導航:首頁 > 網路數據 > 大數據中若干問題初探

大數據中若干問題初探

發布時間:2023-06-14 12:52:47

『壹』 淺談計算機與大數據的相關論文

在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。下面是我給大家推薦的計算機與大數據的相關論文,希望大家喜歡!

計算機與大數據的相關論文篇一
淺談“大數據”時代的計算機信息處理技術

[摘 要]在大數據環境下,計算機信息處理技術也面臨新的挑戰,要求計算機信息處理技術必須不斷的更新發展,以能夠對當前的計算機信息處理需求滿足。本文重點分析大數據時代的計算機信息處理技術。

[關鍵詞]大數據時代;計算機;信息處理技術

在科學技術迅速發展的當前,大數據時代已經到來,大數據時代已經佔領了整個環境,它對計算機的信息處理技術產生了很大的影響。計算機在短短的幾年內,從稀少到普及,使人們的生活有了翻天覆地的變化,計算機的快速發展和應用使人們走進了大數據時代,這就要求對計算機信息處理技術應用時,則也就需要在之前基礎上對技術實施創新,優化結構處理,從而讓計算機數據更符合當前時代發展。

一、大數據時代信息及其傳播特點

自從“大數據”時代的到來,人們的信息接收量有明顯加大,在信息傳播中也出現傳播速度快、數據量大以及多樣化等特點。其中數據量大是目前信息最顯著的特點,隨著時間的不斷變化計算機信息處理量也有顯著加大,只能夠用海量還對當前信息數量之大形容;傳播速度快也是當前信息的主要特點,計算機在信息傳播中傳播途徑相當廣泛,傳播速度也相當驚人,1s內可以完成整個信息傳播任務,具有較高傳播效率。在傳播信息過程中,還需要實施一定的信息處理,在此過程中則需要應用相應的信息處理工具,實現對信息的專門處理,隨著目前信息處理任務的不斷加強,信息處理工具也有不斷的進行創新[1];信息多樣化,則也就是目前數據具有多種類型,在龐大的資料庫中,信息以不同的類型存在著,其中包括有文字、圖片、視頻等等。這些信息類型的格式也在不斷發生著變化,從而進一步提高了計算機信息處理難度。目前計算機的處理能力、列印能力等各項能力均有顯著提升,尤其是當前軟體技術的迅速發展,進一步提高了計算機應用便利性。微電子技術的發展促進了微型計算機的應用發展,進一步強化了計算機應用管理條件。

大數據信息不但具有較大容量,同時相對於傳統數據來講進一步增強了信息間關聯性,同時關聯結構也越來越復雜,導致在進行信息處理中需要面臨新的難度。在 網路技術 發展中重點集中在傳輸結構發展上,在這種情況下計算機必須要首先實現網路傳輸結構的開放性設定,從而打破之前計算機信息處理中,硬體所具有的限製作用。因為在當前計算機網路發展中還存在一定的不足,在完成雲計算機網路構建之後,才能夠在信息處理過程中,真正的實現收放自如[2]。

二、大數據時代的計算機信息處理技術

(一)數據收集和傳播技術

現在人們通過電腦也就可以接收到不同的信息類型,但是在進行信息發布之前,工作人員必須要根據需要採用信息處理技術實施相應的信息處理。計算機採用信息處理技術實施信息處理,此過程具有一定復雜性,首先需要進行數據收集,在將相關有效信息收集之後首先對這些信息實施初步分析,完成信息的初級操作處理,總體上來說信息處理主要包括:分類、分析以及整理。只有將這三步操作全部都完成之後,才能夠把這些信息完整的在計算機網路上進行傳播,讓用戶依照自己的實際需求篩選滿足自己需求的信息,藉助於計算機傳播特點將信息數據的閱讀價值有效的實現。

(二)信息存儲技術

在目前計算機網路中出現了很多視頻和虛擬網頁等內容,隨著人們信息接收量的不斷加大,對信息儲存空間也有較大需求,這也就是對計算機信息存儲技術提供了一個新的要求。在數據存儲過程中,已經出現一系列存儲空間無法滿足當前存儲要求,因此必須要對當前計算機存儲技術實施創新發展。一般來講計算機數據存儲空間可以對當前用戶關於不同信息的存儲需求滿足,但是也有一部分用戶對於計算機存儲具有較高要求,在這種情況下也就必須要提高計算機數據存儲性能[3],從而為計算機存儲效率提供有效保障。因此可以在大數據存儲特點上完成計算機信息新存儲方式,不但可以有效的滿足用戶信息存儲需求,同時還可以有效的保障普通儲存空間不會出現被大數據消耗問題。

(三)信息安全技術

大量數據信息在計算機技術發展過程中的出現,導致有一部分信息內容已經出現和之前信息形式的偏移,構建出一些新的計算機信息關聯結構,同時具有非常強大的數據關聯性,從而也就導致在計算機信息處理中出現了新的問題,一旦在信息處理過程中某個信息出現問題,也就會導致與之關聯緊密的數據出現問題。在實施相應的計算機信息管理的時候,也不像之前一樣直接在單一數據信息之上建立,必須要實現整個資料庫中所有將數據的統一安全管理。從一些角度分析,這種模式可以對計算機信息處理技術水平有顯著提升,並且也為計算機信息處理技術發展指明了方向,但是因為在計算機硬體中存在一定的性能不足,也就導致在大數據信息安全管理中具有一定難度。想要為數據安全提供有效保障,就必須要注重數據安全技術管理技術的發展。加強當前信息安全體系建設,另外也必須要對計算機信息管理人員專業水平進行培養,提高管理人員專業素質和專業能力,從而更好的滿足當前網路信息管理體系發展需求,同時也要加強關於安全技術的全面深入研究工作[4]。目前在大數據時代下計算機信息安全管理技術發展還不夠成熟,對於大量的信息還不能夠實施全面的安全性檢測,因此在未來計算機信息技術研究中安全管理屬於重點方向。但是因為目前還沒有構建完善的計算機安全信息管理體系,因此首先應該強化關於計算機重點信息的安全管理,這些信息一旦發生泄漏,就有可能會導致出現非常嚴重的損失。目前來看,這種 方法 具有一定可行性。

(四)信息加工、傳輸技術

在實施計算機信息數據處理和傳輸過程中,首先需要完成數據採集,同時還要實時監控數據信息源,在資料庫中將採集來的各種信息數據進行存儲,所有數據信息的第一步均是完成採集。其次才能夠對這些採集來的信息進行加工處理,通常來說也就是各種分類及加工。最後把已經處理好的信息,通過數據傳送系統完整的傳輸到客戶端,為用戶閱讀提供便利。

結語:

在大數據時代下,計算機信息處理技術也存在一定的發展難度,從目前專業方面來看,還存在一些問題無法解決,但是這些難題均蘊含著信息技術發展的重要機遇。在當前計算機硬體中,想要完成計算機更新也存在一定的難度,但是目前計算機未來的發展方向依舊是雲計算網路,把網路數據和計算機硬體數據兩者分開,也就有助於實現雲計算機網路的有效轉化。隨著科學技術的不斷發展相信在未來的某一天定能夠進入到計算機信息處理的高速發展階段。

參考文獻

[1] 馮瀟婧.“大數據”時代背景下計算機信息處理技術的分析[J].計算機光碟軟體與應用,2014,(05):105+107.

[2] 詹少強.基於“大數據”時代剖析計算機信息處理技術[J].網路安全技術與應用,2014,(08):49-50.

[3] 曹婷.在信息網路下計算機信息處理技術的安全性[J].民營科技,2014, (12):89CNKI

[4] 申鵬.“大數據”時代的計算機信息處理技術初探[J].計算機光碟軟體與應用,2014,(21):109-110
計算機與大數據的相關論文篇二
試談計算機軟體技術在大數據時代的應用

摘要:大數據的爆炸式增長在大容量、多樣性和高增速方面,全面考驗著現代企業的數據處理和分析能力;同時,也為企業帶來了獲取更豐富、更深入和更准確地洞察市場行為的大量機會。對企業而言,能夠從大數據中獲得全新價值的消息是令人振奮的。然而,如何從大數據中發掘出“真金白銀”則是一個現實的挑戰。這就要求採用一套全新的、對企業決策具有深遠影響的解決方案。

關鍵詞:計算機 大數據時代 容量 准確 價值 影響 方案

1 概述

自從計算機出現以後,傳統的計算工作已經逐步被淘汰出去,為了在新的競爭與挑戰中取得勝利,許多網路公司開始致力於數據存儲與資料庫的研究,為互聯網用戶提供各種服務。隨著雲時代的來臨,大數據已經開始被人們廣泛關注。一般來講,大數據指的是這樣的一種現象:互聯網在不斷運營過程中逐步壯大,產生的數據越來越多,甚至已經達到了10億T。大數據時代的到來給計算機信息處理技術帶來了更多的機遇和挑戰,隨著科技的發展,計算機信息處理技術一定會越來越完善,為我們提供更大的方便。

大數據是IT行業在雲計算和物聯網之後的又一次技術變革,在企業的管理、國家的治理和人們的生活方式等領域都造成了巨大的影響。大數據將網民與消費的界限和企業之間的界限變得模糊,在這里,數據才是最核心的資產,對於企業的運營模式、組織結構以及 文化 塑造中起著很大的作用。所有的企業在大數據時代都將面對戰略、組織、文化、公共關系和人才培養等許多方面的挑戰,但是也會迎來很大的機遇,因為只是作為一種共享的公共網路資源,其層次化和商業化不但會為其自身發展帶來新的契機,而且良好的服務品質更會讓其充分具有獨創性和專用性的鮮明特點。所以,知識層次化和商業化勢必會開啟知識創造的嶄新時代。可見,這是一個競爭與機遇並存的時代。

2 大數據時代的數據整合應用

自從2013年,大數據應用帶來令人矚目的成績,不僅國內外的產業界與科技界,還有各國政府部門都在積極布局、制定戰略規劃。更多的機構和企業都准備好了迎接大數據時代的到來,大數據的內涵應是數據的資產化和服務化,而挖掘數據的內在價值是研究大數據技術的最終目標。在應用數據快速增長的背景下,為了降低成本獲得更好的能效,越來越趨向專用化的系統架構和數據處理技術逐漸擺脫傳統的通用技術體系。如何解決“通用”和“專用”體系和技術的取捨,以及如何解決數據資產化和價值挖掘問題。

企業數據的應用內容涵蓋數據獲取與清理、傳輸、存儲、計算、挖掘、展現、開發平台與應用市場等方面,覆蓋了數據生產的全生命周期。除了Hadoop版本2.0系統YARN,以及Spark等新型系統架構介紹外,還將探討研究流式計算(Storm,Samza,Puma,S4等)、實時計算(Dremel,Impala,Drill)、圖計算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新進展。在大數據時代,借力計算機智能(MI)技術,通過更透明、更可用的數據,企業可以釋放更多蘊含在數據中的價值。實時、有效的一線質量數據可以更好地幫助企業提高產品品質、降低生產成本。企業領導者也可根據真實可靠的數據制訂正確戰略經營決策,讓企業真正實現高度的計算機智能決策辦公,下面我們從通信和商業運營兩個方面進行闡述。

2.1 通信行業:XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取 措施 ,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。中國移動通過大數據分析,對 企業運營 的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。

2.2 商業運營:辛辛那提動物園使用了Cognos,為iPad提供了單一視圖查看管理即時訪問的遊客和商務信息的服務。藉此,動物園可以獲得新的收入來源和提高營收,並根據這些信息及時調整營銷政策。數據收集和分析工具能夠幫助銀行設立最佳網點,確定最好的網點位置,幫助這個銀行更好地運作業務,推動業務的成長。

3 企業信息解決方案在大數據時代的應用

企業信息管理軟體廣泛應用於解決欺詐偵測、雇員流動、客戶獲取與維持、網路銷售、市場細分、風險分析、親和性分析、客戶滿意度、破產預測和投資組合分析等多樣化問題。根據大數據時代的企業挖掘的特徵,提出了數據挖掘的SEMMA方法論――在SAS/EM環境中,數據挖掘過程被劃分為Sample、Explore、Modify、Model、Assess這五個階段,簡記為SEMMA:

3.1 Sample 抽取一些代表性的樣本數據集(通常為訓練集、驗證集和測試集)。樣本容量的選擇標准為:包含足夠的重要信息,同時也要便於分析操作。該步驟涉及的處理工具為:數據導入、合並、粘貼、過濾以及統計抽樣方法。

3.2 Explore 通過考察關聯性、趨勢性以及異常值的方式來探索數據,增進對於數據的認識。該步驟涉及的工具為:統計 報告 、視圖探索、變數選擇以及變數聚類等方法。

3.3 Modify 以模型選擇為目標,通過創建、選擇以及轉換變數的方式來修改數據集。該步驟涉及工具為:變數轉換、缺失處理、重新編碼以及數據分箱等。

3.4 Model 為了獲得可靠的預測結果,我們需要藉助於分析工具來訓練統計模型或者機器學習模型。該步驟涉及技術為:線性及邏輯回歸、決策樹、神經網路、偏最小二乘法、LARS及LASSO、K近鄰法以及其他用戶(包括非SAS用戶)的模型演算法。

3.5 Assess 評估數據挖掘結果的有效性和可靠性。涉及技術為:比較模型及計算新的擬合統計量、臨界分析、決策支持、報告生成、評分代碼管理等。數據挖掘者可能不會使用全部SEMMA分析步驟。然而,在獲得滿意結果之前,可能需要多次重復其中部分或者全部步驟。

在完成SEMMA步驟後,可將從優選模型中獲取的評分公式應用於(可能不含目標變數的)新數據。將優選公式應用於新數據,這是大多數數據挖掘問題的目標。此外,先進的可視化工具使得用戶能在多維直方圖中快速、輕松地查閱大量數據並以圖形化方式比較模擬結果。SAS/EM包括了一些非同尋常的工具,比如:能用來產生數據挖掘流程圖的完整評分代碼(SAS、C以及Java代碼)的工具,以及交換式進行新數據評分計算和考察執行結果的工具。

如果您將優選模型注冊進入SAS元數據伺服器,便可以讓SAS/EG和SAS/DI Studio的用戶分享您的模型,從而將優選模型的評分代碼整合進入 工作報告 和生產流程之中。SAS模型管理系統,通過提供了開發、測試和生產系列環境的項目管理結構,進一步補充了數據挖掘過程,實現了與SAS/EM的無縫聯接。

在SAS/EM環境中,您可以從SEMMA工具欄上拖放節點進入工作區的工藝流程圖中,這種流程圖驅動著整個數據挖掘過程。SAS/EM的圖形用戶界面(GUI)是按照這樣的思路來設計的:一方面,掌握少量統計知識的商務分析者可以瀏覽數據挖掘過程的技術方法;另一方面,具備數量分析技術的專家可以用微調方式深入探索每一個分析節點。

4 結束語

在近十年時間里,數據採集、存儲和數據分析技術飛速發展,大大降低了數據儲存和處理的成本,一個大數據時代逐漸展現在我們的面前。大數據革新性地將海量數據處理變為可能,並且大幅降低了成本,使得越來越多跨專業學科的人投入到大數據的開發應用中來。

參考文獻:

[1]薛志文.淺析計算機網路技術及其發展趨勢[J].信息與電腦,2009.

[2]張帆,朱國仲.計算機網路技術發展綜述[J].光碟技術,2007.

[3]孫雅珍.計算機網路技術及其應用[J].東北水利水電,1994.

[4]史萍.計算機網路技術的發展及展望[J].五邑大學學報,1999.

[5]桑新民.步入信息時代的學習理論與實踐[M].中央廣播大學出版社,2000.

[6]張浩,郭燦.數據可視化技術應用趨勢與分類研究[J].軟體導刊.

[7]王丹.數字城市與城市地理信息產業化――機遇與挑戰[J].遙感信息,2000(02).

[8]楊鳳霞.淺析 Excel 2000對數據的安全管理[J].湖北商業高等專科學校學報,2001(01).
計算機與大數據的相關論文篇三
淺談利用大數據推進計算機審計的策略

[摘要]社會發展以及時代更新,在該種環境背景下大數據風潮席捲全球,尤其是在進入新時期之後數據方面處理技術更加成熟,各領域行業對此也給予了較高的關注,針對當前計算機審計(英文簡稱CAT)而言要想加速其發展腳步並將其質量拔高就需要結合大數據,依託於大數據實現長足發展,本文基於此就大數據於CAT影響進行著手分析,之後探討依託於大數據良好推進CAT,以期為後續關於CAT方面研究提供理論上參考依據。

[關鍵詞]大數據 計算機審計 影響

前言:相較於網路時代而言大數據風潮一方面提供了共享化以及開放化、深層次性資源,另一方面也促使信息管理具備精準性以及高效性,走進新時期CAT應該融合於大數據風潮中,相應CAT人員也需要積極應對大數據帶了的機遇和挑戰,正面CAT工作,進而促使CAT緊跟時代腳步。

一、初探大數據於CAT影響

1.1影響之機遇

大數據於CAT影響體現在為CAT帶來了較大發展機遇,具體來講,信息技術的更新以及其質量的提升促使數據方面處理技術受到了眾多領域行業的喜愛,當前在數據技術推廣普及階段中呈現三大變化趨勢:其一是大眾工作生活中涉及的數據開始由以往的樣本數據實際轉化為全數據。其二是全數據產生促使不同數據間具備復雜內部關系,而該種復雜關系從很大程度上也推動工作效率以及數據精準性日漸提升,尤其是數據間轉化關系等更為清晰明了。其三是大眾在當前處理數據環節中更加關注數據之間關系研究,相較於以往僅僅關注數據因果有了較大進步。基於上述三大變化趨勢,也深刻的代表著大眾對於數據處理的態度改變,尤其是在當下海量數據生成背景下,人工審計具備較強滯後性,只有依託於大數據並發揮其優勢才能真正滿足大眾需求,而這也是大數據對CAT帶來的重要發展機遇,更是促進CAT在新時期得以穩定發展重要手段。

1.2影響之挑戰

大數據於CAT影響還體現在為CAT帶來一定挑戰,具體來講,審計評估實際工作質量優劣依託於其中數據質量,數據具備的高質量則集中在可靠真實以及內容詳細和相應信息准確三方面,而在CAT實際工作環節中常常由於外界環境以及人為因素導致數據質量較低,如數據方面人為隨意修改刪除等等,而這些均是大數據環境背景下需要嚴格把控的重點工作內容。

二、探析依託於大數據良好推進CAT措施

2.1數據質量的有效保障

依託於大數據良好推進CAT措施集中在數據質量有效保障上,對數據質量予以有效保障需要從兩方面入手,其一是把控電子數據有效存儲,簡單來講就是信息存儲,對電子信息進行定期檢查,監督數據實際傳輸,對信息系統予以有效確認以及評估和相應的測試等等,進而將不合理數據及時發現並找出信息系統不可靠不準確地方;其二是把控電子數據採集,通常電子數據具備多樣化採集方式,如將審計單位相應資料庫直接連接採集庫進而實現數據採集,該種直接採集需要備份初始傳輸數據,避免數據採集之後相關人員隨意修改,更加可以與審計單位進行數據採集真實性 承諾書 簽訂等等,最終通過電子數據方面採集以及存儲兩大內容把控促使數據質量更高,從而推動CAT發展。

2.2公共數據平台的建立

依託於大數據良好推進CAT措施還集中在公共數據平台的建立,建立公共化分析平台一方面能夠將所有採集的相關數據予以集中化管理存儲,更能夠予以多角度全方面有效分析;另一方面也能夠推動CAT作業相關標准予以良好執行。如果將分析模型看作是CAT作業標准以及相應的核心技術,則公共分析平台則是標准執行和相應技術實現關鍵載體。依託於公共數據平台不僅能夠將基礎的CAT工作實現便捷化以及統一化,而且深層次的實質研究有利於CAT數據處理的高速性以及高效性,最終為推動CAT發展起到重要影響作用。

2.3審計人員的強化培訓

依託於大數據良好推進CAT措施除了集中在上述兩方面之外,還集中在審計人員的強化培訓上,具體來講,培訓重點關注審計工作於計算機上的具 體操 作以及操作重點難點,可以構建統一培訓平台,在該培訓平台中予以多元化資料的分享,聘請高技能豐富 經驗 人士予以平台授課,提供專業技能知識溝通互動等等機會,最終通過強化培訓提升審計人員綜合素質,更加推動CAT未來發展。

三、結論

綜上分析可知,當前大數據環境背景下CAT需要將日常工作予以不斷調整,依託於大數據促使審計人員得以素質提升,並利用公共數據平台建立和相應的數據質量保障促使CAT工作更加高效,而本文對依託於大數據良好推進CAT進行研究旨在為未來CAT優化發展獻出自己的一份研究力量。

猜你喜歡:

1. 人工智慧與大數據論文

2. 大數據和人工智慧論文

3. 計算機大數據論文參考

4. 計算機有關大數據的應用論文

5. 有關大數據應用的論文

『貳』 如何正確認識大數據的價值和效益

1、數據使用必須承擔保護的責任與義務

我國數據流通與數據交易主要存在以下問題:數據源活性不夠,數據中介機構還處於起步階段;多源數據的匯集技術尤其是非結構化數據分析技術滯後;缺乏熟悉不同行業並掌握在特定領域使用數據技術的人才。

數據的價值在於融合與挖掘,數據流通、交易有利於促進數據的融合和挖掘,搞活數據從而產生效益。數據共享開放、流通交易和數據保護及數據安全對數據技術提出嚴峻挑戰,對法律的制定及執行提出了很高要求。為此,數據使用必須承擔保護的責任與義務。

『叄』 大數據應用須解決三大關鍵點

大數據應用須解決三大關鍵點
大數據應用的關鍵點是數據來源、產品化和價值創造;數據資源分布不均,大數據應用在數據密集領域更易獲得突破;須對不當的行業管理模式進行改革,以促進大數據在已有各個行業中應用。
大數據貴在應用。當前,在國家層面,國務院出台《促進大數據發展行動綱要》;在地方層面,大數據被作為區域發展戰略引擎;在企業層面,各類大數據概念公司方興未艾、蓬勃發展。我們獨關注大數據應用,關注數據從哪裡來、數據怎麼用、成果誰買單,也就是數據來源、產品化和價值創造三個關鍵點。一個好的大數據應用,從技術上可能很復雜,但從業務模式上應當簡單、直白、管用。我們還關注,是否存在若干"數據密集型"行業或領域,大數據應用在這些領域可能更容易開展。在產業政策方面,我們關注作為新興業態的大數據,過去屢試不爽的做法,如給地、給錢、給項目等,是否還會繼續有效?
大數據應用的三個關鍵點
國務院《促進大數據發展行動綱要》(簡稱《大數據綱要》)將大數據定位為"新一代信息技術和服務業態",賦予大數據"推動經濟轉型發展""重塑國家競爭優勢""提升政府治理能力"的戰略功能,並將數據界定為"國家基礎性戰略資源"。在應用方面,《大數據綱要》在公共領域提出許多發展方向,如宏觀調控科學化、政府治理精準化、商事服務便捷化、安全保障高效化、民生服務普惠化;在產業層面,主要按行業領域劃分為工業大數據、新興產業大數據、農業農村大數據、萬眾創新大數據,以及大數據產品體系和大數據產業鏈。這些方向,只是大數據應用的潛力和空間,能不能應用起來,能不能發揮作用,還得看有沒有可行模式和實際效果。無論是在公共領域還是在產業層面,大數據應用都離不開數據來源、處理技術和方法、創造價值的模式,這是我們關注的重點。概括來說,需要回答下面三個看似簡單、卻是關鍵的問題。(一)數據從哪裡來關於數據來源,普遍認為互聯網及物聯網是產生並承載大數據的基地。互聯網公司是天生的大數據公司,在搜索、社交、媒體、交易等各自核心業務領域,積累並持續產生海量數據。物聯網設備每時每刻都在採集數據,設備數量和數據量都與日俱增。這兩類數據資源作為大數據金礦,正在不斷產生各類應用。國外關於大數據的成功經驗介紹,大多是這類數據資源應用的經典案例。還有一些企業,在業務中也積累了許多數據,如房地產交易、大宗商品價格、特定群體消費信息等。從嚴格意義上講,這些數據資源還算不上大數據,但對商業應用而言,卻是最易獲得和比較容易加工處理的數據資源,也是當前在國內比較常見的應用資源。在國內還有一類是政府部門掌握的數據資源,普遍認為質量好、價值高,但開放程度低。《大數據綱要》把公共數據互聯開放共享作為努力方向,認為大數據技術可以實現這個目標。實際上,長期以來政府部門間信息數據相互封閉割裂,是治理問題而不是技術問題。面向社會的公共數據開放願望十分美好,恐怕一段時間內可望不可及。在數據資源方面,國內"小數據""中數據"應用並不充分,試圖一步跨入大數據時代,借機一並解決前期信息化過程中沒能解決的問題,前景並不樂觀。另外,由於中國互聯網公司業務主要在國內,其大數據資源也不是全球性的。數據從哪裡來是我們評價大數據應用的第一個關注點。一是要看這個應用是否真有數據支撐,數據資源是否可持續,來源渠道是否可控,數據安全和隱私保護方面是否有隱患。二是要看這個應用的數據資源質量如何,是"富礦"還是"貧礦",能否保障這個應用的實效。對於來自自身業務的數據資源,具有較好的可控性,數據質量一般也有保證,但數據覆蓋范圍可能有限,需要藉助其他資源渠道。對於從互聯網抓取的數據,技術能力是關鍵,既要有能力獲得足夠大的量,又要有能力篩選出有用的內容。對於從第三方獲取的數據,需要特別關注數據交易的穩定性。數據從哪裡來是分析大數據應用的起點,如果一個應用沒有可靠的數據來源,再好、再高超的數據分析技術都是無本之木。(二)數據怎麼用數據怎麼用是我們評價大數據應用的第二個關注點。大數據只是一種手段,並不能無所不包、無所不用。我們關注大數據能做什麼、不能做什麼,現在看來,大數據主要有以下幾種較為常用的功能。追蹤。互聯網和物聯網無時無刻都在記錄,大數據可以追蹤、追溯任何一個記錄,形成真實的歷史軌跡。追蹤是許多大數據應用的起點,包括消費者購買行為、購買偏好、支付手段、搜索和瀏覽歷史、位置信息,等等。識別。在對各種因素全面追蹤的基礎上,通過定位、比對、篩選,可以實現精準識別,尤其是對語音、圖像、視頻進行識別,使可分析內容大大豐富,得到的結果更為精準。畫像。通過對同一主體不同數據源的追蹤、識別、匹配,形成更立體的刻畫和更全面的認識。對消費者畫像,可以精準推送廣告和產品;對企業畫像,可以准確判斷信用及風險。提示。在歷史軌跡、識別和畫像基礎上,對未來趨勢及重復出現的可能性進行預測,當某些指標出現預期變化或超預期變化時給予提示、預警。以前也有基於統計的預測,大數據大大豐富了預測手段,對建立風險控制模型有深刻意義。匹配。在海量信息中精準追蹤和識別,利用相關性、接近性等進行篩選比對,更有效率地實現產品搭售和供需匹配。大數據匹配功能是互聯網約車、租房、金融等共享經濟新商業模式的基礎。優化。按距離最短、成本最低等給定的原則,通過各種演算法對路徑、資源等進行優化配置。對企業而言,提高服務水平、提升內部效率;對公共部門而言,節約公共資源、提升公共服務能力。當前許多貌似復雜的應用,大都可以細分成以上幾種類型。例如,貴州推行的"大數據精準扶貧項目",從大數據應用角度,通過識別、畫像,可以對貧困戶實現精準篩選和界定,找准扶貧對象;通過追蹤、提示,可以對扶貧資金、扶貧行為和扶貧效果進行監控和評估;通過配對、優化,可以更好地發揮扶貧資源的作用。這些功能也並不都是大數據所特有的,只是大數據遠遠超出以前的技術,可以做得更強大、更精準、更快、更好。(三)成果誰買單成果誰買單是我們評價大數據應用的第三個也是最後一個關注點。道理很簡單,不創造價值的應用不是好應用。我們關注大數據的應用是否實實在在地提升了能力、改善了績效。如果大數據用於自身的產品設計、營銷推廣、資源配置,那就看企業競爭力是不是提升了,看企業最終是不是比以前更賺錢了。如果大數據用於為第三方提供服務,那就看是不是有人願意付費、願意持續付費。但如果是用於公共領域,還要看政府或公共部門的付費值不值,不僅僅是從出資方的視角看值不值,還要從老百姓的視角看值不值。當我們面對一項大數據應用時,只要簡單問一問上面三個問題--數據從哪裡來、數據怎麼用、成果誰買單,就能揭開許多"偽裝"。當然,如果經得起上述"大數據三問",也並非一定算得上優秀,卻也離優秀的大數據應用不遠了。尋找數據密集型領域既然大數據被視為一種資源,那就要考慮資源分布的問題。一般而言,資源分布是極不均勻的,如水、礦產、耕地、能源等自然資源;人力資源和知識的分布更是不均。大數據是否也存在分布不均的問題?發展大數據產業是否真的能彎道超車?這些問題值得深入思考。與可以探測的自然資源不同,數據資源分布難以定位和刻畫。不過,可以用大數據人力資源分布狀況來間接反映大數據應用在地區、行業間的差異,哪些行業、哪些地區大數據人力資源密集,這些行業和地區就可以看作是數據密集的。我們對兩家主流招聘網站"前程無憂"和"智聯招聘"2014年下半年以來發布的招聘信息進行篩選,得到兩家網站兩年來共發布相關信息涉及企業22.7萬家,職位100.7萬個,數據量確實足夠"大"。通過分地區、分行業進行匯總分析,結果顯示大數據人力資源分布極不均勻,各地區、各行業差異極大。不過,確切來說,通過招聘網站反映的是人才需求情況,並不是嚴格意義上的人力資源存量分布情況,但這兩者是緊密相關的。從大數據相關崗位工作地來看,北京、廣東、上海三地高度密集,遙遙領先於其他地區。三地相加,發布招聘信息企業數在兩家網站佔到52.35%和47.48%,職位數佔到61.23%和56.74%。可以推測,大數據人力資源的半壁江山都集中在這三個地方,這與我們平時的直觀感受是高度一致的。在這三個地方之外,我們關心是不是地方政府重視大數據產業、將大數據作為區域經濟發展引擎,就可能促進人力資源集聚,就可能超越與自己相似經濟發展水平的其他地區。從數據反映情況看,至少目前還看不到這樣的結果,這揭示出人力資源結構是後發地區發展大數據產業最需要彌補的短板和最難克服的困難。改變一個地方人力資源構成的難度要遠遠大於改變地面建築面貌,要麼需要一個長期的過程,要麼需要一個獨特的制度。即便在同一省份內,大數據人力資源分布也極為不均。例如在廣東,單深圳一市就大體佔到了全省的一半。再加上廣州,竟然能夠達到九成。其他地方,即使經濟實力不俗,但與深圳、廣州相比,在大數據人力資源方面相差甚遠。這再次表明,大數據人力資源分布是極不均勻的。顯然,大數據人力資源密集地區發展大數據產業的基礎要優於人力資源貧瘠的地區。從城市排名看,北上深廣可以視作大數據人力資源需求密集的一線城市,杭州、南京、成都、武漢、西安等可以看作二線城市。大數據人力資源分布與城市經濟實力、活力乃至房價水平都是大體一致的。從行業分布看,對大數據人力資源的需求分布更不均勻,主要集中在互聯網、信息技術及計算機相關行業。這充分說明了大數據是互聯網或IT產業的一部分,是在原有基礎上的新發展。這些行業是典型的"數據密集型"行業,是大數據產業發展的搖籃。金融是另一個特別重要的"數據密集"領域。金融行業既是產生數據尤其是有價值數據的基地,又是數據分析服務的需求方和應用地。更為重要的是,金融行業具備充足的支付能力,將是大數據產業競爭的重要戰場。許多大數據是通過在金融領域的應用輻射到了各個行業。除此之外,電信、專業服務(如咨詢、人力資源、財會)、教育培訓、影視媒體、網路游戲等,相對而言也是當前數據較為密集的行業。《大數據綱要》幾乎面面俱到地對所有行業和領域都規劃了大數據應用的廣闊前景,但數據資源分布極為不均,在"數據密集"領域的大數據應用,取得市場成功的可能性較大。大數據需要什麼樣的產業政策大數據應用需要什麼樣的產業政策?從應用的角度來看,大數據並非一個全新的產業,而是與已有產業融合,對已有模式的改造、升級和替代。制約大數據發展的往往並不是大數據本身,而是大數據所應用的行業和領域原本存在的問題,如行業管制、行政壟斷、要素不能自由流動,等等。因此,促進大數據發展,用給地、貼錢、上項目的方法,並不能解決根本問題。要從大數據應用領域角度,對不當的行業管理模式進行改革,對既有利益格局進行調整,使大數據應用具備必要的條件。即使在企業內部,大數據應用也不僅僅是個技術問題,而是涉及業務流程重組和管理模式變革,是對企業管理能力的一個考驗。金融、電信、教育、影視媒體等"數據密集型"行業,既是大數據應用潛力巨大的領域,也是迫切推進行業改革的重點領域。另一方面,大數據的應用也可以為行業改革提供技術支撐,能以更有效的技術路線實現行業發展目標。
大數據應用需要的產業政策其實就是市場經濟下各個行業發展所應有的政策,如放開准入、公平競爭、減輕企業負擔、消除企業所有制歧視、消除企業規模歧視,等等。只有在一個開放的產業環境中,大數據才能在這些產業得以有效運用。一個地方若要在金融、醫療、教育等領域大力推動大數據運用,最管用的政策就是對這些行業進行有力的改革。

『肆』 如何進行大數據分析及處理

探碼科技大數據分析及處理過程


聚雲化雨的處理方式

『伍』 哪些因素影響大數據的發展

1.中小企業如何在大數據和演算法決策時代開展競爭



沒有互聯網巨頭或全球快速消費品公司的海量數據集的中小公司如何能夠在大數據和演算法決策時代開展競爭。大公司利用網路服務的網路效應鞏固其地位,這對於良性創新圈是一個風險,或許人們已經看到了這種風險。



2.開放數據需要像開源軟體一樣認真對待



眾所周知,開源軟體背後是大數據和機器學習產品和服務的興起。開放源碼的商業和技術案例的重要性多年前就得到了證實。然而,人們對開放數據對創新的重要性的關注卻少之又少。



3.捕獲和管理實時數據的重要性



雖然人工智慧和機器學習項目並不總是需要實時或接近實時的數據,但構建能夠處理數據的系統的能力可能是一種具有價值的競爭優勢形式。隨著數據驅動的決策越來越多地嵌入到組織中,競爭優勢有時會轉移到那些能夠對事件作出更快響應的組織中。亞馬遜網路服務在這方面的規模和廣度表明,實現這一點的工具變得越來越容易和便宜。



4.法律和道德問題開始改變企業的創新方式



牛津大學SandraWachter博士在會上的演講強調了一個問題,而在未來一兩年內,這個問題可能會得到更多討論。她指出,許多公司現在意識到他們有義務保護個人數據,因為GDPR法規等相關法律已經生效。然而,一個討論較少的問題也是監管機構仍在努力解決的問題是,推理以及由嵌入式演算法需要根據其處理的數據做出的決定。



關於哪些因素影響大數據的發展,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『陸』 中國的大數據該如何騰飛

中國的大數據該如何騰飛

大數據,首先意味著海量數據,並且徹底改變了數據利用的理念。分析所可能產生的全部數據成為可能,這必然使得人們改變過去沿用多時的抽樣分析方法,而要善於快速乃至實時對海量(全部)數據作出反應。過去的抽樣分析會帶來樣本分布的偏差,從而使得有限數據得出的結論發生扭曲;而大數據時代的數據挖掘分析,並不意味著分析難度的降低,相反可能更高。

當然,在大數據時代,通常意義上也不需要分析全部數據。「大數據時代的預言家」、牛津大學網路學院互聯網研究所治理與監管專業教授維克托·邁爾-舍恩伯格就曾指出,大數據用概率說話,海量數據中將被提取出部分的有效數據,只要由此實現的數據挖掘精確度高於過去的抽樣分析。分析全部數據在技術上是可能的,在成本上是不可行的,更何況當下的時間成本常常要比經濟成本更重要。

大數據從一個帶有前瞻性的新型概念,到推動計算機、互聯網等信息產業以及傳統產業、公共管理等諸多方面實現重大變化,為時並不久遠。也就是說,大數據的發展速度相當驚人。遺憾的是,很多人對大數據的理解仍然停留在對以往若干個新銳創業、互聯網概念的理解層次上,將大數據帶來的創新、發展機遇看成是「忽悠」,對大數據時代正在發生的行業和社會關系變化視而不見。而在宏觀層面,國家工信部官員也曾指出,「我國大數據產業同樣面臨著人才匱乏、數據資源不夠豐富、數據開放程度較低、相關的法律法規不完善等問題」。

從我們每個人更可能扮演的消費者、上班族、數字產品使用者等角色來看,大數據也已經深刻的改變了我們的消費、社交和工作,其作用還將進一步提升。套用一句熱門的話,你可以不關心大數據,大數據卻要關心你。任何技術使用都具有兩面性,在帶給人以獨特便利的同時,會對既有的社會關系及人的習慣造成沖擊,甚至損害使用者或他人的權益。大數據建立在數據挖掘與分析基礎上,由此實現預測,將有助於公共管理部門和企業對普通人實施更嚴密的控制。美國已經有社交網站為企業預測員工的離職傾向,這一指數較高的員工將無法獲得提升;金融機構通過大數據技術,得出客戶群體消費傾向與不良記錄的相關性指數,一方面誘導用戶更為便利的進行更多沖動消費,另一方面則對部分用戶設置更嚴格的貸款、信用卡申請批准限制;保險公司會根據客戶的醫療、消費數據,對其可能的死亡期進行預判,從而拒絕部分用戶的投保購買。

《大數據在中國》書中分別以大數據對於創業者而言的創業創新機會、大數據對於政府部門提出的加快立法和推動公共管理轉型的壓力、大數據對於互聯網巨頭重新劃分行業布局的重要機遇、大數據對於科技領域帶來的激活各相關領域連帶式創新的契機、大數據為消費者獲得更多應用便利及隱私泄露威脅等各方面視角,對大數據問題進行了全面敘述。敘述中,書作者匯集了國內外諸多大數據研究分析著作的精華觀點,並結合中國大數據發展的實際,向中國讀者普及大數據概念。

值得一提的是,這本書有意識的分別選取了美國和我國大數據產業的多個案例,歸納了大數據發展的共性規律,分析指出了中國大數據產業落後於美國的主要痼疾,並發出了加快發展中國大數據產業、加快大數據立法和相關公共管理模式轉型、加強大數據時代隱私安全機制建設和公民理念培育等呼籲。書作者特別強調,在蓬勃發展的互聯網時代,大數據可以幫助政府、企業等各類組織擺脫舊的管理模式,走向更為光明的未來,但要實現這一點,當前政府就必須抓住大數據發展的基礎設施、產業鏈、人才、技術和立法五大關鍵要素。

以上是小編為大家分享的關於中國的大數據該如何騰飛的相關內容,更多信息可以關注環球青藤分享更多干貨

『柒』 發展「大數據」聚焦三大問題

發展「大數據」聚焦三大問題

當前,對數量巨大、來源分散、格式多樣的數據進行採集、存儲和關聯分析,從中發現新知識、創造新價值、提升新能力的新一代信息技術和服務業態正快速發展。而為了進一步促進「大數據」的發展,日前,國務院印發了《大數據發展行動綱要》(以下簡稱《綱要》),聚焦三大問題,成為「大數據」未來發展的指南。
焦點一:加快政府數據開放共享
《綱要》指出,要加快政府數據開放共享,推動資源整合,提升治理能力。即要大力推動政府部門數據共享,穩步推動公共數據資源開放,統籌規劃大數據基礎設施建設,支持宏觀調控科學化,推動政府治理精準化,推進商事服務便捷化,促進安全保障高效化,加快民生服務普惠化。
從整體上看,政府數據的開放程度相較以前有了明顯好轉。在數據公開方式上,已經由紙質文件轉為線上線下結合,除了相應的官方網站外,還有微信、微博等線上平台與群眾進行互動答疑。在數據公開內容上,由此前「不解渴」的數據逐漸轉向群眾所需求的數據,達到真正的急人之所急、需人之所需。
然而,「數據平台」、「信息共享」、「互聯互通」等詞彙雖頻頻被政策文件提及,但實際上,僅僅是政府各部門間的數據共享就未能得到全面普及,從群眾的反饋上可見一斑。
購房時客戶需要填報十幾張表格,其中表格的重復率高達30%;辦理證件時需要來往各個部門開具相應證明,群眾為此跑斷腿;不同區域、不同部門的政府數據實現分割、壟斷式管理,產生一個個「數據孤島」,從而影響其社會服務效率。
由此可見,要實現政府各部門間的數據共享仍有很長一段路要走。雖然不同部門規則不一、層次不一等多方面原因造成了「數據孤島」,但破除「數據孤島」也是發展「大數據」的首要任務。因此,加快政府數據開放共享無疑是亮點之一,也是社會群眾所迫切需求的。
對於如何加快政府數據開放共享,《綱要》也提出若干措施,如加強頂層設計和統籌規劃,明確各部門數據共享的范圍邊界和使用方式;釐清各部門數據管理及共享的義務和權利,依託政府數據統一共享交換平台;大力推進國家人口基礎信息庫等國家基礎數據資源,以及金稅、金關、金財等信息系統跨部門、跨區域共享;加快各地區、各部門、各有關企事業單位及社會組織信用信息系統的互聯互通和信息共享,豐富面向公眾的信用信息服務,提高政府服務和監管水平等。
焦點二:推動產業創新發展
《綱要》指出,要推動產業創新發展,培育新興業態,助力經濟轉型。即要發展工業大數據、新興產業大數據、農業農村大數據、萬眾創新大數據,推進基礎研究和核心技術攻關,形成大數據產品體系,完善大數據產業鏈。
當前,新興產業對推動經濟發展、助力經濟轉型有著重要作用。然而,也正因為它是新興產業,所以擁有的資源比傳統產業少,發展環境也不如傳統產業。「大數據」的發展則能有效彌補新興產業缺少資源的短處,故而發展「大數據」能變相推動產業創新發展,亦能改變新興產業的盈利模式。
以發展萬眾創新大數據為例,對於初次創業的創客們,實施大數據創新行動計劃,鼓勵企業和公眾發掘利用開放數據資源,無疑能激發創新創業活力,減少許多不必要的創業彎路。
同時,利用大數據、雲計算等技術,對各領域知識進行大規模整合,搭建層次清晰、覆蓋全面、內容准確的知識資源庫群,亦能為創客們提供精準、高水平的知識服務,避免跨界發展的創客遇到知識盲區等。
此外,許多互聯網模式下的新興產業也可利用相應的網路平台積累自己的大數據,以自己的大數據衍生出其他服務,形成不同的盈利模式,百花齊放。
焦點三:強化安全保障
《綱要》指出,要強化安全保障,提高管理水平,促進健康發展。即要建立大數據安全評估體系,健全大數據安全保障體系,明確數據採集、傳輸、存儲、使用、開放等各環節保障網路安全的范圍邊界、責任主體和具體要求,強化安全支撐。
在信息化的時代,數據應用無處不在,數據的安全問題也隨之層出不窮。僅以個人數據為例,在消費途徑多樣化的大環境下,個人數據被留存在各種渠道上。從管理資金的金融系統到出行旅遊的交通系統,再到快捷消費的電子商務平台,個人數據無處不在,而要保護這些數據不被非法利用,則是難上加難。
然而,要發展「大數據」,就必須對數據的安全有所保障,營造一個安全的數據流通環境。一方面要在數據的獲取、存儲、使用等方面進行有效保障,如加大「大數據」安全保障體系建設、建立網路安全信息共享機制等;另一方面也要完善相關法律,利用法律的牙齒來進行刑事責任約束,對非法利用數據等違法行為加大懲處力度。
對此,《綱要》也提出舉措和目標,即在涉及國家安全穩定的領域採用安全可靠的產品和服務,到2020年,實現關鍵部門的關鍵設備安全可靠。完善網路安全保密防護體系。建設國家網路安全信息匯聚共享和關聯分析平台,促進網路安全相關數據融合和資源合理分配,提升重大網路安全事件應急處理能力等。

以上是小編為大家分享的關於發展「大數據」聚焦三大問題的相關內容,更多信息可以關注環球青藤分享更多干貨

『捌』 大數據、高性能環境對存儲的需求

大數據、高性能環境對存儲的需求
一直以來,高性能計算的主要目的就是提高運算速度,來解決大規模科學計算和海量數據的處理問題。高性能計算每秒萬億次級的強大計算能力,使其成為石油、生物勘探、氣象預測、生命科學研究等領域的重要技術選擇。但是隨著數據量以及數據價值的不斷增長,金融、電信、互聯網等領域對高性能計算的需求不斷加大。隨著技術的發展,高性能計算系統的處理能力越來越強,任務的計算時間越來越短,對業務的價值不斷提高。但是,要想實現快速的任務計算處理,高性能計算系統的存儲能力是關鍵。因為在計算開始,要從存儲系統中讀取數據;計算結束時,要向存儲系統中寫入計算後的結果。如果這之間的讀取和寫入速度不匹配,不僅會拖延高性能項目的完成周期,低延遲還會嚴重影響高性能創造價值的能力。通常,高性能計算要求存儲系統能夠滿足性能、可擴展性要求,保護投資回報:吞吐量達到幾個甚至幾十個GB/s,容量能擴展至PB級;透明的訪問和數據共享;集中式的智能化管理,高性價比;可按需獨立擴展容量和性能等。中橋分析師在深圳華大基因研究院實地測試了EMC Isilon 產品在其HPC 環境下的運行情況,並記錄下其結果。
背景
高性能計算(High Performance Computing—HPC )指通常使用很多處理器(作為單個機器的一部分)或者某一集群組織中幾台計算機(作為單個計算資源操作)的計算系統和環境。長期以來,高性能計算應用的主要領域是科學與工程計算,諸如高能物理、核爆炸模擬、氣象預報、石油勘探、地震預報、地球模擬、葯品研製、CAD 設計中的模擬與建模、流體力學的計算等。如今,像金融證券、政府信息化、電信行業、教育、企業、網路游戲等領域對HPC的需求也在迅猛增長。
高性能計算的應用
高性能計算有著廣泛的行業應用基礎,下面列舉幾個行業對高性能計算的應用需求:
1. 航空航天行業
在航空航天行業,隨著中國航空航天事業的快速發展,尤其是載人航天技術的巨大成功,我國科技人員對空氣動力學的數值模擬研究提出了越來越多的需求,常規的計算能力遠遠無法滿足復雜的大型飛行器設計所帶來的巨大需求。在航空航天企業的設計過程中,研究人員往往需要把飛機表面分成幾百萬甚至幾千萬個離散型的網格點,然後通過高性能計算平台求解方程,得出每個網格點的溫度、速度、摩擦力等各種參數,並模擬出連續型的曲線,進而為飛機設計提供寶貴的參考資料。對這類計算來說,網格點分割得越細密,計算結果的精確度也就越好。但是這些大規模設計計算問題不但單個作業計算量龐大,且需不斷調整、重復計算,因此高性能在航天航空行業中占據著舉足輕重的地位。
2. 能源行業
石油能源作為國家戰略資源,對於國家經濟、安全、軍事等各方面都具有非常重要的戰略意義。石油勘探承擔著尋找儲油構造、確定井位的重要任務。目前的主流做法就是人為的製造相應規模的地震(視勘探地區面積與深度不同),同時在相應的地層遍布若干震波收集點。由於不同材料的地質環境對地震波的影響是有規可循的,所以藉助這一點,通過相關的演算法,即可以通過對地震波的傳遞演算來「計算出」地質結構,從而找出我們所需要的能源位置。這種計算量無疑是異常龐大的,由於地震波法勘探收集的數據通常都以TB計,近年來海洋油氣勘探所採集的數據甚至開始向PB規模發展。為此,只有藉助高性能計算,才能在最短的時間內處理這些海量數據。
3. 生命科學
在現代生命科學領域,以數據為驅動力的改變正引發著巨大的變革。海量生物數據的分析將會增強疾病的實時監控能力和對潛在流行病做出反應的能力,但海量數據的挖掘、處理、存儲卻面臨著前所未有的挑戰。特別是隨著新一代測序技術的迅猛發展,基因組學研究產生的海量數據正以每12- 18個月10倍的速度增長,已遠超越著名的摩爾定律,這使得眾多生物企業和科研機構面臨強大的數據分析和存儲需求。
在國內,生物基因行業的發展勢頭也不可小覷。2011年1 月30日,國家發改委已批復同意深圳依託華大基因研究院組建國家基因庫,這是中國首次建立國家級基因庫,首期投資為1500萬元。深圳國家基因庫是一個服務於國家戰略需求的國家級公益性創新科研及產業基礎設施建設項目,是目前我國唯一一個獲批籌建的國家級基因庫,是全球僅次美國、日本和歐洲三個國家級基因庫之後的世界第四個國家級基因庫。現在,該國家基因庫已經收集了100萬GB的生物數據,包含基因組、轉錄組、蛋白質組、代謝組及表型的數據,同時也積累了約四十萬份生物樣本。預計該基因庫最終將達到10億GB級別的數據容量。深圳國家基因庫和國際上已有的基因庫相比,它的特點是既有「濕庫」也有「干庫」:前者把千萬種實體的動植物、微生物和人類組織細胞等資源和樣本納入網路;後者匯集巨量的核酸、基因表達、蛋白、表型等多類數據信息,成為「大數據」生物學時代研究生物生長發育、疾病、衰老、死亡以及向產業化推廣的利器。
4. 金融行業
金融說到底就是數據。在金融市場中,擁有速度就意味著更高的生產力和更多的市場份額。金融計算模型相當復雜,數據收集越多,計算結果越精確。金融分析師都迫切地需要一個能模擬復雜現實環境,並進行精確處理的金融計算程序,以便對每個投資產品及時地評估投資收益,衡量投資風險,以期獲得更好的投資回報。也正因此,高性能計算已經越來越多地應用到全球資本市場,以期在最短時間內實現對市場的動態響應與轉換。
5. 氣象預報
世紀二十年代初,天氣預報方程已基本建立。但只有在計算機出現以後,數值天氣預報才成為可能。而在使用並行計算機系統之前,由於受處理能力的限制,只能做到24小時天氣預報。高性能計算是解決數值預報中大規模科學計算必要手段。採用高性能計算技術,可以從提高解析度來提高預報精度。
6. 游戲動漫和影視產業
隨著3D、4D電影的興起和高清動漫趨熱,由高性能計算(HPC )集群構成的「渲染農場」已經成為三維動畫、影視特效公司不可或缺的生產工具。動漫渲染基於一套完整的程序進行計算,從而通過模型、光線、材質、陰影等元素的組合設定,將動漫設計轉化為具體圖像。以《玩具總動員》為例,如果僅使用單台工作站(單一處理器)進行動畫渲染,這部長達77分鍾的影片的渲染時間將會是43年,而採用集群渲染系統,只需約80天。

閱讀全文

與大數據中若干問題初探相關的資料

熱點內容
幾組數據對比要用什麼圖 瀏覽:726
bov文件什麼意思 瀏覽:132
zp3後綴是什麼文件 瀏覽:201
米奇編程有什麼好吃的好痴的圖片 瀏覽:137
嵌入式黑盒測試工具 瀏覽:154
有限狀態自動機代碼 瀏覽:816
hosts文件空內容 瀏覽:254
tcpudp源代碼 瀏覽:737
重裝系統軟體win10嗎 瀏覽:51
spss非線性回歸教程 瀏覽:183
ldb文件是什麼 瀏覽:359
無網路下手機連接投影 瀏覽:431
少兒編程有哪些技巧 瀏覽:569
網路報道失實如何舉報 瀏覽:560
網上什麼相親網站好 瀏覽:205
萊州如何優化網站 瀏覽:563
java封裝ocx 瀏覽:41
qq微信接收文件夾在哪裡 瀏覽:632
語音包文件夾後綴是多少 瀏覽:131
魅族手機app是什麼 瀏覽:887

友情鏈接