① 大數據技術發展之下 醫療行業現狀如何
【導讀】大數據技術的使用最早是應用於互聯網公司,隨著社會的發展,大數據技術也已經應用到了醫療行業,雖然大數據都是孤立的數據,不能大規模應用,但是在醫療行業,我們能夠通過大數據技術,進行患者的信息收集,建立詳細就醫檔案,更好地幫助醫生進行病情診斷,那麼大數據技術發展之下,醫療行業現狀如何呢?接下來就一起看看吧。
1、除了互聯網公司是大數據的早期採用者之外,醫療保健行業也是最早推動大數據分析的傳統行業之一。醫療行業有大量的病例、病理報告、治療計劃、葯物報告等。如果這些大數據能夠被整理和應用,將會對醫生和病人有很大的幫助。我們所面臨的細菌、病毒和腫瘤細胞的數量和類型都在進化。在疾病的發現和診斷中,疾病的診斷和治療是最困難的。
2、未來,藉助大數據平台,我們可以收集不同的病例和治療方案,以及患者的基本特徵,建立基於疾病特徵的資料庫。如果未來的基因技術成熟,可以根據患者的基因序列特徵進行分類,建立醫療行業的患者分類資料庫。在對患者進行診斷時,醫生可以查閱患者的疾病特徵、實驗室報告和檢測報告,查閱疾病資料庫,幫助患者進行快速診斷,明確疾病定位。
3、大數據在醫療行業的應用一直在進行,但大數據尚未開放。這是孤立的數據,沒有辦法放大。未來,這些大數據應該統一收集,整合成統一的大數據平台,造福人類健康。政府和衛生保健是這一趨勢的重要推動因素。
關於大數據技術發展之下醫療行業現狀,就和大家分享到這里了,未來,大數據技術必將造福於社會,為了我們提供更多的可能性。
② 大數據如何推動醫療行業的發展
區域醫療保健監控
可以將數據用於預測醫學研究,從而有助於預防可能的疾病傳播。例如,通過跟蹤他們搜索的醫療問題來了解患者人群及其醫療保健需求以及跟蹤他們在醫療站點上提供的信息,這些都是促進預防保健和研究的方法。
新型冠狀病毒大數據搜索報告
該數據有可能更好地預測各種情況和當前公共衛生問題引起的區域性暴發疫情的情況。反過來,醫療服務提供者能夠採取適當的預防措施,並分配必要的資源,以應對與健康有關的特定疾病的區域性升級。
打擊性傳播疾病
如果及時報告,則可以治療性傳播疾病(STD)和性傳播感染(STI)。但是,諸如缺乏性教育等問題通常會導致症狀不受控制。大數據可以利用本地經驗,並幫助科技公司和醫療保健提供商填補信息空白並傳播對性健康的認識。
改善醫療保健支持系統
醫療技術的主要進步之一是醫療保健機器人技術,預計到2021年其收入將增長到28億美元。醫療保健機器人技術包括外科機器人培訓,機器人護士,智能假肢和仿生學等專業,以及治療,葯丸,遠程呈現和後勤方面的幫助。使用大數據驅動的機器人技術有可能極大地改善醫療保健支持的質量,這已經通過少數著名的機器人護士(如Robot Dinsow)看到,它可以監控患者並提醒他們用葯;Paro機器人可以提醒護理人員。
機器人護士
如今,在醫學研究和發展中使用大數據至關重要。人工智慧和機器學習正在引領醫學數據的收集,新葯療法的發現以及患者預後的改善。通過實時分析公共衛生問題,大數據可以促進多個領域的醫學研究,改善患者護理並防止致命疾病的傳播。
關於大數據如何推動醫療行業的發展,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
③ 醫療大數據平台推進醫學道德形態重構
醫療大數據平台推進醫學道德形態重構
大數據時代的到來使醫學呈現出個體化發展趨勢,而基因技術的應用又使精準醫學凸顯。個體化醫療與精準醫療的結合,預示了大數據時代醫療變革的方向:通過數字化人體引發醫療健康革命。
大數據時代,一種潛在的變化正在顯現,掌控個人的醫療過程和醫療保健成為變化的核心。醫療大數據平台的運營會隨著規模的擴大和效率的提高而關涉總體人類健康、社會公共善、共享的倫理和個人醫療服務方面的改善,從而推進醫學道德形態的革命性重構。
首先,通過個體化醫學改善總體形態的人類健康。數字化人體和基因組學的重要意義在於:通過大數據技術和基因篩查技術的融合運用,帶來醫學重心的轉移或變化。它提供給人們的醫學勸告主要有兩條:其一,預防比治療更重要;其二,醫學只有遵循個體化科學才能帶來整體人類健康狀況的實質性改善。在大數據時代,手機將成為生命線,它使邊遠地區的人們獲得所需要的醫療服務,並通過數據反饋為社區創造一個數字化的網路系統。通過大數據,以患者為中心的醫療可以不受時空限制,在健康培訓、在線診斷、預防和災疫應對等領域一展所長。
其次,通過構建公共健康之善疏解醫患緊張。數字化時代醫學道德形態重構的重點,是通過個體化科學構建公共善,並由此疏解醫患緊張關系。生命倫理學對個體化權利的強調和對總體人口健康的強調之間存在明顯斷裂。然而,個人自主或自我決定如果沒有基於「數字化人體+基因測序」的個體化醫學的支持,只能是一種抽象的權利原則。醫療大數據提供給個人的健康或診療指南,無論對病人還是對醫生,都類似於航海圖。這為人們提供了一個從未有過的世界觀,它使病人真正成為醫學的中心。
再次,通過融合的醫學展現開放共享的倫理。隨著數字化時代的來臨,各國政府都認識到數據開放的重要性,出台了數據開放的法令。醫療大數據將患者作為醫療信息的點連成一片數據之海。因此,一種開放共享的醫療信息技術系統可以通過相關關系的挖掘而預測某些疾病的分布或流行。數據的開放共享將帶來一系列融合,進而將快速成熟的數字化、非醫學領域的移動設備、雲計算和社交網路與蓬勃發展的基因組學、生物感測器和先進成像技術的數字化醫學領域合為一體。醫學或醫療技術可能因為更偏重預防而體現「上醫醫未病之病」的理念。
最後,通過開放整合的專家團隊提供個體化醫療服務。基於網路平台的醫療技術實踐,使得醫學團隊的診療模式成為未來醫療診治的基本模式。大數據時代的醫療技術實踐,為「團隊醫學」提供了新的形式,醫學不再是個體醫生的單打獨斗,而是基於網域空間的專家團隊為患者提供量身定製的個體化醫療服務。以團隊形式為個體提供醫療健康服務,建構了真正以患者為中心的醫學道德形態。從個體收集到的數據的大批匯總最終將會創建一種良性反饋的倫理性圏層,使健康計劃的所有參與者受益,並鼓勵愈來愈多的人參與進來。
大數據時代的健康革命,在技術形態上,取決於數字化人體基礎上的精準醫學模式的建立。無線感測器、大數據與基因組學的結合是其先鋒。這種醫學道德形態的重構凸顯了三大倫理道德難題。
第一,個人隱私及安全問題。在數字化、信息化時代,醫療行業面臨保護信息安全和保護個人隱私的雙重困擾。安全隱患和隱私風險之一,是員工使用自帶移動設備連接醫療系統的IT基礎設施所帶來的風險,這是惡意軟體侵入的最薄弱環節,被稱為醫療領域的「自帶設備」難題。推行移動化或個體化醫療計劃(或健康計劃)是許多頂尖級診所和醫院的計劃,實施過程必然會面臨該難題。除此之外,還面臨醫療大數據或精準醫學模式自身帶來的問題,比如醫療設備或監控器的數據失竊問題等。與此同時,醫院利用數據平台收集和分析某患者的敏感信息是否侵犯個人隱私?政府機構和企業對個人健康信息進行收集、監控和分析處理是否符合隱私規則?醫療數據、商業數據、科研數據等應遵循何種收集規則?參與者隱私的保護既是醫學研究得以展開的前提,又是一切健康計劃得以實施的前提。只有在保護個人隱私與充分利用資料庫之間尋求一種平衡,才能應對大數據時代醫學生命倫理學的隱私及安全倫理問題。
第二,數據的真實可靠問題。如何防範數據失信或失真是數據共享遭遇的基準層面的倫理挑戰。建立在數字化人體基礎上的醫療技術實踐,其本身就預設了一條不可突破的道德底線。由於人體及其健康狀態以數字化的形式被記錄、存儲和傳播,因此形成了與實體人相對應的鏡像人或數字人。失信或失真的數據,導致被預設為可信的精準醫療變得不可信。例如,如果有人擔心個人健康數據或基因數據對個人職業生涯和未來生活造成不利影響,當有條件採取隱瞞、不提供或提供虛假數據來玩弄數據系統時,這種情況就可能出現,進而導致電子病歷和醫療信息系統(HIT)以及個人健康檔案(HER)不準確。如何治理或防範數據失信或失真,是數字化時代數據共享面臨的一種倫理挑戰,它構成大數據時代生命醫學倫理學的重大課題。
第三,數字鴻溝或價值鴻溝帶來的挑戰。數字鴻溝指不同社會群體對於數字化技術或信息技術使用的巨大差異,分為接入、應用、知識、價值四個方面。隨著接入問題的逐步解決,應用和知識方面的鴻溝正在縮小,價值鴻溝變得越來越突出。這提示我們必須充分重視數字化健康革命帶來的價值觀變革。只有縮小價值鴻溝,使人們認識到,個體化醫療和精準醫學基礎上的個人健康革命,是一種將個體與總體進行融合的醫學變革,它展現了數字化時代健康革命的價值核心即以患者為中心的醫學道德形態,才能讓更多的人參與到醫療大數據平台建設之中。
大數據、基因組學、移動醫療和精準醫學的基本原理,是連通最小行動者和最大數據計算之總體,這是現代醫療技術在大數據時代展現的倫理特質。大數據對個人和集體相互關系的重新定位無論對個人還是集體都產生了不可低估的影響——它提供了在一個日益個體化的現代社會,個人與集體密不可分的結合方式,迫使個人重新思考集體性或總體性價值的時代意蘊。當然,這種思考必須以對個人的自由、尊嚴和權利的維護為前提。與此同時,從群體出發或從整體出發的倫理理念重新獲得了應有地位,並與強調關聯性思維、整體和諧理念的中國倫理文化構成一種內在契合。而這正是大數據時代生命醫學倫理學最引人矚目的發展方向。
④ 「互聯網+」健康醫療大數據產生的影響
隨著「互聯網+」戰略的不斷推進,我國的醫療行業迎來了「互聯網+」醫療時代。 「互聯網+」是互
聯網在各個領域的創新應用,以互聯網為載體,以新信息技術為手段,在醫療領域的應用,涵蓋了醫療的健康教育、信息查詢、健康檔案、疾病風險評估、在線咨詢、遠程會診、遠程醫療、疾病康復等諸多方面。醫療大數據是在醫療服務過程中產生的與臨床和管理相關的數據,時序性、隱私性、不完整性等醫療領域獨有特徵。
2018 年 4 月 29 日國務院辦公廳正式發布《關於促進「互聯網+醫療健康」發展的意見》,提出「健全基於互聯網、大數據技術的分級診療信息系統,推動各級各類醫院逐步實現電子健康檔案、電子病歷、檢驗檢查結果的共享,推動大數據在不同等級醫療衛生機構間的授權訪問和利用。」
目前,醫療大數據已在優化資源配置、解決信息孤島問題、輔助決策應用等方面呈現出巨大作用。總結下來,產生如下影響:
1、提升就醫體驗
「就醫難」是國內醫療面臨的最大問題。 以互聯網為載體的就醫過程,優化了就診流程,縮減等待時間,還能有效提升患者就醫體驗,貫穿醫療服務的全過程,涵蓋了醫療資源查找與匹配、網上掛號、在線問診、遠程診療、醫葯電商、移動醫療等領域。
2、推進精準醫療
精準醫療強調以個體化醫療為基礎,包括精準診斷和精準治療兩個方面。 互聯網環境下,醫療服務的逐步數字化將極大地促進醫生與患者之間的相互了解。
3、促進醫療體系的協同
分級診療制度是當前衛生行政部門深化醫葯衛生體制改制的重要內容。 分級診療能夠合理配置醫療資源、促進基本醫療衛生服務均等化。 「互聯網+」醫療環境下,藉助互聯網手段實現分級診療成為醫改的核心。 醫院的「信息孤島」 問題在很大程度上阻礙了分級診療制度的推進,因此打破醫療信息孤島是「互聯網+」醫療發展的基礎。
4、推動個性化醫療發展
未來將建成各種數據無縫流轉,以患者為中心的覆蓋全生命周期的醫療健康管理服務,多個機構、多個角色可基於個體的完整健康數據實施共同管理,實現對患者的個性化治療。
參考文獻:段金寧.「互聯網+」醫療環境下的健康醫療大數據應用[J].中華醫學圖書情報雜志,2018,27(06):49-53
⑤ 大數據醫療行業發展的5大趨勢
一、影像識別智能化
醫療數據中有超過90%來自於醫學影像,但是影像診斷過於依賴人的主觀意識,容易發生誤判。AI可以通過大量學習醫學影像,可以幫助醫生進行病灶區域定位,減少漏診誤診問題。
二、智能診療通用化
智能診療是人工智慧在醫療領域最重要、也最核心的應用場景。
智能診療就是將人工智慧技術應用於疾病診療中,計算機可以幫助醫生進行病理,體檢報告等的統計,通過大數據和深度挖掘等技術,對病人的醫療數據進行分析和挖掘,自動識別病人的臨床變數和指標。計算機通過“學習”相關的專業知識,模擬醫生的思維和診斷推理,從而給出可靠診斷和治療方案。
三、葯物研發提速
依託大數據,人工智慧系統可以快速、准確的挖掘和篩選出適合的葯物。通過計算機模擬,人工智慧可以對葯物活性、安全性和副作用進行預測,找出與疾病匹配的最佳葯物。這一技術將會大大縮短葯物研發周期、降低新葯成本並且提高新葯的研發成功率。
四、醫療機器人廣泛應用
機器人在醫療領域的應用范圍很廣泛,比如智能假肢、外骨骼和輔助設備等技術修復人類受損身體,醫療保健機器人輔助醫護人員的工作等。目前,關於機器人在醫療界中的應用的研究主要集中在外科手術機器人、康復機器人、護理機器人和服務機器人方面。國內醫療機器人領域也經歷了快速發展,進入了市場應用。
五、健康管理實時追蹤
根據人工智慧而建造的智能設備可以監測到人們的一些基本身體特徵,如飲食、身體健康指數、睡眠等。對身體素質進行簡單的評估,提供個性的健康管理方案,及時識別疾病發生的風險,提醒用戶注意自己的身體健康安全。目前人工智慧在健康管理方面的應用主要在風險識別、虛擬護士、精神健康、在線問診、健康干預以及基於精準醫學的健康管理。
關於大數據醫療的5大趨勢的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑥ 大數據能給醫療帶來哪些改變_大數據在醫療方面的作用
如慧遲今是大數據時代,前景自然好了,據前瞻產業研究院《2016-2021年中國行業大數據市場發展前景預測與投資戰略規劃分析報告》顯示,總的來說,醫療大數據應用主要體現在臨床操作、研發、新的商業模式、付款/定價、公眾健康五大領域,在這孫碧基些場景中,大數據的分析和應用都將發揮巨大的作用。
醫療大數據的應用對於臨床醫學研究、科學管理和醫療服務模式轉型發展都具有重要意義,而大數據技術的運用前景是十分光明的。
醫院和醫療行業面臨的大數據主要有醫學影像、視頻(教學、監控)及文獻等非結構化數據。由於這些數據增長很快且結構復雜,給數據管理和利用帶來較大的壓力,存儲與管理成本不斷提高,數據利用困難、利用率低。除了數據數量和形態的迅速增加,醫療數據還需要越來越長的保留期。一旦存儲系統的安全性出現問題,導致醫療數據丟失,醫院會面臨嚴重不良局面。醫療大數據的應用要保證數據的全面性、准確性、實時性和使用的便捷性,要能快速運算和快速展現,要與日常工作平台緊密結合。
國人已經把健康大數據上升為國家戰略,而面對「大數據」的挑戰,醫院必須考慮三大主要問題。
(1)數據存儲是否安全可靠?因為系統一旦出現故障,首先考驗的就是數據的存儲、災備和恢復能力。如果數據不能迅速恢復,而且恢復不能到斷點,則將對醫院的業務、患者滿意度構成直接損害。
(2)如何提高醫院運行和服務的效率?提高效率就是節省醫生的時間,從而緩解醫療資源的緊張狀況,在一定程度上可以幫助解決「看病難」的問題。
(3)如何控制大數據的成本?存儲架構是否合理,不僅影響醫院IT系統的成本,而且關乎醫院的運營成本,醫療數據激增,使醫院普遍存在著較大的存儲擴容壓力。如今,醫院的存儲設備大多是由不同廠商構成的完全異構的存儲系統。這些不同的存儲設備利用各自不同的軟體工具來進行控制和管理,這樣就增加了整個系統的復雜性,使管理成本非常高。
未來,大數據必將影響醫療行業,未來醫療行業的大數據將會具體應用在:臨床輔助決策,則謹醫療質量監管,疾病預測模型,臨床實驗分析。其發展空間有:個人健康門戶,慢病管理和健康管理,電子病歷和臨床質量監控,醫學知識管理,臨床路徑和循證醫學,遠程醫療和移動醫療,醫學研究數據倉庫和共享平台,跨醫療機構協作平台。
⑦ 《顛覆醫療:大數據時代的個人健康革命》pdf下載在線閱讀全文,求百度網盤雲資源
《顛覆醫療:大數據時代的個人健康革命》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1qYZ4ypqQERolBu5I7ha7Rw
⑧ 什麼是醫療領域大數據革命
比哪種類型病比較相應醫院應該更診室
哪些用葯葯房需要備葯
哪些檢查比較相應檢查設備要買進醫院
-
⑨ 大數據能給醫療帶來哪些改變
如今,互聯網和信息技術已經普遍覆蓋大型公立醫院。
這么多醫療大數據的領域可以幫助我們做什麼?
●大數據的應用增強了預測流行病
●為醫院、醫療系統和醫療辦公提高效益
●減少資源浪費
●數據能提高人們對醫療的全面認識
●海量數據可以幫助研究者准確真實反應臨床真實數據
●私人訂制個性化醫療,大數據收集個人病史家族病史的整理和預測,對於治療方案進行個性化針對治療。
最終我們能用大數據得到什麼?幫助國家的公共衛生系統更多地參與到大數據應用中,來提高社會的整體健康水平。這才是我們所追求的全民醫療的最高意義。