0.49ZB,2009年的數據量為0.8ZB,2010年增長為1.2ZB,2011年的數量更是高達1.82ZB,相當於全球每人產生200GB以上的數據。

而到2012年為止,人類生產的所有印刷材料的數據量是200PB,全人類歷史上說過的所有話的數據量大約是5EB。IBM的研究稱,整個人類文明所獲得的全部數據中,有90%是過去兩年內產生的。

而到了2020年,全世界所產生的數據規模將達到今天的44倍。 每一天,全世界會上傳超過5億張圖片,每分鍾就有20小時時長的視頻被分享。

然而,即使是人們每天創造的全部信息——包括語音通話、電子郵件和信息在內的各種通信,以及上傳的全部圖片、視頻與音樂,其信息量也無法匹及每一天所創造出的關於人們自身的數字信息量。這樣的趨勢會持續下去。

我們現在還處於所謂「物聯網」的最初級階段,而隨著技術成熟,我們的設備、交通工具和迅速發展的「可穿戴」科技將能互相連接與溝通。科技的進步已經使創造、捕捉和管理信息的成本降至2005年的六分之一,而從2005年起,用在硬體、軟體、人才及服務之上的商業投資也增長了整整50%,達到了4000億美元。

大數據的精髓 大數據帶給我們的三個顛覆性觀念轉變:是全部數據,而不是隨機采樣;是大體方向,而不是精確制導;是相關關系,而不是因果關系。A.不是隨機樣本,而是全體數據:在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前我們通常把這看成是理所應當的限制,但高性能的數字技術讓我們意識到,這其實是一種人為限制); B.不是精確性,而是混雜性:研究數據如此之多,以至於我們不再熱衷於追求精確度;之前需要分析的數據很少,所以我們必須盡可能精確地量化我們的記錄,隨著規模的擴大,對精確度的痴迷將減弱;擁有了大數據,我們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可。

適當忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力; C.不是因果關系,而是相關關系:我們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大。

五、為什麼大數據如此重要

大數據是一種現代雲基礎架構,它包含了多種與其他人連接和共享信息的方法。它推動了「物聯網」的發展,如通過社交網站連接人、通過共享朋友或網路來尋找人們之間互相認識的可能性。大數據的背後運行著人工智慧,而它對於大多數人而言是完全透明的,人們不知道背後有這樣的技術。大數據位於人們日常使用的智能手機之後,然後人們通過它給移動互聯網貢獻信息,即使他們並沒有意識到這一點。

為什麼大數據如此重要?

第一,對大數據的處理分析正成為新一代信息技術融合應用的結點。移動互聯網、物聯網、社交網路、數字家庭、電子商務等是新一代信息技術的應用形態,這些應用不斷產生大數據。雲計算為這些海量、多樣化的大數據提供存儲和運算平台。通過對不同來源數據的管理、處理、分析與優化,將結果反饋到上述應用中,將創造出巨大的經濟和社會價值。

第二,大數據是信息產業持續高速增長的新引擎。面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。

第三,大數據利用將成為提高核心競爭力的關鍵因素。各行各業的決策正在從「業務驅動」 轉變「數據驅動」。

總結

在大數據時代到來的時候,要用大數據的思維去發掘大數據的潛在價值。大數據的意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。從前我們所了解的數據是冷冰冰的、死氣沉沉的,被存到冷備份默默地等著人拿出來用,我們對待數據的感覺十分消極,要先想清楚其用處才開始分析應用。現在,數據時代來臨了,人們正在試圖點燃數據,使其變熱,賦予生命。所謂「活數據」,是動態的數據,流通的數據,因互動而產生,因產生而互動,是自然演化的數據,要用大數據的思維去考慮這些數據怎樣才能帶來效益。未來大數據的發展前景非常好,與大數據相關的職業比如數據挖掘師,數據分析師等必定會有廣闊的發展空間。

六、如何實現大數據量資料庫的歷史數據歸檔

這個問題是這樣的:

首先你要明確你的插入是正常業務需求么?如果是,那麼只能接受這樣的數據插入量。

其次你說資料庫存不下了 那麼你可以讓你的資料庫上限變大 這個你可以在資料庫裡面設置的 裡面有個資料庫文件屬性 maxsize

最後有個方法可以使用,如果你的歷史數據不會對目前業務造成很大影響 可以考慮歸檔處理 定時將不用的數據移入歷史表 或者另外一個資料庫。

注意平時對資料庫的維護 定期整理索引碎片

❸ 中國大數據行業發展的挑戰有哪些

挑戰一:大數據行業發展良莠不濟

我國大數據仍處於起步發展階段,在「萬眾創新,大眾創業」的大環境下,大量的大數據企業不斷涌現,但企業發展良莠不濟。

挑戰二:大數據銷敗返創新、創業盲目

企業在創新、創業過程,由於缺乏對大數據產業鏈的認識,出現許多跟風扎堆的情況,沒有有效發揮自身優勢,造成巨大的資源浪費。創新的時候,我們往往會看到一些標桿出來。通俗來講,看到人家風光,沒有看到人家背後受罪的時候。往往一窩蜂跟去的時候就會發現全是坑,而且
「此去華山一條道」,滿滿的全是競爭對手。因此我枯並們做這個排行的初衷就是為大家梳理一下,哪些行業、哪些板塊、哪些領域是什麼樣的狀況,精確的找到自己的優勢方向,去做創新和努力。

挑戰三:投資盲目

霍華德.馬克思說過「投資者們明確達成的廣泛共識差不多都是錯的」。究其原因是資本在選擇大數據項目、企業的時候,由於沒有客觀的評價標准,同時也缺乏對產業鏈的整體認知,導致投資市場追逐熱點,存在一定的盲目性,大大降低了資本對大數據行業發展的正向推動力。

挑戰四:監管的盲目性

目前,監管層很難對大數據企業和機構進行有效的監管以及正確引導,要為大數據發展打造一個良性的生態環境就比較困難。其核心原因是對大數據企虧飢業的識別評價缺乏標准和規范。

挑戰五:大數據項目建設盲目

由於人才缺乏、大數據咨詢服務還沒有發展起來等原因,用戶很難對大數據項目有全面的認識,容易受到廠商的左右,導致建設內容的盲目;由於缺乏對產業的整體認識和大數據企業評價標准、方法,所以在大數據服務商選擇上也存在一定的盲目性。

❹ 大數據時代創新創業的三個方向和四大挑戰

大數據時代創新創業的三個方向和四大挑戰

大數據時代創新創業的三個方向和四大挑戰【導語】從傳統互聯網的人機互聯,人人互聯,到工業互聯網的物物互聯,人機物三種端各自互聯,才帶來大數據的產生,利用雲進行大數據的存儲和計算,實現數據的融合和服務,數據從哪裡來,到哪裡去,數據如何關聯,如何找到市場需求實現價值是關鍵。數據採集加工的跑馬圈地已入中盤,數據分析與應用的商業模式才剛剛開盤,而這需要模式具備可持續性和可擴展性。如今時代變了,以前以企業為核心的理念轉向以消費者、以用戶為核心的理念,以前的設計在進行創意時以往主要靠拍腦袋決策,如今需要數據的支持和支撐來指導創意。基於大數據的創新創業面臨的挑戰,主要有四個方面:一是拿到可以利用的數據比較難,目前不少創業公司都是基於互聯網上公開的數據在進行應用開發。二是大數據應用可能威脅到企業中傳統的角色地位甚至生存,這就涉及到與傳統利益的沖突,因此大數據應用推廣需要一把手牽頭推動。第三個瓶頸是人力資源,不管美國還是中國大數據人才非常緊缺,包括數據科學家和數據分析師,這些人才需要高校和企業一起合作來進行培養。
第四關於投資的難度加大,需要有更多大數據商業應用成功的項目和例子來引領投資的方向。
大數據時代創新創業的三個方向和四大挑戰
——ADEC聯手浙大、五葉草大數空間舉辦「大數據時代的創新創業實踐與思考」研討會
在大眾創新、萬眾創業的熱潮中,基於大數據的創業創新備受關注。12月17日,阿里數據經濟研究中心(ADEC)、浙江大學管理學院、五葉草大數空間三者攜手合作,邀請20餘位浙大學者走入雲棲小鎮,在杭州這個創新創業的基地,聆聽大數據創業創新實踐者的感受,共同開展「大數據時代創業創新的實踐和思考」的相關話題研討。
三家大數據創新創業領域的企業數能科技、華院數據和洛可可公司的負責人給大家分享了他們的實踐方向、面臨挑戰以及心得體會。在分享結束後,就大家關注的話題分組討論的環節受到參會企業以及研究者們的歡迎。
三個方向和四大挑戰
浙江大學管理學院教授劉淵老師在分享中提到,從傳統互聯網的人機互聯,人人互聯,到工業互聯網的物物互聯,人機物三種端各自互聯,才帶來大數據的產生,利用雲進行大數據的存儲和計算,實現數據的融合和服務,數據從哪裡來,到哪裡去,數據如何關聯,如何找到市場需求實現價值是關鍵。

圖為浙江大學管理學院教授劉淵
以浙江大學郭斌老師為組長的小組認為大數據創新創業的商業模式有三個方向(Analytics , Data, Services ,ADS)值得關注,其中A相當於為企業提供數據的計算分析能力;第二類D是提供數據為主,要做有效的決策背後所使用的數據可能來源於多個數據源,可以集聚數據成為運營的資源;第三類S相當於提供基於數據的服務,這種服務要嵌入到企業運營的業務流程。
以鄭剛老師為代表的小組總結了基於大數據的創新創業面臨的挑戰,主要有以下四個方面:一是拿到可以利用的數據比較難,目前不少創業公司都是基於互聯網上公開的數據在進行應用開發,二是大數據應用可能威脅到企業中傳統的角色地位甚至生存,這就涉及到與傳統利益的沖突,因此大數據應用推廣需要一把手牽頭推動;第三個瓶頸是人力資源,不管美國還是中國大數據人才非常緊缺,包括數據科學家和數據分析師,這些人才需要高校和企業一起合作來進行培養;第四關於投資的難度加大,需要有更多大數據商業應用成功的項目和例子來引領投資的方向。
大數據創新創業的三個實踐
數能科技:數據分析老兵的創業之路
數能科技的總經理張曉明先生在國外有20多年的數據分析的經驗,他在分享中談到,美國的大數據指的是用常規方法無法處理的數據,比如音頻、視頻等數據,而中國的大數據實際上是大數據+小數據,以電影行業為例,通常都是數據採集後轉化為小數據來進行統計分析和數據挖掘。

圖為數能科技的總經理張曉明
張總認為,中國發展大數據面臨三大挑戰:一是數據孤島現象嚴重,二是行業知識缺乏,在業務、技術和行政人員三方面溝通比較困難,跨學科的溝通以前比較缺乏,使得整個行業發展在應用層面的發展不快,三是過去中國的發展是粗曠式的,哪有機會往哪跑,現在是精細化管理,進行資源的優化配置,而政府官員對這種需求的優先順序不高。
在大數據的商業模式方面,張總認為,數據採集加工的跑馬圈地已入中盤,數據分析與應用的商業模式才剛剛開盤,而這需要模式具備可持續性和可擴展性,其中人才也是發展的一個瓶頸,尤其欠缺具備硬實力和軟實力的數據分析師,尤其是軟實力方面對於理工科學生來說更難,軟實力主要指的是溝通、好奇心和業務理解力。
數能科技開發的「電影票房預測」應用和「電影排片寶」應用都是典型的基於數據的新應用,電影票房預測每天早晨9點半會發布當天的票房預測結果,希望成為全國以及各個城市電影票房的預測風向標,為發行人進行精準營銷提供依據,「電影排片寶」應用通過收集來自媒體、影院的歷史數據、網上售票的預售數據等信息為各大影院排片提供建議。這種應用場景還可以衍生到客流預測與資源優化管理,比如在旅遊景點、大型超市等。
華院數據:數據分析人才基地的孵化新模式
國內專業的數據分析挖掘人才有很多都來自於華院數據,來自華院數據的執行總裁麥星在分享「華院數據——產業大數據生態的深度孵化器」的主題時談到,華院數據目前聚焦是以大數據行業解決方案為核心,基於自己多年的技術積累,提供數據互聯、人工智慧引擎等核心能力和產品,融入於垂直行業,在各行業孵化出獨立、專注、聚焦的大數據子公司。

圖為華院數據的執行總裁麥星
目前已經孵化了數雲、數創、數尊、華院分析等多家大數據+電商、零售、O2O、運營商的創業公司,這些創業公司形成產業大數據的生態,比如數雲科技是電商數據應用的創業公司,為阿里巴巴平台上的商家提供CRM解決方案,連續三年都是金牌淘拍檔。
洛可可:傳統工業設計公司的大數據創新轉向消費者為中心
洛可可作為一家工業設計公司,它所推出的一款55度杯子一上市就備受歡迎,杭州分公司負責人夏治朋在分享時提到,如今時代變了,以前以企業為核心的理念轉向以消費者、以用戶為核心的理念,以前的設計在進行創意時以往主要靠拍腦袋決策,如今需要數據的支持和支撐來指導創意,而且數據不僅是B端的需求,更重要的需要最終消費者的需求,讓創意和設計更加精準。

圖為洛可可杭州分公司總經理夏治朋
以前的產品只有功能,現在的產品還要有服務、有情感,產品具備智能的基礎需要有大數據,現在的產品大都是軟硬體結合的,同時還有app,從而了解用戶的行為和習慣,通過App端數據的抓取來獲知用戶的行為和習慣,從而改變創意和設計,使得用戶感知到產品是為之定製的。
大數據的創新創業剛剛開始
在信息經濟發展迅猛的今天,隨著數據扮演生產要素的角色,雲計算發揮公共計算基礎設施的作用,數據的開放、共享與流動成為可能,數據的融合激發新的生產力。與以往任何一個時代相比,大數據時代的創業創新將擁有更多的機會、更大的空間。雖然現階段我國數據相關的法規政策尚不完善,基於數據的創業創新實踐尚在探索階段,業務和服務模式還不成熟,不確定性正意味著更多機會,因此我國不斷涌現出企業進行基於大數據的新模式的嘗試和探索。阿里數據經濟研究中心(ADEC)期待與更多學界研究者進行深入合作,共同推動中國數據經濟的良性快速發展。

❺ 2011年什麼公司發布報告,大數據開始被收關注

麥肯錫公司。大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。2011年麥肯錫公司發布《大數據:創新、競爭和生產力的下一個新領域》報告,大數據開始備受關注。麥肯錫咨詢公司?麥肯錫公司是世界級領先的全球管理咨詢公司。

❻ 詳解大數據的思想如何形成與其價值維度

詳解大數據的思想如何形成與其價值維度
比如經濟上,黃仁宇先生對宋朝經濟的分析中發現了「數目字管理」(即定量分析)的廣泛應用(可惜王安石變法有始無終)。又如軍事,「向林彪學習數據挖掘」的橋段不論真假,其背後量化分析的思想無疑有其現實基礎,而這一基礎甚至可以回推到2000多年前,孫臏正是通過編造「十萬灶減到五萬灶再減到三萬灶」的數據、利用龐涓的量化分析習慣對其進行誘殺。
到上世紀50-60年代,磁帶取代穿孔卡片機,啟動了數據存儲的革命。磁碟驅動器隨即發明,它帶來的最大想像空間並不是容量,而是隨機讀寫的能力,這一下子解放了數據工作者的思維模式,開始數據的非線性表達和管理。資料庫應運而生,從層次型資料庫(IBM為阿波羅登月設計的層次型資料庫迄今仍在建行使用),到網狀資料庫,再到現在通用的關系資料庫。與數據管理同時發源的是決策支持系統(DSS),80年代演變到商業智能(BI)和數據倉庫,開辟了數據分析——也就是為數據賦予意義——的道路。

那個時代運用數據管理和分析最厲害的是商業。第一個數據倉庫是為寶潔做的,第一個太位元組的數據倉庫是在沃爾瑪。沃爾瑪的典型應用是兩個:一是基於retaillink的供應鏈優化,把數據與供應商共享,指導它們的產品設計、生產、定價、配送、營銷等整個流程,同時供應商可以優化庫存、及時補貨;二是購物籃分析,也就是常說的啤酒加尿布。關於啤酒加尿布,幾乎所有的營銷書都言之鑿鑿,我告訴大家,是Teradata的一個經理編的,人類歷史上從沒有發生過,但是,先教育市場,再收獲市場,它是有功的。
僅次於沃爾瑪的樂購(Tesco),強在客戶關系管理(CRM),細分客戶群,分析其行為和意圖,做精準營銷。
這些都發生在90年代。00年代時,科研產生了大量的數據,如天文觀測、粒子碰撞,資料庫大拿吉姆·格雷等提出了第四範式,是數據方法論的一次提升。前三個範式是實驗(伽利略從斜塔往下扔),理論(牛頓被蘋果砸出靈感,形成經典物理學定律),模擬(粒子加速太貴,核試驗太臟,於是乎用計算代替)。第四範式是數據探索。這其實也不是新鮮的,開普勒根據前人對行星位置的觀測數據擬合出橢圓軌道,就是數據方法。但是到90年代的時候,科研數據實在太多了,數據探索成為顯學。在現今的學科里,有一對孿生兄弟,計算XX學和XX信息學,前者是模擬/計算範式,後者是數據範式,如計算生物學和生物信息學。有時候計算XX學包含了數據範式,如計算社會學、計算廣告學。
2008年克里斯·安德森(長尾理論的作者)在《連線》雜志寫了一篇《理論的終結》,引起軒然大波。他主要的觀點是有了數據,就不要模型了,或者很難獲得具有可解釋性的模型,那麼模型所代表的理論也沒有意義了。跟大家說一下數據、模型和理論。大家先看個粗糙的圖。
首先,我們在觀察客觀世界中採集了三個點的數據,根據這些數據,可以對客觀世界有個理論假設,用一個簡化的模型來表示,比如說三角形。可以有更多的模型,如四邊形,五邊形。隨著觀察的深入,又採集了兩個點,這時發現三角形、四邊形的模型都是錯的,於是確定模型為五邊形,這個模型反映的世界就在那個五邊形里,殊不知真正的時間是圓形。
大數據時代的問題是數據是如此的多、雜,已經無法用簡單、可解釋的模型來表達,這樣,數據本身成了模型,嚴格地說,數據及應用數學(尤其是統計學)取代了理論。安德森用谷歌翻譯的例子,統一的統計學模型取代了各種語言的理論/模型(如語法),能從英文翻譯到法文,就能從瑞典文翻譯到中文,只要有語料數據。谷歌甚至能翻譯克萊貢語(StarTrek里編出來的語言)。安德森提出了要相關性不要因果性的問題,以後舍恩伯格(下面稱之為老舍)只是拾人牙慧了。
當然,科學界不認同《理論的終結》,認為科學家的直覺、因果性、可解釋性仍是人類獲得突破的重要因素。有了數據,機器可以發現當前知識疆域裡面隱藏的未知部分。而沒有模型,知識疆域的上限就是機器線性增長的計算力,它不能擴展到新的空間。在人類歷史上,每一次知識疆域的跨越式拓展都是由天才和他們的理論率先吹起的號角。
2010年左右,大數據的浪潮捲起,這些爭論迅速被淹沒了。看谷歌趨勢,」bigdata」這個詞就是那個時間一下子躥升了起來。吹鼓手有幾家,一家是IDC,每年給EMC做digitaluniverse的報告,上升到澤位元組范疇(給大家個概念,現在硬碟是太位元組,1000太=1拍,阿里、Facebook的數據是幾百拍位元組,1000拍=1艾,網路是個位數艾位元組,谷歌是兩位數艾位元組,1000艾=1澤);一家是麥肯錫,發布《大數據:創新、競爭和生產力的下一個前沿》;一家是《經濟學人》,其中的重要寫手是跟老舍同著《大數據時代》的肯尼思?庫克耶;還有一家是Gartner,杜撰了3V(大、雜、快),其實這3V在2001年就已經被編出來了,只不過在大數據語境里有了全新的詮釋。
咱們國內,歡總、國棟總也是在2011年左右開始呼籲對大數據的重視。
2012年子沛的書《大數據》教育政府官員有功。老舍和庫克耶的《大數據時代》提出了三大思維,現在已經被奉為圭臬,但千萬別當作放之四海而皆準的真理了。
比如要數據全集不要采樣。現實地講,1.沒有全集數據,數據都在孤島里;2.全集太貴,鑒於大數據信息密度低,是貧礦,投入產出比不見得好;3.宏觀分析中采樣還是有用的,蓋洛普用5000個樣本勝過幾百萬調查的做法還是有實踐意義;4.采樣要有隨機性、代表性,采訪火車上的民工得出都買到票的結論不是好采樣,現在只做固定電話采樣調查也不行了(行動電話是大頭),在國外基於Twitter采樣也發現不完全具有代表性(老年人沒被包括);5.采樣的缺點是有百分之幾的偏差,更會丟失黑天鵝的信號,因此在全集數據存在且可分析的前提下,全量是首選。全量>好的采樣>不均勻的大量。
再說混雜性由於精確性。擁抱混雜性(這樣一種客觀現象)的態度是不錯的,但不等於喜歡混雜性。數據清洗比以前更重要,數據失去辨識度、失去有效性,就該扔了。老舍引用谷歌PeterNovig的結論,少數高質量數據+復雜演算法被大量低質量數據+簡單演算法打敗,來證明這一思維。Peter的研究是Web文本分析,確實成立。但谷歌的深度學習已經證明這個不完全對,對於信息維度豐富的語音、圖片數據,需要大量數據+復雜模型。
最後是要相關性不要因果性。對於大批量的小決策,相關性是有用的,如亞馬遜的個性化推薦;而對於小批量的大決策,因果性依然重要。就如中葯,只到達了相關性這一步,但它沒有可解釋性,無法得出是有些樹皮和蟲殼的因導致治癒的果。西葯在發現相關性後,要做隨機對照試驗,把所有可能導致「治癒的果」的干擾因素排除,獲得因果性和可解釋性。在商業決策上也是一樣,相關性只是開始,它取代了拍腦袋、直覺獲得的假設,而後面驗證因果性的過程仍然重要。
把大數據的一些分析結果落實在相關性上也是倫理的需要,動機不代錶行為。預測性分析也一樣,不然警察會預測人犯罪,保險公司會預測人生病,社會很麻煩。大數據演算法極大影響了我們的生活,有時候會覺得挺悲哀的,是演算法覺得了你貸不貸得到款,谷歌每調整一次演算法,很多在線商業就會受到影響,因為被排到後面去了。
下面時間不多了,關於價值維度,我貼一些以前講過的東西。大數據思想中很重要的一點是決策智能化之外,還有數據本身的價值化。這一點不贅述了,引用馬雲的話吧,「信息的出發點是我認為我比別人聰明,數據的出發點是認為別人比我聰明;信息是你拿到數據編輯以後給別人,而數據是你搜集數據以後交給比你更聰明的人去處理。」大數據能做什麼?價值這個V怎麼映射到其他3V和時空象限中?我畫了個圖:
再貼上解釋。「見微」與「知著」在Volume的空間維度。小數據見微,作個人刻畫,我曾用《一代宗師》中「見自己」形容之;大數據知著,反映自然和群體的特徵和趨勢,我以「見天地、見眾生」比喻之。「著」推動「微」(如把人群細分為buckets),又拉動「微」(如推薦相似人群的偏好給個人)。「微」與「著」又反映了時間維度,數據剛產生時個人價值最大,隨著時間decay最後退化為以集合價值為主。
「當下」和「皆明」在Velocity的時間維度。當下在時間原點,是閃念之間的實時智慧,結合過往(負軸)、預測未來(正軸),可以皆明,即獲得perpetual智慧。《西遊記》里形容真假孫悟空,一個是「知天時、通變化」,一個是「知前後、萬物皆明」,正好對應。為達到皆明,需要全量分析、預測分析和處方式分析(prescriptiveanalytics,為讓設定的未來發生,需要採取什麼樣的行動)。
「辨訛」和「曉意」在Variety的空間維度。基於大體量、多源異質的數據,辨訛過濾雜訊、查漏補缺、去偽存真。曉意達到更高境界,從非結構數據中提取語義、使機器能夠窺探人的思想境界、達到過去結構化數據分析不能達到之高度。
先看知著,對宏觀現象規律的研究早已有之,大數據的知著有兩個新特點,一是從采樣到全量,比如央視去年「你幸福嗎」的調查,是街頭的采樣,前不久《中國經濟生活大調查》關於幸福城市排名的結論,是基於10萬份問卷(17個問題)的采樣,而清華行為與大數據實驗室做的幸福指數(繼挺兄、我、還有多位本群群友參與),是基於新浪微博數據的全集(托老王的福),這些數據是人們的自然表達(而不是面對問卷時的被動應對),同時又有上下文語境,因此更真實、也更有解釋性。北上廣不幸福,是因為空氣還是房價或教育,在微博上更容易傳播的積極情緒還是消極情緒,數據告訴你答案。《中國經濟生活大調查》說「再小的聲音我們都聽得見」,是過頭話,采樣和傳統的統計分析方法對數據分布採用一些簡化的模型,這些模型把異常和長尾忽略了,全量的分析可以看到黑天鵝的身影,聽到長尾的聲音。
另一個特點是從定性到定量。計算社會學就是把定量分析應用到社會學,已經有一批數學家、物理學家成了經濟學家、寬客,現在他們也可以選擇成為社會學家。國泰君安3I指數也是一個例子,它通過幾十萬用戶的數據,主要是反映投資活躍程度和投資收益水平的指標,建立一個量化模型來推知整體投資景氣度。
再看見微,我認為大數據的真正差異化優勢在微觀。自然科學是先宏觀、具體,進入到微觀和抽象,這時大數據就很重要了。我們更關注社會科學,那是先微觀、具體,再宏觀、抽象,許小年索性認為宏觀經濟學是偽科學。如果市場是個體行為的總和,我們原來看到是一張抽象派的畫,看不懂,通過客戶細分慢慢可以形成一張大致看得懂的現實圖景,不過是馬賽克的,再通過微分、甚至定位個人,形成高清圖。我們每一個人現在都生活在零售商的bucket中(前面說的樂購創造了這個概念),最簡單的是高收入、低收入這類反映背景的,再有就是反映行為和生活方式的,如「精打細算」、「右鍵點擊一族」(使用右鍵的比較techsavvy)。反過來我們消費者也希望能夠獲得個性化的尊崇,Nobody wants to be nobody today。
了解並掌握客戶比以往任何時候都更重要。奧巴馬贏在大數據上,就是因為他知道西岸40-49歲女性的男神是喬治·克魯尼,東岸同樣年齡段女性的偶像則是莎拉·傑西卡·帕克(《慾望都市》的主角),他還要更細分,搖擺州每一個郡每一個年齡段每一個時間段在看什麼電視,搖擺州(俄亥俄)1%選民隨時間變化的投票傾向,搖擺選民在Reddit上還是Facebook上,都在其掌握之中。
對於企業來說,要從以產品為中心,轉到以客戶(買單者)甚至用戶(使用者)為中心,從關注用戶背景到關注其行為、意圖和意向,從關注交易形成轉到關注每一個交互點/觸點,用戶是從什麼路徑發現我的產品的,決定之前又做了什麼,買了以後又有什麼反饋,是通過網頁、還是QQ、微博或是微信
再講第三個,當下。時間是金錢,股票交易就是快魚吃慢魚,用免費股票交易軟體有幾秒的延遲,而佔美國交易量60-70%的高頻程序化交易則要發現毫秒級、低至1美分的交易機會。時間又是生命,美國國家大氣與海洋管理局的超級計算機在日本311地震後9分鍾發出海嘯預警,已經太晚。時間還是機會。現在所謂的購物籃分析用的其實並不是真正的購物籃,而是結帳完的小票,真正有價值的是當顧客還拎著購物籃,在瀏覽、試用、選擇商品的時候,在每一個觸點影響他/她的選擇。數據價值具有半衰期,最新鮮的時候個性化價值最大,漸漸退化到只有集合價值。當下的智慧是從刻舟求劍到見時知幾,原來10年一次的人口普查就是刻舟求劍,而現在東莞一出事網路遷徙圖就反映出來了。當然,當下並不一定是完全准確的,其實如果沒有更多、更久的數據,匆忙對網路遷徙圖解讀是可能陷入誤區的。
第四個,皆明。時間有限,就簡單說了。就是從放馬後炮到料事如神(predictiveanalytics),從料事如神到運籌帷幄(prescriptiveanalytics),只知道有東風是預測分析,確定要借箭的目標、並給出處方利用草船來借,就是處方性分析。我們現在要提高響應度、降低流失率、吸引新客戶,需要處方性分析。
辨訛就是利用多源數據過濾雜訊、查漏補缺和去偽存真。20多個省市的GDP之和超過全國的GDP就是一個例子,我們的GPS有幾十米的誤差,但與地圖數據結合就能做到精確,GPS在城市的高樓中沒有信號,可以與慣性導航結合。
曉意涉及到大數據下的機器智能,是個大問題,也不展開了。貼一段我的文章:有人說在涉及「曉意」的領域人是無法替代的。這在前大數據時代是事實。《點球成金(Moneyball)》講的是數量化分析和預測對棒球運動的貢獻,它在大數據背景下出現了傳播的誤區:一、它其實不是大數據,而是早已存在的數據思維和方法;二、它刻意或無意忽略了球探的作用。從讀者看來,奧克蘭競技隊的總經理比利·比恩用數量化分析取代了球探。而事實是,在運用數量化工具的同時,比恩也增加了球探的費用,軍功章里有機器的一半,也有人的一半,因為球探對運動員定性指標(如競爭性、抗壓力、意志力等)的衡量是少數結構化量化指標無法刻畫的。大數據改變了這一切。人的數字足跡的無意識記錄,以及機器學習(尤其是深度學習)曉意能力的增強,可能逐漸改變機器的劣勢。今年我們看到基於大數據的情感分析、價值觀分析和個人刻畫,當這些應用於人力資源,已經或多或少體現了球探承擔的。

閱讀全文

與大數據創新競爭相關的資料

熱點內容
嵌入式黑盒測試工具 瀏覽:154
有限狀態自動機代碼 瀏覽:816
hosts文件空內容 瀏覽:254
tcpudp源代碼 瀏覽:737
重裝系統軟體win10嗎 瀏覽:51
spss非線性回歸教程 瀏覽:183
ldb文件是什麼 瀏覽:359
無網路下手機連接投影 瀏覽:431
少兒編程有哪些技巧 瀏覽:569
網路報道失實如何舉報 瀏覽:560
網上什麼相親網站好 瀏覽:205
萊州如何優化網站 瀏覽:563
java封裝ocx 瀏覽:41
qq微信接收文件夾在哪裡 瀏覽:632
語音包文件夾後綴是多少 瀏覽:131
魅族手機app是什麼 瀏覽:887
cad添加保存文件格式 瀏覽:246
電視用什麼app看電影全部免費 瀏覽:311
數控編程培訓班有哪些 瀏覽:998
寧波市五軸編程培訓哪個好 瀏覽:631

友情鏈接