導航:首頁 > 網路數據 > 大數據應用關鍵

大數據應用關鍵

發布時間:2023-06-13 12:07:51

『壹』 大數據時代數據使用的最關鍵是

大數據時代數據使用的關鍵是數據再利用。

最早提出大數據時代到來的是全球知名咨詢公司麥肯錫,大數據在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。大數據作為雲計算、互聯網之後又IT行業又一大顛覆性的技術革命。雲計算主要為數據資產提供了保管、訪問的場所和渠道,而數據才是真正有價值的資產。

企業內部的經營信息、互聯網世界中的商品物流信息,互聯網世界中的人與人交互信息、位置信息等,其數量將遠遠超越現有企業IT架構和基礎設施的承載能力,實時性要求也將大大超越現有的計算能力。如何盤活這些數據資產,使其為國家治理、企業決策乃至個人生活服務,是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向。

大數據時代的影響:

現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。

隨著雲時代的來臨,大數據也吸引了越來越多的關注。大數據通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。

『貳』 大數據應用的關鍵

大數據是指以多元形式,自許多來源搜集而來的龐大數據組,往往具有實時性。在企業對企業銷售的情況下,這些數據可能得自社交網路、電子商務網站、顧客來訪紀錄,還有許多其他來源。這些數據,並非公司顧客關系管理資料庫的常態數據組。從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。它的特色在於對海量數據的挖掘,但它必須依託雲計算的分布式處理、分布式資料庫、雲存儲和/或虛擬化技術。大數據的意義是由人類日益普及的網路行為所伴生的,受到相關部門、企業採集的,蘊含數據生產者真實意圖、喜好的,非傳統結構和意義的數據 。1.大數據是企業核心競爭力,也是公司的軟實力大數據席捲了全球,並帶來了驚人的利益,這一力量無需多說。大數據使IBM、亞馬遜等全球頂尖公司受益,這些公司通過利用大數據開發一些前沿的技術,為客戶提供高端服務。「採用大數據,雲計算和移動戰略的企業發展狀況超過沒有採用這些技術的同行53%。」——《福布斯》在戴爾開展的一項調查中顯示,採用大數據、雲計算以及移動戰略的企業中,優勢更加明顯,也就是,這些企業中有53%採用大數據起步較晚或者尚未採用,在這一結果令人驚訝不已。雖然大數據尚處於初級階段,但通過在處理過程中,融合這一理念,將為企業贏得50%的利潤。顯然,在如今的商業中,大數據顯現的驚人優勢並不亞於石油或煤炭帶來的利益。2.掌握數據能力,開采「暗數據」全球著名的咨詢公司Gartner公司對黑暗數據的定義是「組織在正常業務活動過程中收集、處理和存儲的信息資產,通常不能用於其他目的」。然而,大數據系統的出現使得這些公司能夠將尚未開拓的數據投入使用,並從中提取有意義的信息。過去沒有被認可或認為毫無用處的數據突然成為公司的財富,這一點令人驚訝不已。通過大數據分析,這些公司可以加快流程,從而降低運營成本。

『叄』 大數據的應用有幾個步驟,分別是什麼_大數據應用的關鍵是什麼

一般來講,典型的數據分析包含六個步驟,分別是明森腔世確思路、收集數據、處理數據、分析數據、展現數據以及撰寫報告,下面尚矽谷具體講一講數據分析的六大步驟。

明確數據分析的目的以及思路是確保數據分析過程有效進行的首要條件。它作用的是可以為數據的收集、處理及分析提供清晰的指引方向。可以說思路是整個分析流程的起點。首先目的不明確則會導致方向性的錯誤。當明確目的後,就要建分析框架,把分析目的分解成若干個不同的分析要點,即如何具體開展數據分析,需要從哪幾個角度進行分析,採用哪些分析指標。只有明確了分析目的,分析框架才能跟著確定下來,最後還要確保分析框架的體系化,使分析更具有說服力。

這一步其實就是具化分析的內容,把一個需要進行數據分析的事件,拆解成為一個又一個的小指標,這樣一來,就不會覺得數據分析無從下手。而且拆解一定要體系化,也就是邏輯化。簡單來說就是先分析什麼,後分析什麼,使得各個分析點之間具有邏輯聯系。避免不知從哪方面入手以及分析的內容和指標被質疑是否合理、完整。所以體系化就是為了讓你的分析框架具有說服力。可以參照的方法論有,用戶行為理論、PEST分析法、5W2H分析法等等。

2、收集數據

收集數據此肢是按照確定的數據分析框架收集相關數據的過程,它為數據分析提供了素材和依據。這里所說的數據包括第一手數據與第二手數據,第一手數據主要指可直接獲取的數據,第二手數據主要指經過加工整理後得到的數據。一般數據來源主要有以下幾種方式:

(1)資料庫:

每個公司都有自己的業務資料庫,存放從公司成立以來產生的相關業務數據。這個業務資料庫就是一個龐大的數據資源,需要有效地利用起來。

(2)公開出版物:

可以用於收集數據的公開出版物包括《中國統計年鑒》《中國社會統計年鑒》《中國人口統計年鑒》《世界經濟年鑒》《世界發展報告》等統計年鑒或報告。

(3)互聯網:

隨著互聯網的發展,網路上發布的數據越來越多,特別是搜索引擎可以幫助我們快速找到所需要的數據,例如國家及地方統計局網站、行業組織網站、政府機構網站、傳播媒體網站、大型綜合門戶網站等上面都可能有我們需要的數據。

(4)市場調查:

就是指運用科學的方法,有目的、有系統地收集、記錄、整理有關市場營銷的信息和資料,分析市場情況,了解市場現狀及其發展趨勢,為市場預測和營銷決策提供客觀、正確的數據資料。市場調查可以彌補其他數據收集方式的不足。

3、處理數據

處理數據是指對收集到的數據進行加工整理,形成適合數據分析的樣式,它是數據分析前必不可少的階段。數據處理的基本目的是從大量的、雜亂無章、難以理解的數據中,抽取並推導出對解決問題有價值、有意義的數據。數據處理主要包括數據清洗、數據轉化、數據提取、數據計算等處理方法。一般拿到手的數據都需要進行一定的處理才能用於後續的數據分析工作,即使再「干凈」』的原始數據也需要先進行一定的處理才能使用。

4、分析數據

分析數據是指用適當的分析方法及工具,對處理過的數據進行分析,提取有價值的信息,形成有效結論的過程。由於數據分析多是通過軟體來完成的,這就要求數據分析師不僅要掌握各種數據分析方法,還要熟悉數據分析軟體的操作。而數據挖掘其實是一種高級的數據分析方法,就是從大量的數據中挖掘出有用的信息,它是根據用戶的特定要求,從浩如煙海的數據中找出所需的信息,以滿足用戶的特定需求。

5、展現數據

一般情況下,數據是通過表格和圖形的方式來呈現的,我們常說用圖表說話就是這個意思。常用的數據圖表包括餅圖、柱形圖、條形圖、折線圖、散點圖、雷達圖等,當然可以對這些圖表進一步整理加工,使之變為我們所需要的圖形,例如金字塔圖、矩陣圖、漏斗圖等。大多數情況下,人們更願意接受圖形這種數據展現方式,因為它能更加有效直觀。

6、撰寫圓沒報告

數據分析報告其實是對整個數據分析過程的一個總結與呈現。通過報告,把數據分析的起因、過程、結果及建議完整地呈現出來,供決策者參考。一份好的數據分析報告,首先需要有一個好的分析框架,並且圖文並茂,層次明晰,能夠讓閱讀者一目瞭然。另外,數據分析報告需要有明確的結論,沒有明確結論的分析稱不上分析,同時也失去了報告的意義,因為我們最初就是為尋找或者求證一個結論才進行分析的,所以千萬不要舍本求末。最後,好的分析報告一定要有建議或解決方案。

『肆』 請問大數據的關鍵技術有哪些

1.分布式存儲系統(HDFS)。2.MapRece分布式計算框架。3.YARN資源管理平台。4.Sqoop數據遷移工具。5.Mahout數據挖掘演算法版庫。權6.HBase分布式資料庫。7.Zookeeper分布式協調服務。8.Hive基於Hadoop的數據倉庫。9.Flume日誌收集工具。

『伍』 大數據應用須解決三大關鍵點

大數據應用須解決三大關鍵點
大數據應用的關鍵點是數據來源、產品化和價值創造;數據資源分布不均,大數據應用在數據密集領域更易獲得突破;須對不當的行業管理模式進行改革,以促進大數據在已有各個行業中應用。
大數據貴在應用。當前,在國家層面,國務院出台《促進大數據發展行動綱要》;在地方層面,大數據被作為區域發展戰略引擎;在企業層面,各類大數據概念公司方興未艾、蓬勃發展。我們獨關注大數據應用,關注數據從哪裡來、數據怎麼用、成果誰買單,也就是數據來源、產品化和價值創造三個關鍵點。一個好的大數據應用,從技術上可能很復雜,但從業務模式上應當簡單、直白、管用。我們還關注,是否存在若干"數據密集型"行業或領域,大數據應用在這些領域可能更容易開展。在產業政策方面,我們關注作為新興業態的大數據,過去屢試不爽的做法,如給地、給錢、給項目等,是否還會繼續有效?
大數據應用的三個關鍵點
國務院《促進大數據發展行動綱要》(簡稱《大數據綱要》)將大數據定位為"新一代信息技術和服務業態",賦予大數據"推動經濟轉型發展""重塑國家競爭優勢""提升政府治理能力"的戰略功能,並將數據界定為"國家基礎性戰略資源"。在應用方面,《大數據綱要》在公共領域提出許多發展方向,如宏觀調控科學化、政府治理精準化、商事服務便捷化、安全保障高效化、民生服務普惠化;在產業層面,主要按行業領域劃分為工業大數據、新興產業大數據、農業農村大數據、萬眾創新大數據,以及大數據產品體系和大數據產業鏈。這些方向,只是大數據應用的潛力和空間,能不能應用起來,能不能發揮作用,還得看有沒有可行模式和實際效果。無論是在公共領域還是在產業層面,大數據應用都離不開數據來源、處理技術和方法、創造價值的模式,這是我們關注的重點。概括來說,需要回答下面三個看似簡單、卻是關鍵的問題。(一)數據從哪裡來關於數據來源,普遍認為互聯網及物聯網是產生並承載大數據的基地。互聯網公司是天生的大數據公司,在搜索、社交、媒體、交易等各自核心業務領域,積累並持續產生海量數據。物聯網設備每時每刻都在採集數據,設備數量和數據量都與日俱增。這兩類數據資源作為大數據金礦,正在不斷產生各類應用。國外關於大數據的成功經驗介紹,大多是這類數據資源應用的經典案例。還有一些企業,在業務中也積累了許多數據,如房地產交易、大宗商品價格、特定群體消費信息等。從嚴格意義上講,這些數據資源還算不上大數據,但對商業應用而言,卻是最易獲得和比較容易加工處理的數據資源,也是當前在國內比較常見的應用資源。在國內還有一類是政府部門掌握的數據資源,普遍認為質量好、價值高,但開放程度低。《大數據綱要》把公共數據互聯開放共享作為努力方向,認為大數據技術可以實現這個目標。實際上,長期以來政府部門間信息數據相互封閉割裂,是治理問題而不是技術問題。面向社會的公共數據開放願望十分美好,恐怕一段時間內可望不可及。在數據資源方面,國內"小數據""中數據"應用並不充分,試圖一步跨入大數據時代,借機一並解決前期信息化過程中沒能解決的問題,前景並不樂觀。另外,由於中國互聯網公司業務主要在國內,其大數據資源也不是全球性的。數據從哪裡來是我們評價大數據應用的第一個關注點。一是要看這個應用是否真有數據支撐,數據資源是否可持續,來源渠道是否可控,數據安全和隱私保護方面是否有隱患。二是要看這個應用的數據資源質量如何,是"富礦"還是"貧礦",能否保障這個應用的實效。對於來自自身業務的數據資源,具有較好的可控性,數據質量一般也有保證,但數據覆蓋范圍可能有限,需要藉助其他資源渠道。對於從互聯網抓取的數據,技術能力是關鍵,既要有能力獲得足夠大的量,又要有能力篩選出有用的內容。對於從第三方獲取的數據,需要特別關注數據交易的穩定性。數據從哪裡來是分析大數據應用的起點,如果一個應用沒有可靠的數據來源,再好、再高超的數據分析技術都是無本之木。(二)數據怎麼用數據怎麼用是我們評價大數據應用的第二個關注點。大數據只是一種手段,並不能無所不包、無所不用。我們關注大數據能做什麼、不能做什麼,現在看來,大數據主要有以下幾種較為常用的功能。追蹤。互聯網和物聯網無時無刻都在記錄,大數據可以追蹤、追溯任何一個記錄,形成真實的歷史軌跡。追蹤是許多大數據應用的起點,包括消費者購買行為、購買偏好、支付手段、搜索和瀏覽歷史、位置信息,等等。識別。在對各種因素全面追蹤的基礎上,通過定位、比對、篩選,可以實現精準識別,尤其是對語音、圖像、視頻進行識別,使可分析內容大大豐富,得到的結果更為精準。畫像。通過對同一主體不同數據源的追蹤、識別、匹配,形成更立體的刻畫和更全面的認識。對消費者畫像,可以精準推送廣告和產品;對企業畫像,可以准確判斷信用及風險。提示。在歷史軌跡、識別和畫像基礎上,對未來趨勢及重復出現的可能性進行預測,當某些指標出現預期變化或超預期變化時給予提示、預警。以前也有基於統計的預測,大數據大大豐富了預測手段,對建立風險控制模型有深刻意義。匹配。在海量信息中精準追蹤和識別,利用相關性、接近性等進行篩選比對,更有效率地實現產品搭售和供需匹配。大數據匹配功能是互聯網約車、租房、金融等共享經濟新商業模式的基礎。優化。按距離最短、成本最低等給定的原則,通過各種演算法對路徑、資源等進行優化配置。對企業而言,提高服務水平、提升內部效率;對公共部門而言,節約公共資源、提升公共服務能力。當前許多貌似復雜的應用,大都可以細分成以上幾種類型。例如,貴州推行的"大數據精準扶貧項目",從大數據應用角度,通過識別、畫像,可以對貧困戶實現精準篩選和界定,找准扶貧對象;通過追蹤、提示,可以對扶貧資金、扶貧行為和扶貧效果進行監控和評估;通過配對、優化,可以更好地發揮扶貧資源的作用。這些功能也並不都是大數據所特有的,只是大數據遠遠超出以前的技術,可以做得更強大、更精準、更快、更好。(三)成果誰買單成果誰買單是我們評價大數據應用的第三個也是最後一個關注點。道理很簡單,不創造價值的應用不是好應用。我們關注大數據的應用是否實實在在地提升了能力、改善了績效。如果大數據用於自身的產品設計、營銷推廣、資源配置,那就看企業競爭力是不是提升了,看企業最終是不是比以前更賺錢了。如果大數據用於為第三方提供服務,那就看是不是有人願意付費、願意持續付費。但如果是用於公共領域,還要看政府或公共部門的付費值不值,不僅僅是從出資方的視角看值不值,還要從老百姓的視角看值不值。當我們面對一項大數據應用時,只要簡單問一問上面三個問題--數據從哪裡來、數據怎麼用、成果誰買單,就能揭開許多"偽裝"。當然,如果經得起上述"大數據三問",也並非一定算得上優秀,卻也離優秀的大數據應用不遠了。尋找數據密集型領域既然大數據被視為一種資源,那就要考慮資源分布的問題。一般而言,資源分布是極不均勻的,如水、礦產、耕地、能源等自然資源;人力資源和知識的分布更是不均。大數據是否也存在分布不均的問題?發展大數據產業是否真的能彎道超車?這些問題值得深入思考。與可以探測的自然資源不同,數據資源分布難以定位和刻畫。不過,可以用大數據人力資源分布狀況來間接反映大數據應用在地區、行業間的差異,哪些行業、哪些地區大數據人力資源密集,這些行業和地區就可以看作是數據密集的。我們對兩家主流招聘網站"前程無憂"和"智聯招聘"2014年下半年以來發布的招聘信息進行篩選,得到兩家網站兩年來共發布相關信息涉及企業22.7萬家,職位100.7萬個,數據量確實足夠"大"。通過分地區、分行業進行匯總分析,結果顯示大數據人力資源分布極不均勻,各地區、各行業差異極大。不過,確切來說,通過招聘網站反映的是人才需求情況,並不是嚴格意義上的人力資源存量分布情況,但這兩者是緊密相關的。從大數據相關崗位工作地來看,北京、廣東、上海三地高度密集,遙遙領先於其他地區。三地相加,發布招聘信息企業數在兩家網站佔到52.35%和47.48%,職位數佔到61.23%和56.74%。可以推測,大數據人力資源的半壁江山都集中在這三個地方,這與我們平時的直觀感受是高度一致的。在這三個地方之外,我們關心是不是地方政府重視大數據產業、將大數據作為區域經濟發展引擎,就可能促進人力資源集聚,就可能超越與自己相似經濟發展水平的其他地區。從數據反映情況看,至少目前還看不到這樣的結果,這揭示出人力資源結構是後發地區發展大數據產業最需要彌補的短板和最難克服的困難。改變一個地方人力資源構成的難度要遠遠大於改變地面建築面貌,要麼需要一個長期的過程,要麼需要一個獨特的制度。即便在同一省份內,大數據人力資源分布也極為不均。例如在廣東,單深圳一市就大體佔到了全省的一半。再加上廣州,竟然能夠達到九成。其他地方,即使經濟實力不俗,但與深圳、廣州相比,在大數據人力資源方面相差甚遠。這再次表明,大數據人力資源分布是極不均勻的。顯然,大數據人力資源密集地區發展大數據產業的基礎要優於人力資源貧瘠的地區。從城市排名看,北上深廣可以視作大數據人力資源需求密集的一線城市,杭州、南京、成都、武漢、西安等可以看作二線城市。大數據人力資源分布與城市經濟實力、活力乃至房價水平都是大體一致的。從行業分布看,對大數據人力資源的需求分布更不均勻,主要集中在互聯網、信息技術及計算機相關行業。這充分說明了大數據是互聯網或IT產業的一部分,是在原有基礎上的新發展。這些行業是典型的"數據密集型"行業,是大數據產業發展的搖籃。金融是另一個特別重要的"數據密集"領域。金融行業既是產生數據尤其是有價值數據的基地,又是數據分析服務的需求方和應用地。更為重要的是,金融行業具備充足的支付能力,將是大數據產業競爭的重要戰場。許多大數據是通過在金融領域的應用輻射到了各個行業。除此之外,電信、專業服務(如咨詢、人力資源、財會)、教育培訓、影視媒體、網路游戲等,相對而言也是當前數據較為密集的行業。《大數據綱要》幾乎面面俱到地對所有行業和領域都規劃了大數據應用的廣闊前景,但數據資源分布極為不均,在"數據密集"領域的大數據應用,取得市場成功的可能性較大。大數據需要什麼樣的產業政策大數據應用需要什麼樣的產業政策?從應用的角度來看,大數據並非一個全新的產業,而是與已有產業融合,對已有模式的改造、升級和替代。制約大數據發展的往往並不是大數據本身,而是大數據所應用的行業和領域原本存在的問題,如行業管制、行政壟斷、要素不能自由流動,等等。因此,促進大數據發展,用給地、貼錢、上項目的方法,並不能解決根本問題。要從大數據應用領域角度,對不當的行業管理模式進行改革,對既有利益格局進行調整,使大數據應用具備必要的條件。即使在企業內部,大數據應用也不僅僅是個技術問題,而是涉及業務流程重組和管理模式變革,是對企業管理能力的一個考驗。金融、電信、教育、影視媒體等"數據密集型"行業,既是大數據應用潛力巨大的領域,也是迫切推進行業改革的重點領域。另一方面,大數據的應用也可以為行業改革提供技術支撐,能以更有效的技術路線實現行業發展目標。
大數據應用需要的產業政策其實就是市場經濟下各個行業發展所應有的政策,如放開准入、公平競爭、減輕企業負擔、消除企業所有制歧視、消除企業規模歧視,等等。只有在一個開放的產業環境中,大數據才能在這些產業得以有效運用。一個地方若要在金融、醫療、教育等領域大力推動大數據運用,最管用的政策就是對這些行業進行有力的改革。

『陸』 大數據關鍵技術有哪些

大數據關鍵技術涵蓋數據存儲、處理、應用等多方面的技術,根據大數據的處理過程,可將其分為大數據採集、大數據預處理、大數據存儲及管理、大數據處理、大數據分析及挖掘、大數據展示等。

1、大數據採集技術

大數據採集技術是指通過 RFID 數據、感測器數據、社交網路交互數據及移動互聯網數據等方式獲得各種類型的結構化、半結構化及非結構化的海量數據。

因為數據源多種多樣,數據量大,產生速度快,所以大數據採集技術也面臨著許多技術挑戰,必須保證數據採集的可靠性和高效性,還要避免重復數據。

2、大數據預處理技術

大數據預處理技術主要是指完成對已接收數據的辨析、抽取、清洗、填補、平滑、合並、規格化及檢查一致性等操作。

因獲取的數據可能具有多種結構和類型,數據抽取的主要目的是將這些復雜的數據轉化為單一的或者便於處理的結構,以達到快速分析處理的目的。

3、大數據存儲及管理技術

大數據存儲及管理的主要目的是用存儲器把採集到的數據存儲起來,建立相應的資料庫,並進行管理和調用。

4、大數據處理

大數據的應用類型很多,主要的處理模式可以分為流處理模式和批處理模式兩種。批處理是先存儲後處理,而流處理則是直接處理。

(6)大數據應用關鍵擴展閱讀:

大數據無處不在,大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、體能和娛樂等在內的社會各行各業都已經融入了大數據的印跡。

1、製造業,利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

2、金融行業,大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

3、汽車行業,利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。

4、互聯網行業,藉助於大數據技術,可以分析客戶行為,進行商品推薦和針對性廣告投放。

5、電信行業,利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

『柒』 大數據的關鍵技術

大數據的關鍵技術:大數據採集、大數據預處理、大數據存儲及管理、大數據分析及挖掘、大數據展現和應用,其中包括大數據檢索、大數據可視化、大數據應用、大數據安全等。

技術是解決問題的方法及方法原理,是指人們利用現有事物形成新事物,或是改變現有事物功能、性能的方法。技術應具備明確的使用范圍和被其它人認知的形式和載體,

如原材料(輸入)、產成品(輸出)、工藝、工具、設備、設施、標准、規范、指標、計量方法等。技術與科學相比,技術更強調實用,而科學更強調研究;技術與藝術相比,技術更強調功能,藝術更強調表達。

引證解釋

技藝;法術。《史記·貨殖列傳》:「醫方諸食技術之人,焦神極能,為重糈也。」宋陸游《老學庵筆記》卷三:「忽有一道人,絕隱遲亦美風表,多技術…… 張若水 介之來謁。」

清侯方域《再與賈三兄書》:「蓋足下之性好新異,喜技術,作之不必果成,成之不攜困必果用,然凡可以嘗試為之者,莫不為之。」Technology;Art;Skill;Technique在勞動生產方面的經驗、知識和技巧,也泛指其他操作方面的技巧。

知識技能和操作技巧。周而復《上海的早晨並李》第一部七:「張學海是滬江紗廠保全部的青年工人,思想進步,對機器特別有興趣,有空就鑽研技術。」

李准《李雙雙小傳》六:「兩個人見面, 雙雙 總要說他們豬場的新鮮事。比如一個豬下了十個豬娃呀,人工授精的新技術呀。」

閱讀全文

與大數據應用關鍵相關的資料

熱點內容
嵌入式黑盒測試工具 瀏覽:154
有限狀態自動機代碼 瀏覽:816
hosts文件空內容 瀏覽:254
tcpudp源代碼 瀏覽:737
重裝系統軟體win10嗎 瀏覽:51
spss非線性回歸教程 瀏覽:183
ldb文件是什麼 瀏覽:359
無網路下手機連接投影 瀏覽:431
少兒編程有哪些技巧 瀏覽:569
網路報道失實如何舉報 瀏覽:560
網上什麼相親網站好 瀏覽:205
萊州如何優化網站 瀏覽:563
java封裝ocx 瀏覽:41
qq微信接收文件夾在哪裡 瀏覽:632
語音包文件夾後綴是多少 瀏覽:131
魅族手機app是什麼 瀏覽:887
cad添加保存文件格式 瀏覽:246
電視用什麼app看電影全部免費 瀏覽:311
數控編程培訓班有哪些 瀏覽:998
寧波市五軸編程培訓哪個好 瀏覽:631

友情鏈接