A. 大數據和人工智慧在互聯網金融領域有哪些應用
大
數據從四個方面改變了金融機構傳統的數據運作方式,從而實現了巨大的商業價值。這四個方面(「四個C」)包括:數據質量的兼容性
(Compatibility)、數據運用的關聯性(Connectedness)、數據分析的成本(Cost)以及數據價值的轉化
(Capitalization)。
大數據在金融業的應用場景正在逐步拓展。在海外,大數據已經在金融行業的風險控制、運營管理、銷售支持和商業模式創新等領域得到了全面嘗試。在國內,金
融機構對大數據的應用還基本處於起步階段。數據整合和部門協調等關鍵環節的挑戰仍是阻礙金融機構將數據轉化為價值的主要瓶頸。
數據技術與數據經濟的發展是持續實現大數據價值的支撐。深度應用正在將傳統IT從「後端」不斷推向「前台」,而存量架構與創新模塊的有效整合是傳統金融
機構在技術層面所面臨的主要挑戰。此外,數據生態的發展演進有其顯著的社會特徵。作為其中的一員,金融機構在促進數據經濟的發展上任重道遠。
為了駕馭大數據,國內金融機構要在技術的基礎上著重引入以價值為導向的管理視角,最終形成自上而下的內嵌式變革。其中的三個關鍵點(「TMT」)包括:團隊(Team)、機制(Mechanism)和思維(Thinking)。
1.價值導向與內嵌式變革—BCG對大數據的理解
「讓數據發聲!」—隨著大數據時代的來臨,這個聲音正在變得日益響亮。為了在喧囂背後探尋本質,我們的討論將從大數據的定義開始。
1.1成就大數據的「第四個V」
大數據是什麼?在這個問題上,國內目前常用的是「3V」定義,即數量(Volume)、速度(Velocity)和種類(Variety)。
雖然有著這樣的定義,但人們從未停止討論什麼才是成就大數據的「關鍵節點」。人們熱議的焦點之一是「到底多大才算是大數據?」其實這個問題在「量」的層
面上並沒有絕對的標准,因為「量」的大小是相對於特定時期的技術處理和分析能力而言的。在上個世紀90年代,10GB的數據需要當時計算能力一流的計算機
處理幾個小時,而這個量現在只是一台普通智能手機存儲量的一半而已。在這個層面上頗具影響力的說法是,當「全量數據」取代了「樣本數據」時,人們就擁有了
大數據。
另外一個成為討論焦點的問題是,今天的海量數據都來源於何處。在商業環境中,企業過去最關注的是ERP(Enterprise Resource
Planning)和CRM(Customer Relationship
Management)系統中的數據。這些數據的共性在於,它們都是由一個機構有意識、有目的地收集到的數據,而且基本上都是結構化數據。隨著互聯網的深
入普及,特別是移動互聯網的爆發式增長,人機互動所產生的數據已經成為了另一個重要的數據來源,比如人們在互聯網世界中留下的各種「數據足跡」。但所有這
些都還不是構成「大量數據」的主體。機器之間交互處理時沉澱下來的數據才是使數據量級實現跨越式增長的主要原因。「物聯網」是當前人們將現實世界數據化的
最時髦的代名詞。海量的數據就是以這樣的方式源源不斷地產生和積累。
「3V」的定義專注於對數據本身的特徵進行描述。然而,是否是量級龐大、實時傳輸、格式多樣的數據就是大數據?
BCG認為,成就大數據的關鍵點在於「第四個V」,即價值(Value)。當量級龐大、實時傳輸、格式多樣的全量數據通過某種手段得到利用並創造出商業價值,而且能夠進一步推動商業模式的變革時,大數據才真正誕生。
1.2變革中的數據運作與數據推動的內嵌式變革
多元化格式的數據已呈海量爆發,人類分析、利用數據的能力也日益精進,我們已經能夠從大數據中創造出不同於傳統數據挖掘的價值。那麼,大數據帶來的「大價值」究竟是如何產生的?
無論是在金融企業還是非金融企業中,數據應用及業務創新的生命周期都包含五個階段:業務定義需求;IT部門獲取並整合數據;數據科學家構建並完善演算法與
模型;IT發布新洞察;業務應用並衡量洞察的實際成效。在今天的大數據環境下,生命周期仍維持原樣,而唯一變化的是「數據科學家」在生命周期中所扮演的角
色。大數據將允許其運用各種新的演算法與技術手段,幫助IT不斷挖掘新的關聯洞察,更好地滿足業務需求。
因此,BCG認為,大數據改變的並不是傳統數據的生命周期,而是具體的運作模式。在傳統的數據基礎和技術環境下,這樣的周期可能要經歷一年乃至更長的時
間。但是有了現在的數據量和技術,機構可能只需幾周甚至更短的時間就能走完這個生命周期。新的數據運作模式使快速、低成本的試錯成為可能。這樣,商業機構
就有條件關注過去由於種種原因而被忽略的大量「小機會」,並將這些「小機會」累積形成「大價值」。
具體而言,與傳統的數據應用相比,大數據在四個方面(「4C」)改變了傳統數據的運作模式,為機構帶來了新的價值。
1.2.1數據質量的兼容性(Compatibility):大數據通過「量」提升了數據分析對「質」的寬容度
在「小數據」時代,數據的獲取門檻相對較高,這就導致「樣本思維」占據統治地位。人們大多是通過抽樣和截取的方式來捕獲數據。同時,人們分析數據的手段
和能力也相對有限。為了保證分析結果的准確性,人們通常會有意識地收集可量化的、清潔的、准確的數據,對數據的「質」提出了很高的要求。而在大數據時代,
「全量思維」得到了用武之地,人們有條件去獲取多維度、全過程的數據。但在海量數據出現後,數據的清洗與驗證幾乎成為了不可能的事。正是這樣的困境催生了
數據應用的新視角與新方法。類似於分布式技術的新演算法使數據的「量」可以彌補「質」的不足,從而大大提升了數據分析對於數據質量的兼容能力。
1.2.2數據運用的關聯性(Connectedness):大數據使技術與演算法從「靜態」走向「持續」
在大數據時代,對「全量」的追求使「實時」變得異常重要,而這一點也不僅僅只體現在數據採集階段。在雲計算、流處理和內存分析等技術的支撐下,一系列新
的演算法使實時分析成為可能。人們還可以通過使用持續的增量數據來優化分析結果。在這些因素的共同作用下,人們一貫以來對「因果關系」的追求開始松動,而
「相關關系」正在逐步獲得一席之地。
1.2.3數據分析的成本(Cost):大數據降低了數據分析的成本門檻
大數據改變了數據處理資源稀缺的局面。過去,數據挖掘往往意味著不菲的投入。因此,企業希望能夠從數據中發掘出「大機會」,或是將有限的數據處理資源投
入到有可能產生大機會的「大客戶、大項目」中去,以此獲得健康的投入產出比。而在大數據時代,數據處理的成本不斷下降,數據中大量存在的「小機會」得見天
日。每個機會本身帶來的商業價值可能並不可觀,但是累積起來就會實現質的飛躍。所以,大數據往往並非意味著「大機會」,而是「大量機會」。
1.2.4數據價值的轉化(Capitalization):大數據實現了從數據到價值的高效轉化
在《互聯網金融生態系統2020:新動力、新格局、新戰略》報告中,我們探討了傳統金融機構在大變革時代所需採取的新戰略思考框架,即適應型戰略。採取
適應型戰略有助於企業構築以下五大優勢:試錯優勢、觸角優勢、組織優勢、系統優勢和社會優勢,而大數據將為金融機構建立這些優勢提供新的工具和動力。從數
據到價值的轉化與機構的整體轉型相輔相成,「內嵌式變革」由此而生。
例如,金融機構傳統做法中按部就班的長周期模式(從規劃、立項、收集數據到分析、試點、落地、總結)不再適用。快速試錯、寬進嚴出成為了實現大數據價值
的關鍵:以低成本的方式大量嘗試大數據中蘊藏的海量機會,一旦發現某些有價值的規律,馬上進行商業化推廣,否則果斷退出。此外,大數據為金融機構打造「觸
角優勢」提供了新的工具,使其能夠更加靈敏地感知商業環境,更加順暢地搭建反饋閉環。此外,數據的聚合與共享為金融機構搭建生態系統提供了新的場景與動
力。
2.應用場景與基礎設施—縱覽海內外金融機構的大數據發展實踐
金融行業在發展大數據能力方面具有天然優勢:受行業特性影響,金融機構在開展業務的過程中積累了海量的高價值數據,其中包括客戶身份、資產負債情況、資
金收付交易等數據。以銀行業為例,其數據強度高踞各行業之首—銀行業每創收100萬美元,平均就會產生820GB的數據。
2.1大數據的金融應用場景正在逐步拓展
大數據發出的聲音已經在金融行業全面響起。作為行業中的「巨無霸」,銀行業與保險業對大數據的應用尤其可圈可點。
2.1.1海外實踐:全面嘗試
2.1.1.1銀行是金融行業中發展大數據能力的「領軍者」
在發展大數據能力方面,銀行業堪稱是「領軍者」。縱觀銀行業的六個主要業務板塊(零售銀行、公司銀行、資本市場、交易銀行、資產管理、財富管理),每個
業務板塊都可以藉助大數據來更深入地了解客戶,並為其制定更具針對性的價值主張,同時提升風險管理能力。其中,大數據在零售銀行和交易銀行業務板塊中的應
用潛力尤為可觀。
BCG通過研究發現,海外銀行在大數據能力的發展方面基本處於三個階段:大約三分之一的銀行還處在思考大數據、理解大數據、制定大數據戰略及實施路徑的
起點階段。還有三分之一的銀行向前發展到了嘗試階段,也就是按照規劃出的路徑和方案,通過試點項目進行測驗,甄選出許多有價值的小機會,並且不停地進行試
錯和調整。而另外三分之一左右的銀行則已經跨越了嘗試階段。基於多年的試錯經驗,他們已經識別出幾個較大的機會,並且已經成功地將這些機會轉化為可持續的
商業價值。而且這些銀行已經將匹配大數據的工作方式嵌入到組織當中。他們正在成熟運用先進的分析手段,並且不斷獲得新的商業洞察。
銀行業應用舉例1:將大數據技術應用到信貸風險控制領域。在美國,一家互聯網信用評估機構已成為多家銀行在個人信貸風險評估方面的好幫手。該機構通過分
析客戶在各個社交平台(如Facebook和Twitter)留下的數據,對銀行的信貸申請客戶進行風險評估,並將結果賣給銀行。銀行將這家機構的評估結
果與內部評估相結合,從而形成更完善更准確的違約評估。這樣的做法既幫助銀行降低了風險成本,同時也為銀行帶來了風險定價方面的競爭優勢。
相較於零售銀行業務,公司銀行業務對大數據的應用似乎缺乏亮點。但實際上,大數據在公司銀行業務的風險領域正在發揮著前所未有的作用。在傳統方法中,銀
行對企業客戶的違約風險評估多是基於過往的營業數據和信用信息。這種方式的最大弊端就是缺少前瞻性,因為影響企業違約的重要因素並不僅僅只是企業自身的經
營狀況,還包括行業的整體發展狀況,正所謂「覆巢之下,焉有完卵」。但要進行這樣的分析往往需要大量的資源投入,因此在數據處理資源稀缺的環境下無法得到
廣泛應用,而大數據手段則大幅減少了此類分析對資源的需求。西班牙一家大型銀行正是利用大數據來為企業客戶提供全面深入的信用風險分析。該行首先識別出影
響行業發展的主要因素,然後對這些因素一一進行模擬,以測試各種事件對其客戶業務發展的潛在影響,並綜合評判每個企業客戶的違約風險。這樣的做法不僅成本
低,而且對風險評估的速度快,同時顯著提升了評估的准確性。
銀行業應用舉例2:用大數據為客戶制定差異化產品和營銷方案。在零售銀行業務中,通過數據分析來判斷客戶行為並匹配營銷手段並不是一件新鮮事。但大數據
為精準營銷提供了廣闊的創新空間。例如,海外銀行開始圍繞客戶的「人生大事」進行交叉銷售。這些銀行對客戶的交易數據進行分析,由此推算出客戶經歷「人生
大事」的大致節點。人生中的這些重要時刻往往能夠激發客戶對高價值金融產品的購買意願。一家澳大利亞銀行通過大數據分析發現,家中即將有嬰兒誕生的客戶對
壽險產品的潛在需求最大。通過對客戶的銀行卡交易數據進行分析,銀行很容易識別出即將添丁的家庭:在這樣的家庭中,准媽媽會開始購買某些葯品,而嬰兒相關
產品的消費會不斷出現。該行面向這一人群推出定製化的營銷活動,獲得了客戶的積極響應,從而大幅提高了交叉銷售的成功率。
客戶細分早已在銀行業得到廣泛應用,但細分維度往往大同小異,包括收入水平、年齡、職業等等。自從開始嘗試大數據手段之後,銀行的客戶細分維度出現了突
破。例如,西班牙的一家銀行從Facebook和Twitter等社交平台上直接抓取數據來分析客戶的業余愛好。該行把客戶細分為常旅客、足球愛好者、高
爾夫愛好者等類別。通過分析,該行發現高爾夫球愛好者對銀行的利潤度貢獻最高,而足球愛好者對銀行的忠誠度最高。此外,通過分析,該行還發現了另外一個小
客群:「敗家族」,即財富水平不高、但消費行為奢侈的人群。這個客群由於人數不多,而且當前的財富水平尚未超越貴賓客戶的門檻,因此往往被銀行所忽略。但
分析顯示這一人群能夠為銀行帶來可觀的利潤,而且頗具成長潛力,因此該行決定將這些客戶升級為貴賓客戶,深入挖掘其潛在價值。
在對公業務中,銀行同樣可以藉助大數據形成更有價值的客戶細分。例如,在BCG與一家加拿大銀行的合作項目中,項目組利用大數據分析技術將所有公司客戶
按照行業和企業規模進行細分,一共建立了上百個細分客戶群。不難想像,如果沒有大數據的支持,這樣深入的細分是很難實現的。然後,項目組在每個細分群中找
出標桿企業,分析其銀行產品組合,並將該細分群中其他客戶的銀行產品組合與標桿企業進行比對,從而識別出差距和潛在的營銷機會。項目組將這些分析結果與該
行的對公客戶經理進行分享,幫助他們利用這些發現來制定更具針對性的銷售計劃和話術,並取得了良好的效果。客戶對這種新的銷售方式也十分歡迎,因為他們可
以從中了解到同行的財務狀況和金融安排,有助於對自身的行業地位與發展空間進行判斷。
銀行業應用舉例3:用大數據為優化銀行運營提供決策基礎。大數據不僅能在前台與中台大顯身手,也能惠及後台運營領域。在互聯網金融風生水起的當
下,「O2O」(OnlineToOffline)成為了銀行的熱點話題。哪些客戶適合線上渠道?哪些客戶不願「觸網」?BCG曾幫助西班牙一家銀行通過
大數據技術應用對這些問題進行了解答。項目組對16個既可以在網點也可以在網路與移動渠道上完成的關鍵運營活動展開分析,建立了12個月的時間回溯深度,
把客戶群體和運營活動按照網點使用強度以及非網點渠道使用潛力進行細分。分析結果顯示,大約66%的交易活動對網點的使用強度較高,但同時對非網點渠道的
使用潛力也很高,因此可以從網點遷移到網路或移動渠道。項目組在客戶細分中發現,年輕客戶、老年客戶以及高端客戶在運營活動遷移方面潛力最大,可以優先作
為渠道遷徙的對象。通過這樣的運營調整,大數據幫助銀行在引導客戶轉移、減輕網點壓力的同時保障了客戶體驗。
BCG還曾利用專有的大數據分析工具NetworkMax,幫助一家澳大利亞銀行優化網點布局。雖然銀行客戶的線上活動日漸增多,但金融業的鐵律在互聯
網時代依然適用,也就是說在客戶身邊設立實體網點仍然是金融機構的競爭優勢。然而,網點的運營成本往往不菲,如何實現網點資源的價值最大化成為了每家銀行
面臨的問題。在該項目中,項目組結合銀行的內部數據(包括現有的網點分布和業績狀況等)和外部數據(如各個地區的人口數量、人口結構、收入水平等),對
350多個區域進行了評估,並按照主要產品系列為每個區域制定市場份額預測。項目組還通過對市場份額的驅動因素進行模擬,得出在現有網點數量不變的情況下
該行網點的理想布局圖。該行根據項目組的建議對網點布局進行了調整,並取得了良好的成效。這個案例可以為許多銀行帶來啟示:首先,銀行十分清楚自身的網點
布局,有關網點的經營業績和地址的信息全量存在於銀行的資料庫中。其次,有關一個地區的人口數量、人口結構、收入水平等數據都是可以公開獲取的數據。通過
應用大數據技術來把這兩組數據結合在一起,就可以幫助銀行實現網點布局的優化。BCG基於大數據技術而研發的Network
Max正是用來解決類似問題的工具。
銀行業應用舉例4:創新商業模式,用大數據拓展中間收入。過去,坐擁海量數據的銀行考慮的是如何使用數據來服務其核心業務。而如今,很多銀行已經走得更
遠。他們開始考慮如何把數據直接變成新產品並用來實現商業模式,進而直接創造收入。例如,澳大利亞一家大型銀行通過分析支付數據來了解其零售客戶的「消費
路徑」,即客戶進行日常消費時的典型順序,包括客戶的購物地點、購買內容和購物順序,並對其中的關聯進行分析。該銀行將這些分析結果銷售給公司客戶(比如
零售業客戶),幫助客戶更准確地判斷合適的產品廣告投放地點以及適合在該地點進行推廣的產品。這些公司客戶過去往往需要花費大量金錢向市場調研公司購買此
類數據,但如今他們可以花少得多的錢向自己的銀行購買這些分析結果,而且銀行所提供的此類數據也要可靠得多。銀行通過這種方式獲得了傳統業務之外的收入。
更重要的是,銀行通過這樣的創新為客戶提供了增值服務,從而大大增強了客戶粘性。
B. 論互聯網金融的含義及其主要特徵
一、互聯網金融的含義
互聯網金融是指通過互聯網管理金融產品,獲取一定收益,主要指通過互聯網進行金融投資的業務;一些金融機構通過信息網路提供的金融服務。金融軟體,以及每日的購物信息,股價,匯率的篩選,都是由網站提供的。
當互聯網企業介入金融行業所開展的業務,包括互聯網企業通過互聯網平台開展的結算、小微貸款、標准化金融產品銷售、信息中介等金融業務,就構成了互聯網金融。互聯網金融在緩解信息不對稱、提高交易效率、優化資源配置、豐富投融資渠道等方面有別於傳統金融。
二、互聯網金融的特點:
1、成本低
在互聯網金融模式下,資金供求雙方可以自行通過網互金平台進行信息的甄別、匹配、定價和交易,不需要通過任何中介,也不會出現交易成本。從金融機構的角度來說,可以省去開設營業網點的資金投入和運營成本;從投資者的角度來說,用戶可以在互聯網平台上獲得大量信息,有助於快速找到適合自己的理財產品。
2、效率高
互聯網金融的業務交由計算機進行處理,處理速度快,操作流程標准化,出錯率低,用戶不需要到實體店排隊等候業務處理,用戶的投資體驗更好。
3、覆蓋面廣
互聯網金融模式打破了以往行業地域限制的局限,用戶在互聯網上進行金融交易,不受時間和地域限制,服務更直接,客戶基礎更廣泛。目前,我國互聯網金融的客戶以中小微企業為主,這些企業相對來說較難從銀行等金融企業中獲取融資,互聯網金融有利於提升資源配置效率,促進實體經濟發展。
4、發展速度快
在大數據時代背景下,互聯網金融依託電子商務和計算機技術的發展進入了快速增長階段。互聯網金融通過網路進行傳播,新上線的企業宣傳成本低,容易獲得用戶群體,推動行業快速發展。
互聯網金融不是互聯網與金融業的簡單結合,而是現代金融創新與科技創新的有機融合。予財緣作為互金行業的一匹黑馬,深受廣大用戶的關注。平台採用全生命周期智能化風控管理體系,多重風控審核確保項目優質,足值質押模式大大降低投資風險。予財緣又不斷進行自我提升,完善信息披露機制,推進合規進程。先後獲得ICP許可證,簽署銀行存管協議,資本實力大大提升,是值得信賴的優質平台。
法律依據
《中華人民共和國證券法》
第十條 發行人申請公開發行股票、可轉換為股票的公司債券,依法採取承銷方式的,或者公開發行法律、行政法規規定實行保薦制度的其他證券的,應當聘請證券公司擔任保薦人。
保薦人應當遵守業務規則和行業規范,誠實守信,勤勉盡責,對發行人的申請文件和信息披露資料進行審慎核查,督導發行人規范運作。
保薦人的管理辦法由國務院證券監督管理機構規定。
《非金融機構支付服務管理辦法》
第二條 本辦法所稱非金融機構支付服務,是指非金融機構在收付款人之間作為中介機構提供下列部分或全部貨幣資金轉移服務:
(一)網路支付;
(二)預付卡的發行與受理;
(三)銀行卡收單;
(四)中國人民銀行確定的其他支付服務。
本辦法所稱網路支付,是指依託公共網路或專用網路在收付款人之間轉移貨幣資金的行為,包括貨幣匯兌、互聯網支付、行動電話支付、固定電話支付、數字電視支付等。
本辦法所稱預付卡,是指以營利為目的發行的、在發行機構之外購買商品或服務的預付價值,包括採取磁條、晶元等技術以卡片、密碼等形式發行的預付卡。
本辦法所稱銀行卡收單,是指通過銷售點(POS)終端等為銀行卡特約商戶代收貨幣資金的行為。
C. 大數據技術在金融行業有哪些應用前景
大數據金融市場前景廣闊,深度開發大數據金融工具,或將重構整個金融行業。預計未來5到回10年,金答融大數據產業將迎來黃金增長期,大數據也將成為助推「大眾創業、萬眾創新」浪潮的有力抓手。
據《大數據金融行業市場前瞻與投資分析報告》數據顯示,2016年我國大數據金融市場規模為15.84億元,隨著政策逐步實施與落地,以大數據為核心手段、核心驅動力的產業金融,將邁入時代發展正軌成為主流趨勢,預計2018年中國金融大數據應用市場會突破100億元,金融業開始進入了大數據時代快車道。
大數據金融作為一個綜合性的概念,在未來的發展中,企業坐擁數據將不再局限於單一業務,第三方支付、信息化金融機構以及互聯網金融門戶都將融入到大數據金融服務平台中,大數據金融服務將在各家機構各顯神通的基礎上,實現多元業務的融合。
伴隨互聯網金融縱深發展,大數據優勢越加凸顯。作為互聯網金融創新的驅動力,大數據金融帶來的方式革新,未來走向精細化和專業化。今後大數據金融行業的努力方向,應該是以完備的大數據為基礎,基於用戶需求提供智能化一站式產品購買及定製化服務,以及數據挖掘、數據整合、數據產品、數據應用及解決方案等。
D. 大數據下互聯網金融怎麼投資
隨著網路經濟迅速發展,網路金融、網上購物等電子商務的發展如雨後春筍,人們不得不意識到,互聯網金融時代來了。支付寶、余額寶、微信紅包??,互聯網金融大戰在馬年春節就已拉響。
1第一是傳統的金融藉助互聯網渠道為大家提供服務。這個是大家熟悉的網銀。互聯網在其中發揮的作用應該是渠道的作用。
2第二種模式,類似金融平台,由於它具有電商的平台,為它提供信貸服務創造的優於其他放貸人的條件。互聯網在里邊發揮的作用是依據大數據收集和分析進而得到信用支持.
3第三種模式,大家經常談到的P2P的模式,這種模式更多的提供了中介服務,這種中介把資金出借方需求方結合在一起。發展至今由P2P的概念已經衍生出了很多模式。
4以上三種模式穩貸建議大家要做好詳細的分析,再進行投資這樣投資有保證。
E. 互聯網金融借力大數據玩轉風險控制
互聯網金融借力大數據玩轉風險控制
近兩年,金融行業內競爭在網路平台上全面展開。大數據時代,這種競爭說到底就是「數據為王」。為什麼大數據在互聯網金融領域扮演著如此重要的角色?業內人士認為,「互聯網+金融」具有共享性,提供了「大數據」和更充分的信息,即通過更完善的價格信號,幫助協調不同經濟部門非集中化決策。
信息占據核心地位
信息占金融市場核心地位。金融市場是進行資本配置和監管的一種制度安排,而資本配置及其監管從本質上來說是信息問題。因此,金融市場即進行信息的生產、傳遞、擴散和利用的市場。
在「互聯網+金融」時代,信息的傳遞和擴散更加便捷,信息的生產成本更為低廉,信息的利用渠道和方式也愈發多元化,從而越來越容易實現信息共享。這種共享不僅包含著各類不同金融機構之間的信息共享,而且包含著金融機構與其他行業之間的信息共享、金融機構和監管機構及企業間的共享等。
信息共享並由此形成的「大數據」,降低了單個金融機構獲得信息、甄別信息的成本,提高了信息利用的效率,使信息的生產和傳播充分而順暢,從而極大地降低了信息的不完備和不對稱程度。「大數據」不僅使投資者可以獲取各種投資品種的價格及影響這些價格的因素的信息,而且籌資者也能獲取不同的融資方式的成本的信息,管理部門能夠獲取金融交易是否正常進行、各種規則是否得到遵守的信息,使金融體系的不同參與者都能作出各自的決策。
正確看待大數據徵信
互聯網金融的發展帶火了P2P市場,也折射出風控體系建設的缺失。P2P跑路現象主要原因就是風控缺失,體現在「重擔保、輕風控」和「重線上風控、輕線下調查」。
當前,多數P2P平台「重擔保、輕風控」的思路是不正確的,擔保是外界因素,風控是內在因素,一味強調用外在的因素而不解決自身的問題,不可能實現良好運轉。互聯網金融的風險管理不在規則之中,而在互聯網和金融雙重疊加的對象之中,其最基本的風險邊界應是保證投資者的資產安全。守住了安全底線,這些平台才能健康成長。所以,P2P平台根本的安全底線還在於加強自身對象的風控。
另一方面,風控分為貸前、貸中、貸後風控。目前有些P2P平台從最開始的貸前風控就缺失,貸前風控最重要的是要實現「線下調查」,即通過線下實地走訪和考察,對客戶信息進行交叉驗證和真實性驗證,包括對借款人銀行流水、徵信報告、財產證明、工作證明等的審查,通過審查評估借款人還款能力。這些線下風控是不可或缺的,不能迷信或過分誇大「互聯網+」的效率和普惠,線上的大數據和線下的實地考察必須結合。
基於大數據、個人徵信的風控手段已有很多,大數據徵信是實現P2P風控的創新路徑。但是也需要正確看待,既不能要求大數據徵信一步登天,一下子帶來質的改變;也不能風聲鶴唳,一有創新就以各種名義圍追堵截,而需要給予更多理性的包容和試錯的空間,在漸進創新中不斷完善大數據徵信體系。
目前存在的困難:
一是數據的虛擬性和「信息噪音」。雖然大數據及其分析提高了信息獲取的數量和精度,但由於虛擬世界中信息大爆炸造成的「信息噪音」,導致交易者身份、交易真實性、信用評價的驗證難度更大,反而可能在另一層面更強化信息不對稱程度,也更容易存在信息壟斷。
二是信用數據關聯的不確定性。信用數據是多樣化的,包括朋友信用、愛情信用、事業信用等。所謂忠孝不能兩全,一個對朋友忠誠的人不一定對事業忠誠。對事業或工作忠誠,也不一定能說明他的金融信用好。大數據通過日常信用來判斷金融信用會出現偏差。
三是「數據孤島」不能實現數據共享。互聯網平台具有強烈的規模效應,平台越大越容易產生數據,越容易使用數據。例如,阿里小貸主要通過賣家累計的海量交易信息及資金流水,也可通過大數據的分析在幾秒內完成對商家的授信。但是,阿里小貸的數據,不可能提供給其他公司使用。因此,下一步應推動數據的整合和共享。
玩轉大數據風控系統
傳統的風控模式更多關注的是靜態風險,對風險進行預判。而P2P市場讓越來越多的傳統金融企業轉型互聯網金融,大數據技術要對風險進行實時把握,要做到兩點:大數據和雲計算結合以及大數據的流處理模式。
大數據和雲計算結合,實現了實時監控。雲計算為大數據實時把握提供了硬體基礎,可以實現秒級的數據採集、分析和挖掘。流處理模式實現了靜態風險和動態風險的有效結合。一種人習慣先把信息存下來,然後一次性地處理掉,也叫批處理,如定期處理過期郵件;另一種人喜歡信息來一點處理一點,無用信息直接過濾掉,有用的存起來。後者就是流處理的基本範式,實現了實時監控。
怎樣才能針對企業自身的發展和業務方向,玩轉大數據風控系統,使其發揮到最大作用?我認為,要關注「大眾數據」。要意識到互聯網「長尾效應」的作用,互聯網環境下「得大眾者得天下」,關注大眾數據,要了解大眾心態,在歸屬感、成就感和參與感上下功夫。
還要將業務驅動轉向數據驅動。理解數據的價值,通過數據處理創造商業價值,看似零散的數據背後尋找消費邏輯。此外,還應改造公司數據相關的IT部門,將其從「成本中心」轉化為「利潤中心」,充分認識大數據是核心競爭力,重視其挖掘和預測的能力。
當然,實時大數據風控還需要很多方面的探索,如何藉助大數據建立全生命風控體系,形成貸前、貸中、貸後流程管理系統和決策系統。另外,還需加強信用數據相關性研究和量化模型的開發,金融信用(主要指借貸數據)可獲得性比日常信用數據難,以金融信用為中心,通過日常信用,構建個人信用評估體系。
F. 大數據對互聯網金融的發展有什麼作用
自互聯網金融被廣而告之以後,大家就一直在被灌輸大數據在互聯網金融發展中的作用巨大,甚至最近更有專家說大數據是互聯網金融發展的加速器。但是似乎並沒有一個系統的說法,大數據具體有什麼用,我們只知道互聯網金融確實是其中的獲益者之一,下面且聽聽通金魔方分析師的見解。
我們首先從互聯網金融的含義生對大數據有個簡單的了解。正如互聯網金融之父謝平所言,所謂的互聯網金融,並非是簡單的將互聯網和金融進行疊加。
正確的理解應該是基於互聯網應用的特殊技術,推動了全新的商業模式,產品服務,對金融領域產生的顛覆性變革。在這其中,大數據則充當了很重要的推手。接下來我們來看一下大數據在互聯網金融發展中的作用體現。
精準的用戶分析
大數據的首要作用就是在於它能夠對用戶進行准確的分析,然後幫助互聯網金融找到合適的目標用戶,進而實現精準營銷。
在目前的互聯網金融領域,很多新興的企業,大多以做貸款或者金融衍生產品為主。其主打的賣點主要在於較高的投資收益或者較低的手續費優惠。但是在競爭日益加劇的市場環境下,由於不能保證資金流穩定,或者客戶粘性而倒閉的企業隨處可見。
據相關數據顯示,截止2013年底,中國境內共有450家P2P公司,其中有的甚至在創立幾天內即宣布倒閉。在這樣的基礎之上,實現精準營銷才是這些企業唯一的出路,這也正是大數據的作用所在。
雖然互聯網金融的發展仍然處於起步階段,但是卻已經有了相當豐富的成熟案例。比如通過定向技術查看用戶近期瀏覽過的理財網站,通過關鍵詞,瀏覽數據建立用戶模型,從而實現優化產品的實時推薦頻度,以便最大限度的鎖定有效用戶等。
幫助金融企業風險防控
除了以上的首要作用之外,大數據還能夠幫助金融企業加強風險的可控性。在精細化管理方面助推了互聯網金融,尤其是信貸服務的發展。
比如通過對大量網路交易及行為數據的分析,可以為用戶的信用評估提供可靠的依據。這些信用評估可以幫助金融企業在用戶的還款意願和能力方面做出較為准確的結論,以便決定是否繼續為該用戶提供快速授信或者現金分期等服務。從而最大限度的降低金融企業的業務風險。
當然,我們對於個人用戶或者企業用戶信用好壞的評定取決於諸多因素,但是我們也可以從這諸多因素中找到相應的數據。比如我們要尋找這個用戶的整體收入,固定資產,性格特點甚至是行為習慣等,那麼我們就可以從網上銀行,電商,社交網路,甚至招聘和婚介網站等地方獲取。
大數據的作用在這裡面得以體現的最關鍵的一點就是,這些所謂的數據往往都是以動態變數的形式存在的,而我們要想以此為依據獲得准確的信用評級,則更要倚重於大數據的持續分析功能。
通過上面的分析,我們也不得不承認大數據在互聯網金融發展中作用巨大,只不過在現在這個互聯網金融的起步階段,大數據作用的發掘仍不算完整,我們只能一步一步的在不斷的發展中發現它的好。
G. 雲計算和大數據對互聯網金融產生什麼影響
21世紀是一個信息時代,互聯網得到高度普及,互聯網與金融的融合孕育了互聯網金融,而大數據時代的到來又給互聯網金融帶來了質的變化。
互聯網金融不是互聯網和金融的簡單疊加,更深層次的變化是改變了金融服務模式,給金融體系帶來了變革,融入了更多互聯網特有技術,大數據技術就是其中的典型代表,它也被視為推動互聯網金融發展的重要驅動力之一,使金融業形成了一種新的業態。
(7)大數據時代的互聯網金融擴展閱讀:
大數據的主要特點為:大量、高速、多樣、價值。大數據最核心的價值就是在於對於海量數據進行存儲和分析。相比起現有的其他技術而言,大數據的「廉價、迅速、優化」這三方面的綜合成本是最優的。
互聯網金融的核心就是數據,數據的規模、真實性、有效性、數據分析應用的能力將決定未來互聯網金融業的競爭力,而大數據技術正是互聯網金融的重要技術支撐。