⑴ 什麼是大數據技術大數據的概念
大數據技術是指大數據的應用技術,涵蓋各類大數據平台、大數據指數體系等大數據應用技術。
大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
隨著雲時代的來臨,大數據也吸引了越來越多的關注。分析師團隊認為,大數據通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。
大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
(1)全面解析大數據擴展閱讀:
大數據的三個層面:
1、理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
2、技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
3、實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
參考資料來源:網路-大數據
⑵ 大數據起源,給你解析到底什麼是大數據
大數據,英文名big data。因為傳播已經成為習慣,我們並沒有過多的去思考為什麼用big data去描述,但是現在我們仔細回味一下,會發現大數據這個大為什麼不用large為什麼不用海量vast呢?歸根結底我們可能就需要從語法上,來分析一下,它們三個之間的區別。big形容大小。更多的時候,是一種比較行為上的大,是種相對來說的感覺,而large和vast更多的時候形容的是的是一種形體上的巨大。
那麼現在來推敲一下big data這個詞,大數據這個大其實是一種相對的說法是相對於傳統的數據體量來說的,過去任何時候的數據相對於現在來說都顯得太過於渺小,而現在我們所說的大數據是一種量變最後達到了質變的概念。
數據這個詞最早在媒體上風靡應該是2007年左右。往上追溯應該就是05年穀歌參加有美國官方舉辦的一個機器翻譯大賽,最終由於使用了海量的相關數據而奪得第一,在那之後大數據這個概念漸漸的被業內人士所傳播。那麼到底什麼是大數據呢?
大數據顧名思義,最表象的特徵就是數據量夠大。但是僅僅數據量夠大,並不能構成大數據整體的含義。如果是海量雜亂無章,互之間沒有關聯的數據,即便再怎麼定義,它也算不上是大數據。就譬如一個人體內的基因圖譜,詳細的基因圖譜數據如果記錄出來是一個很大體量的,但是沒有意義。
大數據而且還有個概念,那就是多維度。在十年前,如果說國內哪一家公司最有資格說大數據的,那無疑是網路了。作為一個獨佔13億用戶專屬的搜索公司來說,網路對於用戶畫像的記錄,無疑是多維的。網路搜索,至今記錄了無數用戶每天在互聯網上搜索的問題,或者說知識。在時間維度上用戶對某些詞彙搜索的頻次高低這些都是數據。它可以通過對注冊用戶的甄別就可以知道搜索這個詞彙或者是這個問題的用戶是男生還是女生?年齡分布是是小孩、青年抑或是一個中年大叔?再到後來個人電腦開始普及,通過記錄ip等信息,根據ip搜索的網路的問題的分類,可以判斷中國各個區域,是南方富裕一點,還是北方富裕點?是江蘇人更愛吃,還是閩南人更喜歡談論吃?網路完全可以根據自己的數據生成得到國內各種關於此類的數據,普查之後所能得到的答案這就是因為網路所具有的數據是一個多維度的數據。他的數據收集過程,是一個長期的持續性的工作。
除了網路之外,騰訊的qq確實每年都會有一個關於qq的城市報告。它會根據qq的用戶數據,甚至於至於活躍地點。在一個大的范圍內青年QQ用戶的佔比,最終可以得到中國城市年輕度排行榜。可以根據這些數據判斷,哪一個城市是,年輕人畢業之後最願意去的。可以判斷哪一個城市的,年輕人畢業之後,是回歸率最高的。也可以判斷哪一個城市的人才流失率更低,更容易留住外來人才。這些都是大數據多維度的應用。
大數據還有一個非常重要的特點,那就是全面性。經常在某些大型活動之前我們都會遇到。某些公司對於這件事情,會做出預測。然後最終的結果讓我們大失所望。預測無疑是需要基於數據基礎的預測,如果這個數據不夠全面的話,最終的預測結果肯定相差甚大。
關於數據全面性有一個最經典的案例這是12年美國大選大選事件。一個名叫斯威爾的年輕人,利用大數據預測。成功預測出了51個州的選舉果,要知道這在之前是從來沒有發生過的事情。美國大選在之前就一直有專業的預測機構做預測,但是就連這種長期做數據,分析的公司都從來沒有如此成功的預測過。那是因為斯威爾將網上所有關於選舉的數據,包括新聞稿,以及facebook和推特上面人們關於選舉的言論,所有的數據都做了甄選處理。這份數據反映的是網民全面幾乎沒有遺漏的想法,最終得到了某種程度上來說,比較具有完備性的數據,所以能夠如此成功的預測13年美國大選的結果。
⑶ 如何對數據進行分析 大數據分析方法整理
【導讀】隨著互聯網的發展,數據分析已經成了非常熱門的職業,大數據分析師也成了社會打工人趨之若鶩的職業,不僅高薪還沒有很多職場微世界的繁瑣事情,不過要想做好數據分析工作也並不簡單,今天小編就來和大家說說如何對數據進行分析?為此小編對大數據分析方法進行的歸納整理,一起來看看吧!
畫像分群
畫像分群是聚合契合某種特定行為的用戶,進行特定的優化和剖析。
比方在考慮注冊轉化率的時候,需求差異移動端和Web端,以及美國用戶和我國用戶等不同場景。這樣可以在途徑戰略和運營戰略上,有針對性地進行優化。
趨勢維度
樹立趨勢圖表可以活絡了解商場,用戶或產品特徵的根柢體現,便於進行活絡迭代;還可以把方針依據不同維度進行切分,定位優化點,有助於挑選方案的實時性。
趨勢維度
漏斗查詢
經過漏斗剖析可以從先到後的次序恢復某一用戶的途徑,剖析每一個轉化節點的轉化數據。
悉數互聯網產品、數據分析都離不開漏斗,不論是注冊轉化漏斗,仍是電商下單的漏斗,需求注重的有兩點。首先是注重哪一步丟掉最多,第二是注重丟掉的人都有哪些行為。
注重注冊流程的每一進程,可以有用定位高損耗節點。
漏斗查詢
行為軌道
行為軌道是進行全量用戶行為的恢復,只看PV、UV這類數據,無法全面了解用戶怎樣運用你的產品。了解用戶的行為軌道,有助於運營團隊注重具體的用戶領會,發現具體問題,依據用戶運用習氣規劃產品、投進內容。
行為軌道
留存剖析
留存是了解行為或行為組與回訪之間的相關,留存老用戶的本錢要遠遠低於獲取新用戶,所以剖析中的留存是十分重要的方針之一。
除了需求注重全體用戶的留存情況之外,商場團隊可以注重各個途徑獲取用戶的留存度,或各類內容招引來的注冊用戶回訪率,產品團隊注重每一個新功用用戶的回訪影響等。
留存剖析
A/B查驗
A/B查驗是比照不同產品規劃/演算法對效果的影響。
產品在上線進程中常常會運用A/B查驗來查驗產品效果,商場可以經過A/B查驗來完畢不同構思的查驗。
要進行A/B查驗有兩個必備要素:
1)有滿意的時刻進行查驗
2)數據量和數據密度較高
由於當產品流量不行大的時候,做A/B查驗得到核算經果是很難的。
A/B查驗
優化建模
當一個商業方針與多種行為、畫像等信息有相關時,咱們一般會運用數據挖掘的辦法進行建模,猜測該商業效果的產生。
優化建模
例如:作為一家SaaS企業,當咱們需求猜測判別客戶的付費自願時,可以經過用戶的行為數據,公司信息,用戶畫像等數據樹立付費溫度模型。用更科學的辦法進行一些組合和權重,得知用戶滿意哪些行為之後,付費的或許性會更高。
以上就是小編今天給大家整理分享關於「如何對數據進行分析
大數據分析方法整理」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,一直學習,這樣更有核心競爭力與競爭資本。
⑷ 大數據分析是什麼,怎麼分析的呢
朋友剛打電話說想吃日料,你打開手機某團APP就會顯示有日料團購推薦,剛在某信上說要去日本玩,就在盆友圈看到了機票廣告。你是否有過疑惑,為什麼我的手機APP如此了解我?難道是我的日常生活習慣大數據被分析了嗎?
大數據是什麼?
大數據不僅僅是大量的數據,而且是來自不同來源,存在不同類型,代表不同含義的海量數據。大數據應該動態變化,不斷增加,而且能夠通過研究分析發現規律產生價值。
大數據可以幫助我們根據對歷史情況的分析,發現事物的發展變化規律,可以有助於更好的提高生產效率,預防意外發生,促進營業銷售,使我們的工作和生活變得更加高效輕松便利。
當然APP不會竊取你的數據,是你的行為數據讓某團和某信意識到了你的需求,才有了以下推薦。
當你注冊一個APP賬號的時候,需要輸入電話,姓名,性別,所在地等基礎數據,更進一步的數據是你的消費記錄,發過的紅包,日常用語習慣,打車記錄,外賣訂單記錄等等,這些數據會變成你的事實標簽,成為你行為數據很重要的一部分。
上邊提到的大數據分析不僅僅是收集龐大的數據,更是建立模型,分析數據資料,並得出一系列結論的系統過程。從雜亂的數據中分析出你的興趣愛好,進而構建全面的用戶畫像。
舉個例子來說,當你打開一篇標簽為雪地靴的文章時,你的行為可能是專門點開,也可能是無意中點開,這個時候就需要更多的行為來判斷這篇文章對你的吸引力了。
這是一個非常初級的內容標簽權重演算法:
興趣標簽(雪地靴)權重 = 行為權重 x 訪問時長 x 衰減因子
行為權重:什麼都不幹1分,評論+0.5,點贊+0.5,轉發+2,收藏+1
時長權重:10S以內權重為0.5,10S-60S為1,60S以上為2
衰減因子:0-3天內權重為1,3-7天權重為0.85,7-15天權重為0.7,15-30天權重為0.5,30天以上權重為0.1
行為權重對應你是否有評論、點贊、轉發、收藏等操作,不同操作有不同的數值,累加成行為權重。停留時間越長,時間權重也越高。最後,短期行為也無法代表長期興趣,單次閱讀行為的權重會隨著時間流逝不斷衰減。於是,你每次打開雪地靴類的內容都會生成一個興趣權重,根據型渣函數公式得到一個興趣標簽值,數值越高,你對雪地靴就越感興趣。
當你各個方面的偏好被計算完成之後,這些偏好就會變成特徵向量,再通過計算特徵向量找出與你相似的人並分類。再通過訓練模型和測試准確度,最終,你的某信,某寶和某團等APP就會得到一個相對於較全面你的用戶畫像,上邊標注了你被分析之後的行為事實標簽。根據這個用戶畫像,廣告主就可以根據這個找到他們想要的消費者了。
之後,一個住在黑龍江漠河的有過雪地靴消費記錄的未婚女青年在即將刷到廣告位的那一瞬間,廣告平台會發起競價請求,最後價高的廣告將出現在你的眼前。
需要說明的是,某寶某信和某團等採集的行為數據不僅只對應你的賬號,更與你的手機唯一識別碼綁定在一起,這意味著,你就算不注冊不登錄,你的行為數據一樣會被採集。同時,廣告平台也可以根據你的手機識別碼在其他 App 上為你投放廣告,這樣你刷某音的時候也能看到某寶的雪地靴廣告了。
不過大家不要緊張隱私泄露問題,根據國家《個人信息安全規范》,商業廣告平台卜蠢悄的所有標簽都應該避免精檔空確定位到個人,以保護你的隱私安全 。
⑸ 供應鏈大數據分析
供應鏈大數據分析
供應鏈大數據分析,越來越多的企業採用數據分析來應對供應鏈中斷,並加強供應鏈管理(SCM),目前有幾項重大中斷正在影響供應鏈。以下分享供應鏈大數據分析,一起來看看。
全面解析大數據給供應鏈帶來的益處
時下,大數據已經完全跨越概念炒作,而成為很多行業業務發展中實實在在應用的重要武器,但是在供應鏈管理領域,大數據技術的應用產業發展則處於起步階段,但是相信伴隨其他行業大數據的快速發展,供應鏈管理中的大數據也會迅速跟上來,那麼人們勢必會問大數據到底能夠為供應鏈帶來哪些益處呢,下面請隨乾元坤和我一同了解大數據給供應鏈帶來的好處。
大數據與供應鏈
1、庫存優化。比如,SAS獨有的功能強大的庫存優化模型可以實現在保持很高的客戶滿意度基礎上,把供應成本降到最低並提高供應鏈的反應速度。
其庫存成本第一年就可下降15%~30%,預測未來的准確性則會上升20%,由此帶來的是其整體營收會上升7%~10%。當然還有一些其他的潛在好處,如提升市場份額等。此外,運用SAS系統,產品質量會得到顯著提升,次品率也會因此減少10%~20%。
2、創造經營效益,從供應鏈渠道,以及生產現場的儀器或感測器網路收集了大量數據。利用大數據對這些資料庫進行更緊密的整合與分析,可以幫助改善庫存管理、銷售與分銷流程的效率,以及對設備的連續監控。製造業要想發展,企業必須了解大數據可以產生的成本效益。對設備進行預測性維護,現在就具備採用大數據技術的條件。製造業將是大數據營業收入的主要來源。
3、B2B電商供應鏈整合。強大的電商將引領上游下游生產計劃-下游銷售對接,這種對接趨勢是上游製造業外包供應鏈管理Supply-Chain,只專注於生產Manufacturing,ProctionChain(R&D)。
物流外包上升到供應鏈外包是一個巨大的飛躍,體現了電商的強大競爭力和整合能力,海量數據支持和跨平台、跨公司的對接成為可能。B-B供應鏈整合具有強大的市場空間,能夠改善我國產業布局、產業鏈優化、優化產能分配、降低庫存、降低供應鏈成本、提高供應鏈效率。
4、物流平台規模發展,B-C商業模式整合已經成為現實,但是物流執行平台的建設是拖後腿的瓶頸。多樣產品的銷售供應鏈的整合有很大的技術難題,如供貨周期、庫存周期、配送時效、物流操作要求等,這樣的物流中心難度很大。
大數據平台建設將驅動整體銷售供應鏈整合;中國的還有的現實問題跨區域物流配送、城鄉差異等,政府的管制是一大難點/疑難雜症,大數據平台有助於政府職能調整到位。
5、產品協同設計,過去大家最關心的是產品設計。可是現在,在產品設計和開發過程中,相關人員相互協同,工廠與製造能力也在同步設計和開發中。當前的壓力在於向市場交付更具競爭力、更高配置、更低價格、更高質量的產品,而同時滿足所有這些要求,是製造和工程企業的下一個重大的價值所在。這也正是大數據的用武之地。
企業如何部署大數據?
要讓數據發揮價值,首先要處理大數據,要能夠共享、集成、存儲和搜索來自眾多源頭的龐大數據。而就供應鏈而言,這意味著要能夠接受來自第三方系統的數據,並加快反饋速度。
其整體影響是增強協同性、加快決策制定和提高透明度,這對所有相關人員都有幫助。傳統供應鏈已經在使用大量的結構化數據,企業部署了先進的供應鏈管理系統,將資源數據,交易數據,供應商數據,質量數據等等存儲起來用於跟蹤供應鏈執行效率,成本,控制產品質量。
大數據給供應鏈帶來的好處
而當前大數據的概念則超出了傳統數據產生、獲取、轉換、應用分析和存儲的概念,出現非結構化數據,數據內容也出現多樣化,大數據部署將面臨新的挑戰。
針對如今所生成、傳輸和存儲的海量信息進行簡單處理所帶來的挑戰。當前,數據量呈爆炸式增長,而隨著M2M(機器對機器的通訊)的應用,此趨勢仍將持續下去。
但是,如若能夠解決這些挑戰,將可以打開嶄新的局面?核心在兩個方面:
1、解決數據的生成問題,即如何利用物聯網技術M2M獲取實時過程數據,虛擬化供應鏈的流程。通過挖掘這些新數據集的潛力,並結合來源廣泛的信息,就可能獲得全新的洞見。如此,企業可以開發全新的流程,並與產品全生命周期的各個方面直接關聯。與之集成的還有報告和分析功能,為流程提供反饋,從而創建一個良性的強化循環。
2、解決數據應用的問題,如何讓供應鏈各個價值轉換過程產生的數據發生商業價值,是發揮數據部署的革命性生產力的根本。大數據在供應鏈的應用已經不是簡單的交易狀態可視,支撐決策庫存水平,傳統ERP結構是無法承擔的。因此企業必須重新做好數據應用的頂層設計,建立強大全面的大數據應用分析模型,才能應對復雜海量的數據如何發揮價值的挑戰。
大數據在供應鏈領域的應用剛剛起步,隨著供應鏈的迅速發展,大數據分析,數據管理,大數據應用,大數據存儲在供應鏈領域蘊含巨大的發展潛力,大數據的投資也只有與供應鏈結合,才能產生可持續、規模化發展的產業
大數據分析對供應鏈有什麼影響
如今,從物流到客戶偏好的各種數據的持續增長正在迅速改變企業的經營方式,並突出了對加強數據管理和分析的強烈需求。大數據分析(指大型和復雜的數據集)的好處是顯而易見的:大數據可以完全改變組織的工作方式,在效率、成本、可見性和客戶滿意度方面產生巨大差異。
大數據來源廣泛:
-如今的技術和社交平台允許企業以評級、評論和博客評論的形式獲得直接的客戶反饋。
-來自移動通信、社交平台和電子商務的數據正在與來自企業系統的數據集成。
-隨著物聯網和機器對機器通信的引入,製造業正在從基於事件的計劃轉變為實時感測。
-不斷發展的感測器技術可提供實時設備和產品狀況數據,從而實現自動維護和過程調整。
數據在數量上、種類上和速度上都有所增長,如果以正確的方式加以利用,可以帶來巨大的價值。
研究顯示,企業已經在推動整個企業供應鏈的生產力,但在供應鏈功能中使用大數據分析在全球企業中並不普遍或協調得很好。受益於大數據分析的公司有三個共同點:它們擁有強大的企業級分析戰略,它們將大數據分析嵌入供應鏈運營,它們擁有合適的人才庫,能夠從大數據中產生可操作的見解。
有必要僱用、培訓和扶持能夠幫助企業從大數據分析中受益的領導者。從人力資本的角度來看,大多數公司的定位尚不足以接受數字化供應鏈轉型。我們分析了各行各業的50多位高級供應鏈高管的個人資料,以了解他們在供應鏈數字化方面的定位。在涉及所謂的「數字防備連續性」方面,各行各業的公司中絕大多數高管都普遍缺乏。
調研機構采訪了各行各業的商界領袖,以探討當今日益數字化的世界對首席供應鏈官的角色以及供應鏈領導者與高級管理人員中其他高管人員之間互動的影響。通過這些訪談,我們發現了供應鏈領導者應具備的四個關鍵特徵,以便能夠從大數據分析中獲得收益:
1、對數據和系統技術有深刻的了解。當今的企業可以通過數據分析和通過數字方式收集數據來深入了解客戶行為。盡管不需要首席供應鏈官成為信息技術(IT)專家,但他們應該對數據收集、技術和分析有足夠的了解,以引導對話並為高級領導者及其供應鏈團隊提供數字化願景。
供應鏈領導者應認識到如何實施和利用相關平台和流程以及數據來自何處,並應表現出對來自各種渠道的數據范圍和規模的扎實理解。重要的是,領導者必須准備好對數據採取明智的行動。
2、具有影響力的協作方法。如果首席供應鏈官在孤島工作,將無法從大數據分析中獲得收益。在內部,供應鏈領導者必須能夠與首席技術官進行溝通和協作,以幫助確定適合組織的技術和政策;
與首席數據官一起了解如何最佳地捕獲和使用數據;與首席營銷官一起,評估供應鏈如何能夠更專注於客戶和需求驅動,並與首席執行官具體溝通更廣泛的創造價值的機會。最終,供應鏈執行官將需要能夠與內部利益相關者和外部供應商建立橋梁。
3、跨職能經驗。如今的供應鏈管理人員具有跨部門的經驗,並且能夠理解和與來自多個業務部門的人員進行交流。重要的是,首席供應鏈官員還必須具有銷售、財務或技術方面的知識。
4、發展新技能和培訓他人的能力。當今的首席供應鏈官必須緊跟最新技術,以確保組織適當地吸收數字技能和分析人才。企業犯的最大錯誤之一是在沒有適當准備組織的情況下實施大數據分析項目。建立內部計劃以確保在整個供應鏈中採用技能至關重要。
要從整個供應鏈或整個組織的大數據分析中獲取所有好處,不僅需要技術和IT。從首席執行官和執行委員會開始,企業必須准備好支持一種全新的思維方式,培養一種對創新和技術開放的文化,並願意挑戰關於供應鏈管理方式的慣例。
大數據分析對供應鏈有什麼影響、中琛魔方大數據分析平台(www、zcmorefun、com)表示由於供應網路上數十億的連接設備提供關於服務需求、位置和庫存分布的實時信息,甚至實現預期的需求,理解和接受大數據的執行領導層、數字顛覆和這些趨勢的人力資本方面對未來企業的優勢至關重要。
"以零售門店為中心"的供應鏈分析框架
一、目的
本文旨在介紹「以零售門店為中心」的供應鏈管理,簡要介紹此框架下供應鏈管理的具體內容及行業痛點。
二、供應鏈是什麼?
供應鏈
所謂供應鏈,是指由涉及將產品或服務提供給最終消費者的整個活動過程的上游、中游和下游企業所構成的網路。包括從原材料采購開始,歷經供應商、製造商、分銷商、零售商,直至最終消費者的整個運作過程。
供應鏈管理
供應鏈管理,指的是圍繞核心企業,對供應鏈中的物流、信息流、資金流以及貿易夥伴關系等進行組織、計劃、協調、控制和優化的一系列現代化管理。
它將企業內部經營所有的業務單元如訂單、采購、庫存、計劃、生產、質量、運輸、市場、銷售、服務等以及相應的財務活動、人事管理均納入一條供應鏈內進行統籌管理。
在傳統零售或者傳統行業中,供應鏈主要局限在供應鏈的後端,即采購、生產、物流等職能,與消費者、銷售渠道的協同整合嚴重不足,導致牛鞭效應、孤島現象、的出現,讓供應鏈的反應總是很滯後。
三、「以零售門店為中心」的供應鏈管理
供應鏈網路
「以零售門店為中心」的'供應鏈網路(見下圖),即以滿足門店銷售及運營核心、銷售利潤最大化的供應鏈管理。
在此分析框架上,核心目標是最大條件滿足消費者需求,即管理缺貨、減少缺貨,管理滯銷、處理滯銷。此框架下供應鏈管理的內容為:門店補貨、門店調撥、缺貨管理管理、滯銷管理、促銷管理等。
供應鏈管理
需求預測
需求預測是所有供應鏈規劃的基礎;供應鏈中所有的流程都是根據對顧客需求的預測來進行的。因此,供應鏈管理的首要工作是對未來顧客的需求進行預測。
1、預測需要考慮的影響因素
需求預測需要考慮的重要影響因素:
歷史需求
產品補貨提前期
節假日
廣告或其他營銷活動的力度
競爭對手採取的行動
價格及促銷計劃
經濟狀況
2、預測方法
定性預測法
主要依賴於人的主觀判斷。當可供參考的歷史數據很少或專家擁有影響預測的需求市場信息時,採用定性預測方法最合適。
時間序列預測法
運用歷史需求數據對未來需求進行預測,它尤其適用於每年基本需求模式變化不大的場景。
因果關系預測法
假定需求預測與某些環境因素(經濟狀況、稅率等)調度相關,因果關系預測法可以找到這些環境因素與需求的關聯性,通過預測這些外界因素的變化來預測未來需求。
模擬法
通過模擬消費者的選擇來預測需求。如價格促銷將會帶來什麼樣的影響?競爭對手在附近開設一家新店會帶來什麼樣的影響?
門店補貨
1、什麼時候補貨?
什麼時候補貨?它是時間與頻次的問題,即補貨的觸發點問題。
通常有兩種策略:
策略一、設置庫存閥值,若庫存低於閥值則補貨。通過連續檢查的方法,判斷某個時刻是否需要補貨。
策略二、設置固定的補貨周期,零售門店通常按周來設置補貨頻次,即一周設置多次補貨頻次,並固定在某幾天,如某門店在周一、周三、周五補貨。
連鎖零售企業一般採用第二種策略,主要是因為零售企業經營的SKU數量眾多;另一方面,策略一的物流及倉庫排班及排車不確定高,不適合物流及倉庫的管理及運營。
本文的供應鏈鏈管理以策略二為基礎,並依此展開分析及研究。
2、補什麼商品?
季節性的品類調整
門店必須根據季節的變化,對商品陳列位置、商品結構、店鋪氛圍進行調整。一般來講,門店應該每年進行兩次大的調整,即:每年3-4月份針對春夏季的調整,每年國慶節過後的10-11月份期間的針對秋冬季節的調整; 每個季度針對本季度特殊季節、節日的變化進行的小調整,或臨時調整。
調整商品結構
商品結構必須根據季節變化進行調整。季節變化對商品結構的影響是非常大的,必須在季節變化到來之前,及時調整品類結構,壓縮過季商品品類,擴大應季商品的品類。
調整陳列位置和陳列資源
門店的陳列位置、陳列資源,對商品銷售產出的貢獻非常巨大,不同的陳列位置商品銷售會有幾倍甚至幾十倍的差距。門店的重點陳列位置、陳列資源必須隨季節變化而調整。一是季節商品是產生銷售貢獻*大的商品,二是季節商品是*能體現門店經營特色的商品,三是季節商品是*能提示消費者購物的商品。
重大節慶的品類調整
在快時尚、輕奢的品類中,很容易出現春節、婦女節(女王節)、情人節、開學季、聖誕節、雙十一等的節慶影響,表現出銷量井噴。零售企業需要根據節慶來完善豐富的品類結構,滿足顧客在特定節慶時期的消費需求。
市場變化導致的品類調整
禁配策略
地理環境因素,如西北地區處於內陸、遠離海洋,夏天不適合配沙灘遊玩類用品。風俗、宗教類因素,穆斯林地區禁止配送豬肉類食品。
新品策略
若零售公司准備投放一批新品,零售門店則需要為新品調整貨架,增加新品的曝光度,引導消費者產生首次購買、重復購買。
3、補多少量?
補貨量 = 需求量 – 門店庫存
計算門店需求時以需求預測為基礎,同時考慮下述影響需求及供給的約束條件:
倉庫容量
門店貨架容量
過去需求
產品補貨提前期
廣告計劃或其他營銷活動的力度
價格促銷計劃
競爭企業採取的行動
4、缺貨場景的庫存分配策略
策略一:增加相似商品的補貨庫存 相似商品:功能、顏色、功效相似的商品。
策略二:增加其他暢銷品的庫存 根據商品的銷售量排名,根據一定的分配策略來補貨。
缺貨管理
連鎖零售企業商品缺貨狀況會引發消費者的各種反應, 最終導致零售企業的銷售損失,48%的人會購買同一品種的替代品,15%的消費者不再購買,31%的顧客會到另一家店購買時再實施消費行為,顧客的轉店率是37%。
1、缺貨原因及應對策略
倉庫缺貨
渠道單一。單純地依靠某一個供應商或過分依賴某些材料部件,一旦某個供應環節中斷,將影響整個供應鏈的正常運作。缺乏預見能力。由於缺乏對供應鏈上的可預測性,不具有對供應商的供應能力和不確定性的前向洞察力,常常會面臨種種不確定因素影響所帶來的庫存短缺。應對措施:替代商品
補貨量不足
某商品銷售出現顯著增長,且明顯大於預期、門店庫存不足,但補貨不及時。應對措施:門店調撥 在零售行業中,線上線下競爭如此激烈,誰能快速解決各個商圈內門店之間、商圈之間超密集的調撥需求,實現高效調撥、把握銷售機會,實現銷售業績的新突破。
滯銷管理
1、滯銷危害
在陳列空間上,滯銷商品大量陳列占據了門店的貨架空間,迫使其他暢銷品的陳列空間不夠,新上市商品無法正常上貨。
滯銷商品佔用大量的資金,使得零售門店的流動資金日益萎縮,嚴重的會影響到正常商品采購、甚至導致門店倒閉。
對於顧客來說,滯銷商品大量陳列在貨架上,這樣既影響了顧客挑選自己需要的商品,浪費了消費者的注意力,甚至導致顧客無法找到正常的商品,損失了門店應該獲取的利潤。
從門店商圈來看,門店大量商品長期不做銷售周轉,消費可能會對門店失去信息,減少或改變原本的購物需求,轉向其他門店進行消費。
2、滯銷原因
季節因素
部分商品因地區差異存在明顯的季節之分,該部分商品由於季末沒有做特殊處理,導致在庫時間高於規定的天數,形成滯銷,體現在換季時門店任務按正常時段的銷售量作為補貨的依據產生。
補貨模型不合理因素
行業中大多數公司會把門店庫存管理權交給店長,由於公司的高速發展,門店會不斷地有新店長上任,店長庫存管理概念模糊,在補貨時大多憑借個人經驗確定補貨數量,容易導致部分補貨量較大的商品滯銷。
價格因素滯銷
部分商品會因為價格不合理而導致滯銷,一種是低價格商品,由於門店所處的商圈消費水平較高,價格低廉的老葯滯銷;另一種則是因為門店商品售價明顯高於競爭對手的售價導致滯銷。
陳列因素
與海量商品相比,門店的貨架資源永遠都是稀缺的,部分企業會給予部分商品特殊待遇,不能公平合理地分配貨架資源,導致部分商品因陳列位置差、曝光率低,從而導致滯銷。
淘汰商品不順暢
商品都會存在生命周期,特別是一些廣告商品,然而大多數公司更新商品都比較被動,不會主動去優化商品,會導致商品因同質化嚴重而引起滯銷。
批量采購決策失誤
供應鏈上游對市場需求及銷售情況沒有準確把握,商品采購數量過多,從而導致滯銷。
突發因素
某些突發因素導致消費行為發生重大變化。如」非洲豬瘟」導致豬肉類食品無法銷售出去,從而導致滯銷。
痛點
供應鏈上游滯銷引發的風險轉稼
在零售連鎖供應鏈網路中,供應鏈上游由於產品開發、采購失誤等決策失誤導致的庫存積壓,上游往往會將庫存風險轉稼到供應鏈末端(零售門店),從而佔用零售門店大量的流動資金及貨架資源。
市場快速變化,難以准確預測和判斷供貨情況。
門店端某款產品突然爆發,致使供應鏈上下游倉庫出現大面積缺貨,此種情況供應鏈無法快速反應或供應周期過長,從而導致銷售機會的浪費。
預期范圍內、延遲或產能不足,導致銷售機會的損失。
某些品類由於供應鏈上游(采購、供應商)等原因,如產能不足或機器故障等原因導致交付延遲,從而導致銷售機會的浪費。
市場競爭加劇,線下實體店客流下滑
總結
供應鏈末端(零售門店)缺乏足夠或針對性的應對措施
供應鏈上下游協同是解決」零售門店」問題的重要方向
科學、精準的貨架管理將是提升門店銷售、實現供應鏈價值的重要方向
四、供應鏈的發展趨勢
全渠道趨勢
移動互聯網的迅猛發展催生了O2O、C2B、P2P等新業態,全球傳統產業開始受沖擊,受互聯網思維與互聯網、大數據、雲計算等技術深度影響出現變革,全球傳統行業將互聯網化,擁抱O2O全渠道零售大時代。
供應鏈日趨可視化
在運營中對商品廣泛使用了電子標簽,將線上線下數據同步,如SKU同步、庫存同步、價格同步、促銷同步;實現線上下單,線下有貨,後台統一促銷和價格。
供應鏈可視化以後,未來所有業務職能包括銷售、市場、財務、研發、采購和物流等進行有機的集成和協同就有了可能,可以對消費者需求、門店或網上庫存、銷售趨勢、物流信息、原產地信息等進行可視化展示,實現供應鏈敏捷和迅速反應。
新時代下的供應鏈可視化未來將持續向消費者、SKU、店員延伸,通過可視化集成平台,戰略計劃與業務緊密鏈接,需求與供應的平衡,訂單履行策略的實施,庫存與服務水平的調整等具體策略將得到高效的執行。
供應鏈預測智能化
在新零售的業態中,大量零售運營數據包括消費者、商品、銷售、庫存、訂單等在不同的應用場景中海量產生,結合在不同業務場景和業務目標,如商品品類管理、銷售預測、動態定價、促銷安排、自動補貨、安全庫存設定、倉店和店店之間的調撥、供應計劃排程、物流計劃制定等,再匹配上合適的演算法,即可對這些應用場景進行數字建模,邏輯簡單來說就是「獲取數據—分析數據—建立模型—預測未來—支持決策」。
本質上說,智能演算法是一項預測科技,而預測的目的不是為預測而預測,而是用來指導人類的各項行為決策,以免人在決策時因為未知和不確定而焦慮。
當全新的供應鏈體系,能夠實時顯示運營動態,如貨齡、售罄率、缺貨率、暢售滯銷佔比、退貨率、訂單滿足率、庫存周轉率、目標完成比率等,同時又能相互鏈接和協同,那麼將很容易形成通用運營決策建議,如智能選品、智能定價、自動預測、自動促銷、自動補貨和下單等。
在此基礎之上,供應鏈管理人員所做的事情就是搜集信息、判斷需求、和客戶溝通、協同各種資源、尋找創新機會等。
⑹ 大數據分析方法解讀以及相關工具介紹
大數據分析方法解讀以及相關工具介紹
要知道,大數據已不再是數據大,最重要的現實就是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。
越來越多的應用涉及到大數據,這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以,大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於此,大數據分析方法理論有哪些呢?
大數據分析的五個基本方面
(預測性分析能力)
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。
(數據質量和數據管理)
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
AnalyticVisualizations(可視化分析)
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
SemanticEngines(語義引擎)
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息。
DataMiningAlgorithms(數據挖掘演算法)
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。
大數據處理
大數據處理數據時代理念的三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。具體的大數據處理方法其實有很多,但是根據長時間的實踐,筆者總結了一個基本的大數據處理流程,並且這個流程應該能夠對大家理順大數據的處理有所幫助。整個處理流程可以概括為四步,分別是採集、導入和預處理、統計和分析,以及挖掘。
採集
大數據的採集是指利用多個資料庫來接收發自客戶端的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的K-Means、用於統計學習的SVM和用於分類的Naive Bayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,還有,常用數據挖掘演算法都以單線程為主。
大數據分析工具詳解 IBM惠普微軟工具在列
去年,IBM宣布以17億美元收購數據分析公司Netezza;EMC繼收購數據倉庫軟體廠商Greenplum後再次收購集群NAS廠商Isilon;Teradata收購了Aster Data 公司;隨後,惠普收購實時分析平台Vertica等,這些收購事件指向的是同一個目標市場——大數據。是的,大數據時代已經來臨,大家都在摩拳擦掌,搶占市場先機。
而在這裡面,最耀眼的明星是hadoop,Hadoop已被公認為是新一代的大數據處理平台,EMC、IBM、Informatica、Microsoft以及Oracle都紛紛投入了Hadoop的懷抱。對於大數據來說,最重要的還是對於數據的分析,從裡面尋找有價值的數據幫助企業作出更好的商業決策。下面,我們就來看以下八大關於大數據分析的工具。
EMC Greenplum統一分析平台(UAP)
Greenplum在2010年被EMC收購了其EMC Greenplum統一分析平台(UAP)是一款單一軟體平台,數據團隊和分析團隊可以在該平台上無縫地共享信息、協作分析,沒必要在不同的孤島上工作,或者在不同的孤島之間轉移數據。正因為如此,UAP包括ECM Greenplum關系資料庫、EMC Greenplum HD Hadoop發行版和EMC Greenplum Chorus。
EMC為大數據開發的硬體是模塊化的EMC數據計算設備(DCA),它能夠在一個設備裡面運行並擴展Greenplum關系資料庫和Greenplum HD節點。DCA提供了一個共享的指揮中心(Command Center)界面,讓管理員可以監控、管理和配置Greenplum資料庫和Hadoop系統性能及容量。隨著Hadoop平台日趨成熟,預計分析功能會急劇增加。
IBM打組合拳提供BigInsights和BigCloud
幾年前,IBM開始在其實驗室嘗試使用Hadoop,但是它在去年將相關產品和服務納入到商業版IBM在去年5月推出了InfoSphere BigI雲版本的 InfoSphere BigInsights使組織內的任何用戶都可以做大數據分析。雲上的BigInsights軟體可以分析資料庫里的結構化數據和非結構化數據,使決策者能夠迅速將洞察轉化為行動。
IBM隨後又在10月通過其智慧雲企業(SmartCloud Enterprise)基礎架構,將BigInsights和BigSheets作為一項服務來提供。這項服務分基礎版和企業版;一大賣點就是客戶不必購買支持性硬體,也不需要IT專門知識,就可以學習和試用大數據處理和分析功能。據IBM聲稱,客戶用不了30分鍾就能搭建起Hadoop集群,並將數據轉移到集群裡面,數據處理費用是每個集群每小時60美分起價。
Informatica 9.1:將大數據的挑戰轉化為大機遇
Informatica公司在去年10月則更深入一步,當時它推出了HParser,這是一種針對Hadoop而優化的數據轉換環境。據Informatica聲稱,軟體支持靈活高效地處理Hadoop裡面的任何文件格式,為Hadoop開發人員提供了即開即用的解析功能,以便處理復雜而多樣的數據源,包括日誌、文檔、二進制數據或層次式數據,以及眾多行業標准格式(如銀行業的NACHA、支付業的SWIFT、金融數據業的FIX和保險業的ACORD)。正如資料庫內處理技術加快了各種分析方法,Informatica同樣將解析代碼添加到Hadoop裡面,以便充分利用所有這些處理功能,不久會添加其他的數據處理代碼。
Informatica HParser是Informatica B2B Data Exchange家族產品及Informatica平台的最新補充,旨在滿足從海量無結構數據中提取商業價值的日益增長的需求。去年, Informatica成功地推出了創新的Informatica 9.1 for Big Data,是全球第一個專門為大數據而構建的統一數據集成平台。
甲骨文大數據機——Oracle Big Data Appliance
甲骨文的Big Data Appliance集成系統包括Cloudera的Hadoop系統管理軟體和支持服務Apache Hadoop 和Cloudera Manager。甲骨文視Big Data Appliance為包括Exadata、Exalogic和 Exalytics In-Memory Machine的「建造系統」。Oracle大數據機(Oracle Big Data Appliance),是一個軟、硬體集成系統,在系統中融入了Cloudera的Distribution Including Apache Hadoop、Cloudera Manager和一個開源R。該大數據機採用Oracle Linux操作系統,並配備Oracle NoSQL資料庫社區版本和Oracle HotSpot Java虛擬機。Big Data Appliance為全架構產品,每個架構864GB存儲,216個CPU內核,648TBRAW存儲,每秒40GB的InifiniBand連接。Big Data Appliance售價45萬美元,每年硬軟體支持費用為12%。
甲骨文Big Data Appliance與EMC Data Computing Appliance匹敵,IBM也曾推出數據分析軟體平台InfoSphere BigInsights,微軟也宣布在2012年發布Hadoop架構的SQL Server 2012大型數據處理平台。
統計分析方法以及統計軟體詳細介紹
統計分析方法有哪幾種?下面我們將詳細闡述,並介紹一些常用的統計分析軟體。
一、指標對比分析法指標對比分析法
統計分析的八種方法一、指標對比分析法指標對比分析法,又稱比較分析法,是統計分析中最常用的方法。是通過有關的指標對比來反映事物數量上差異和變化的方法。有比較才能鑒別。單獨看一些指標,只能說明總體的某些數量特徵,得不出什麼結論性的認識;一經過比較,如與國外、外單位比,與歷史數據比,與計劃相比,就可以對規模大小、水平高低、速度快慢作出判斷和評價。
指標分析對比分析方法可分為靜態比較和動態比較分析。靜態比較是同一時間條件下不同總體指標比較,如不同部門、不同地區、不同國家的比較,也叫橫向比較;動態比較是同一總體條件不同時期指標數值的比較,也叫縱向比較。這兩種方法既可單獨使用,也可結合使用。進行對比分析時,可以單獨使用總量指標或相對指標或平均指標,也可將它們結合起來進行對比。比較的結果可用相對數,如百分數、倍數、系數等,也可用相差的絕對數和相關的百分點(每1%為一個百分點)來表示,即將對比的指標相減。
二、分組分析法指標對比分析法
分組分析法指標對比分析法對比,但組成統計總體的各單位具有多種特徵,這就使得在同一總體范圍內的各單位之間產生了許多差別,統計分析不僅要對總體數量特徵和數量關系進行分析,還要深入總體的內部進行分組分析。分組分析法就是根據統計分析的目的要求,把所研究的總體按照一個或者幾個標志劃分為若干個部分,加以整理,進行觀察、分析,以揭示其內在的聯系和規律性。
統計分組法的關鍵問題在於正確選擇分組標值和劃分各組界限。
三、時間數列及動態分析法
時間數列。是將同一指標在時間上變化和發展的一系列數值,按時間先後順序排列,就形成時間數列,又稱動態數列。它能反映社會經濟現象的發展變動情況,通過時間數列的編制和分析,可以找出動態變化規律,為預測未來的發展趨勢提供依據。時間數列可分為絕對數時間數列、相對數時間數列、平均數時間數列。
時間數列速度指標。根據絕對數時間數列可以計算的速度指標:有發展速度、增長速度、平均發展速度、平均增長速度。
動態分析法。在統計分析中,如果只有孤立的一個時期指標值,是很難作出判斷的。如果編制了時間數列,就可以進行動態分析,反映其發展水平和速度的變化規律。
進行動態分析,要注意數列中各個指標具有的可比性。總體范圍、指標計算方法、計算價格和計量單位,都應該前後一致。時間間隔一般也要一致,但也可以根據研究目的,採取不同的間隔期,如按歷史時期分。為了消除時間間隔期不同而產生的指標數值不可比,可採用年平均數和年平均發展速度來編制動態數列。此外在統計上,許多綜合指標是採用價值形態來反映實物總量,如國內生產總值、工業總產值、社會商品零售總額等計算不同年份的發展速度時,必須消除價格變動因素的影響,才能正確的反映實物量的變化。也就是說必須用可比價格(如用不變價或用價格指數調整)計算不同年份相同產品的價值,然後才能進行對比。
為了觀察我國經濟發展的波動軌跡,可將各年國內生產總值的發展速度編制時間數列,並據以繪製成曲線圖,令人得到直觀認識。
四、指數分析法
指數是指反映社會經濟現象變動情況的相對數。有廣義和狹義之分。根據指數所研究的范圍不同可以有個體指數、類指數與總指數之分。
指數的作用:一是可以綜合反映復雜的社會經濟現象的總體數量變動的方向和程度;二是可以分析某種社會經濟現象的總變動受各因素變動影響的程度,這是一種因素分析法。操作方法是:通過指數體系中的數量關系,假定其他因素不變,來觀察某一因素的變動對總變動的影響。
用指數進行因素分析。因素分析就是將研究對象分解為各個因素,把研究對象的總體看成是各因素變動共同的結果,通過對各個因素的分析,對研究對象總變動中各項因素的影響程度進行測定。因素分析按其所研究的對象的統計指標不同可分為對總量指標的變動的因素分析,對平均指標變動的因素分析。
五、平衡分析法
平衡分析是研究社會經濟現象數量變化對等關系的一種方法。它把對立統一的雙方按其構成要素一一排列起來,給人以整體的概念,以便於全局來觀察它們之間的平衡關系。平衡關系廣泛存在於經濟生活中,大至全國宏觀經濟運行,小至個人經濟收支。平衡種類繁多,如財政平衡表、勞動力平衡表、能源平衡表、國際收支平衡表、投入產出平衡表,等等。平衡分析的作用:一是從數量對等關繫上反映社會經濟現象的平衡狀況,分析各種比例關系相適應狀況;二是揭示不平衡的因素和發展潛力;三是利用平衡關系可以從各項已知指標中推算未知的個別指標。
六、綜合評價分析
社會經濟分析現象往往是錯綜復雜的,社會經濟運行狀況是多種因素綜合作用的結果,而且各個因素的變動方向和變動程度是不同的。如對宏觀經濟運行的評價,涉及生活、分配、流通、消費各個方面;對企業經濟效益的評價,涉及人、財、物合理利用和市場銷售狀況。如果只用單一指標,就難以作出恰當的評價。
進行綜合評價包括四個步驟:
1.確定評價指標體系,這是綜合評價的基礎和依據。要注意指標體系的全面性和系統性。
2.搜集數據,並對不同計量單位的指標數值進行同度量處理。可採用相對化處理、函數化處理、標准化處理等方法。
3.確定各指標的權數,以保證評價的科學性。根據各個指標所處的地位和對總體影響程度不同,需要對不同指標賦予不同的權數。
4.對指標進行匯總,計算綜合分值,並據此作出綜合評價。
七、景氣分析
經濟波動是客觀存在的,是任何國家都難以完全避免的。如何避免大的經濟波動,保持經濟的穩定發展,一直是各國政府和經濟之專家在宏觀調控和決策中面臨的重要課題,景氣分析正是適應這一要求而產生和發展的。景氣分析是一種綜合評價分析,可分為宏觀經濟景氣分析和企業景氣調查分析。
宏觀經濟景氣分析。是國家統計局20世紀80年代後期開始著手建立監測指標體系和評價方法,經過十多年時間和不斷完善,已形成制度,定期提供景氣分析報告,對宏觀經濟運行狀態起到晴雨表和報警器的作用,便於國務院和有關部門及時採取宏觀調控措施。以經常性的小調整,防止經濟的大起大落。
企業景氣調查分析。是全國的大中型各類企業中,採取抽樣調查的方法,通過問卷的形式,讓企業負責人回答有關情況判斷和預期。內容分為兩類:一是對宏觀經濟總體的判斷和預期;一是對企業經營狀況的判斷和預期,如產品訂單、原材料購進、價格、存貨、就業、市場需求、固定資產投資等。
八、預測分析
宏觀經濟決策和微觀經濟決策,不僅需要了解經濟運行中已經發生了的實際情況,而且更需要預見未來將發生的情況。根據已知的過去和現在推測未來,就是預測分析。
統計預測屬於定量預測,是以數據分析為主,在預測中結合定性分析。統計預測的方法大致可分為兩類:一類是主要根據指標時間數列自身變化與時間的依存關系進行預測,屬於時間數列分析;另一類是根據指標之間相互影響的因果關系進行預測,屬於回歸分析。
預測分析的方法有回歸分析法、滑動平均法、指數平滑法、周期(季節)變化分析和隨機變化分析等。比較復雜的預測分析需要建立計量經濟模型,求解模型中的參數又有許多方法。
⑺ 什麼是「大數據,如何理解「大數據
大數據領域崗位職業發展你知道嗎
方法/步驟
國家信息中心《2017中國大數據產業發展報告》對我國大數據產業發展的人才、政策、投融資、創新創業、產業發展、區域潛力、機構和人物影響力等多個維度進行了全面分析。結果顯示,我國大數據發展總體處於起步階段。乎沖旦但大數據領域資本熱度依然堅挺,並逆勢上揚,大數據企業融資總額及單個項目平均融資金額呈加速上升態勢,大數據領域成為資本藍海。
從崗位來看,由大數據開發、挖掘、演算法、分析、到架構。從級別來看,從工程師判敗、高級工程師,再到架構師,甚至到科學家。而且,契合不同的行業領域,又有專屬於這些行業的崗位衍生,如涉及金融領域的數據分析師等。
大數據的相關工作崗位有很多,有數據分析師、數據挖掘工程師、大數據開發工程師、大數據產品經理、可視化工程師、爬蟲工程師、大數據運營經理、大數據架構師、數據科學家等等,下面就講講其中的幾個崗位。
數據分析師:日常工作內容有三個方面,第一是臨時取數,第二是報表的需求分析,第三是業務專題分析。
數據挖掘工程師:日常工作內容主要有五類。第一是用戶基礎研究,第二是個性化推薦演算法,第三是風控領域應用的模型,第四是產品的知識庫,第五是文本挖掘、文本分析、語義分析、圖像識別。
數據產品經理:日常工作內容:第一是大數據平台的建設,讓獲取數據、使用數據更加容易,構建完善的指標體系,實現對業務的全流程監控,提高決策效率,降低運營成本,提升應收水平;第二是數據需求分析,形歲擾成數據產品,對內可以提升效率,控製成本,對外增加創收,最終實現數據價值的變現。
大數據研發工程師:這個崗位是需求量最大的,日常工作內容有三個方面:第一是數據的採集,比如爬蟲、日誌採集等;第二是數據預處理、ETL工作,比如數據清洗、轉換、集成、規約等;第三是大數據應用和可視化的開發。
此外,現在越來越多的行業領域也涉獵大數據,通常來說它們可以被大致分為兩類:大數據工程與大數據分析。而這些領域互相獨立又互相關聯。
而隨著AI(人工智慧)的到來,未來大數據需要依賴於雲計算平台海量的計算能力,同時通過大數據給人工智慧提供內容。所以在未來十年,雲計算,大數據,人工智慧是這個時代對社會影響最深遠的技術,為此我們需要提前做好准備。