⑴ 大數據時代下我國電子商務的發展機遇與挑戰
大數據時代下我國電子商務的發展機遇與挑戰_數據分析師考試
大數據時代已經到來,認同這一判斷的人越來越多。隨著物聯網、雲計算、移動互聯網等新技術的發展,手機、平板電腦、PC以及遍布地球各個角落的感測器,將成為大數據來源和承載方式。據預測,全球互聯網上的數據量每兩年會翻一番,到2013年互聯網上的數據量將達到667EB(1EB=109GB)。這些數據絕大多數是「非結構化數據」,通常不能為傳統的資料庫所用,但隨著自然語言處理、模式識別和機器學習等人工智慧技術的發展,這些龐大的數據「寶藏」將成為未來世界的新「石油」。
大數據正在促生新的藍海,催生新的經濟增長點,正在成為政府和企業競爭的新焦點。2012年,瑞士達沃斯論壇發布《大數據,大影響》報告,稱「數據已經成為一種新的經濟資產類別,就像貨幣或黃金一樣」。2012年,美國政府啟動「大數據研究和發展計劃」,將「大數據」上升到了國家戰略層面。對於企業來說,數據正在取代人才成為企業的核心競爭力。總之,大數據所能帶來的巨大商業價值,被認為將引領一場足以與20世紀計算機革命匹敵的巨大變革。
未來,大數據時代將會撼動人類社會的方方面面,從商業科技到醫療、政府、教育等各個領域。但現在,電子商務無疑已成為其中發展最快、應用最廣泛、也最成功的領域之一。
大數據時代下我國電子商務的發展機遇
當前,我國電子商務正處於快速發展期。以阿里巴巴為例,從2010年到2012年,淘寶和天貓雙十一單日成交額分別為9億、33億、191億;而2011年全年,淘寶和天貓成交量之和為3600億,2012年這個數據超過一萬億。根據國家統計局數據,2012年全國各省社會消費品零售總額為20.17萬億,一萬億相當於其總量的4.8%。我國電子商務井噴式發展的背後是消費者數據的幾何級增長。電子商務龍頭企業也正是看到了相關機遇,積極部署、探索和挖掘大數據相關應用。
一是,電商企業通過大數據應用創新商業模式
大數據的重要趨勢就是數據服務的變革,把人分成很多群體,對每個群體甚至每個人提供針對性的服務。消費數據量的增加為電商企業提供了精確把握用戶群體和個體網路行為模式的基礎。電商企業通過大數據應用,可以探索個人化、個性化、精確化和智能化地進行廣告推送和推廣服務,創立比現有廣告和產品推廣形式性價比更高的全新商業模式。同時,電商企業也可以通過對大數據的把握,尋找更多更好地增加用戶粘性,開發新產品和新服務,降低運營成本的方法和途徑。
實際上,國外傳統零售巨頭早已開始大數據的應用和實踐。Tesco是全球利潤第二大零售商,其從會員卡的用戶購買記錄中,充分了解用戶的行為,並基於此進行一系列的業務活動,例如通過郵件或信件寄給用戶的促銷可以變得更個性化,店內的商家商品及促銷也可以根據周圍人群的喜好、消費時段來更加有針對性,從而提高貨品的流通。這樣的做法為Tesco獲得了豐厚的回報,僅在市場宣傳一項,就能幫助其每年節省3.5億英鎊的費用。顯然,電商企業對比傳統零售企業在這方面會更有優勢,因為電商企業本身就是通過數據平台為用戶提供零售服務的。
從國內來看,我國電商企業均積極在大數據領域進行布局和深耕,已逐步認識到大數據應用對於電商發展的重要性。以我國著名B2C龍頭企業凡客誠品為例。經過近幾年的高速發展,凡客每年的銷售量成倍增長,庫存問題逐漸成為制約其發展的主要因素。2011年,凡客成立了數據中心,針對企業經營數據,包括庫存、進貨周期、周轉、訂單等,研究分析新產品的上架與新用戶增長的關系,每上線一個新產品與它能夠帶來的用戶二次購買的關系等,開展大數據應用實踐。據報道,凡客的高庫存問題目前已得到了緩解,庫存周轉速度由100天下降為50天-30天,有效降低了運營成本。
二是,電商企業通過大數據應用推動差異化競爭
當前,我國電子商務發展面臨的兩大突出問題是成本和同質化競爭。而大數據時代的到來將為其發展和競爭提供新的出路,包括具體產品和服務形式,通過個性化創新提升企業競爭力。
還是以阿里巴巴為例。阿里巴巴通過對旗下的淘寶、天貓、阿里雲、支付寶、萬網等業務平台進行資源整合,形成了強大的電子商務客戶群及消費者行為的全產業鏈信息,造就了獨一無二的數據處理能力,這是目前其他電子商務公司無法模仿與跟隨的。同時,也將電子商務的競爭從簡單的價格戰上升了一個層次,形成了差異化競爭。目前,淘寶已形成的數據平台產品,包括數據魔方、量子恆道、超級分析、金牌統計、雲鏡數據等100餘款,功能包括店鋪基礎經營分析、商品分析、營銷效果分析、買家分析、訂單分析、供應鏈分析、行業分析、財務分析和預測分析等。
此外,電商企業通過大數據應用積極開拓發展新藍海——互聯網金融業務。目前阿里、京東、蘇寧三大主流電商企業已相繼試水。除「阿里小貸」模式比較成功之外,京東模式也漸出效果。2012年,京東通過與中國銀行合作,推出「供應鏈金融服務」,供應商憑借其在京東的訂單、入庫單等向京東提出融資申請,核准後遞交銀行,再由銀行給予放款。據報道,此服務可以幫助京東供應商大幅度縮短賬期,資金回報率由原來的60%左右提高到226%。
大數據時代下我國電子商務面臨的挑戰
雖然電子商務企業已經走在大數據時代的前列,但在開始規劃大數據美好藍圖的同時也要警惕其面臨的挑戰和風險。
一是企業信息化投資將規模化發展。電商企業內部的經營交易信息,包括商品、物流信息,以及用戶的社交信息、位置信息等等將構成企業大數據的主要來源。其信息量遠遠超越了現有企業IT架構和基礎設施的承載能力,其實時性要求大大超越現有的計算能力。此外,電商企業還將面臨數據孤島、數據質量、數據格局等數據治理問題。要想依靠大數據獲益,我國電商企業必將進行新一輪的信息化投資和建設。
二是相關管理政策尚不明確。大數據時代下,雲計算必將成為電商企業選擇的業務模式,其本質是數據處理技術。數據是資產,雲為數據資產提供了保管、訪問的場所和渠道。雲計算所提供的服務,既包括軟體服務和應用平台服務,又包括基礎設施服務,但目前我國針對雲計算服務的管理政策和技術標准尚未明確。
三是數據安全與隱私問題突出。一方面,大量的數據匯集,包括大量的企業運營數據、客戶信息、個人的隱私和各種行為的細節記錄,面臨的數據泄露風險將會增大。電商企業既要防止數據在雲上丟掉,也要防止數據在端上被竊取和篡改。另一方面,一些敏感數據的所有權和使用權還沒有明確的界定,很多基於大數據的分析都未考慮到其中涉及到的個體的隱私問題。
以上是小編為大家分享的關於大數據時代下我國電子商務的發展機遇與挑戰的相關內容,更多信息可以關注環球青藤分享更多干貨
⑵ 大數據的商業機會在哪
大數據的商業機會在哪
近些年,大數據已經和雲計算一樣,成為時代的話題。大數據是怎麼產生的,商業機會在哪?研究機會在哪?這個概念孕育著一個怎樣的未來?
昨天在車庫咖啡參加了一個小型的研討活動,就這些問題進行了一些討論,我結合自己的一些理解做一個總結。
首先,大數據是怎麼產生的?
1)物理世界的信息大量數字化產生的
例如劉江老師指出的好大夫網,將醫生的信息,門診的信息等數字化。其實還有很多,比如新浪微博將茶館聊天的行為(弱關系產生信息數字化),朋友聊天的行為數字化(強關系產生信息數字化)。視頻監控探頭將圖像數字化。
2)社交網路產生的
在雅虎時代,大量的都是讀操作,只有雅虎的編輯做一些寫操作的工作。進入web2.0時代,用戶數大量增加,用戶主動提交了自己的行為。進入了社交時代,移動時代。大量移動終端設備的出現,用戶不僅主動提交自己的行為,還和自己的社交圈進行了實時的互動,因此數據大量的產生出來,並且具有了極其強烈的傳播性。
3)數據都要保存所產生的
一位嘉賓指出,舊金山大橋保留了百年的歷史數據,在時間跨度上產生了價值,很多網站在早期對數據的重視程度不夠,保存數據的代價很大,存儲設備的價格昂貴,但是時代變了,存儲設備便宜了,用戶自己產生的數據得到了重視,數據的價值被重視了。因此越來越多的數據被持續保存。
其次,大數據和大規模數據的區別?
big data之前學術界叫very large data,大數據和大規模數據的差距是什麼?我認為在英文中large的含義只是體積上的,而big的含義還包含重量上的,價值量上的。因此我認為:
1)大數據首先不是數量上的堆砌,而是具有很強的關聯性結構性。
比如有一種數據,記錄了世界上每一顆大樹每年長高的程度,這樣的數據不具有價值,因為只是簡單堆砌。
如果數據變成,每一個大樹記錄它的,地點,氣候條件,樹種,樹齡,周邊動植物生態,每年長高的高度,那麼這個數據就具有了結構性。具有結構性的數據首先具有極強的研究價值,其次極強的商業價值。
在比如,淘寶的數據,如果只記錄一個交易的買家,賣家,成交物品,價格等信息,那麼這個商業價值就很有限。淘寶包含了,買家間的社交關系,購物前後的其他行為,那麼這個數據將非常有價值。
因此,只有立體的,結構性強的數據,才能叫大數據,才有價值,否則只能叫大規模數據。
2)大數據的規模一定要大,而且比大規模數據的規模還要大。
要做一些預測模型需要很多數據,訓練語料,如果數據不夠大,很多挖掘工作很難做,比如點擊率預測。最直白的例子,如果你能知道一個用戶的長期行蹤數據,上網的行為,讀操作和寫操作。那麼幾乎可以對這個人進行非常精準的預測,各種推薦的工作都能做到很精準。 最後,大數據的機會在哪裡?對小公司的機會在哪?
圍繞數據的整個產業鏈上,我認為具有以下機會:
1)數據的獲得
大量數據的獲得,這個機會基本屬於新浪微博等這類大企業,大量交易數據的獲得,也基本屬於京東,淘寶這類企業。小企業基本沒機會獨立得到這些用戶數據。
2)數據的匯集
例如如果你要能把各大廠商,各大微博,政府各個部門的數據匯集全,這個機會將是極大的。
但,這個工作,做大了需要政府行為,做中檔了,要企業間合作,做小了,也許就是一個聯盟或者一個民間組織,比如中國爬盟。
3)數據的存儲
匯集了數據後,立即遇到的問題就是存儲,這個代價極大,原始數據不能刪除,需要保留。因此提供存儲設備的公司,執行存儲這個角色的公司,都具有巨大的市場機會,但是這也不屬於小公司,或者早期創業者。
4)數據的運算
在存儲了數據以後,怎麼把數據分發是個大問題,各種API,各種開放平台,都是將這些數據發射出去,提供後續的挖掘和分析工作,這個也需要有大資本投入,也不適合小公司。
5)數據的挖掘和分析
數據需要做增值服務,否則數據就沒有價值,big也big不到哪裡去,是沒有價值的big.因此這種數據分析和挖掘工作具有巨大的價值,這個機會屬於小公司,小團體。
6)數據的使用和消費
在數據做到了很好的挖掘和分析後,需要把這些結果應用在一個具體的場合上,來獲得回報,做數據挖掘和分析的公司,必須得找到這些金主才行,而這些金主肯定也不是小公司。
大數據未來的形態,或者產業鏈結構一定是分層的,巨大的,價值的體現發生在各個層次,每個層次都是生態鏈的重要一環,都孕育著巨大的機遇和挑戰,我們能做的唯有努力,做適合自己的工作。
⑶ 在當前大數據的新環境下 it企業面臨哪些機會與挑戰
挑戰一:數據來源錯綜復雜
豐富的數據源是大數據產業發展的前提。而我國數字化的數據資源總量遠遠低於美歐,每年新增數據量僅為美國的7%,歐洲的12%,其中政府和製造業的數據資源積累遠遠落後於國外。就已有有限的數據資源來說,還存在標准化、准確性、完整性低,利用價值不高的情況,這大大降低了數據的價值。
大數據時代,我們需要更加全面的數據來提高分析預測的准確度,因此我們就需要更多便捷、廉價、自動的數據生產工具。除了我們在網上使用的瀏覽器有意或者無意記載著個人的信息數據之外,手機、智能手錶、智能手環等各種可穿戴設備也在無時無刻地產生著數據;就連我們家裡的路由器、電視機、空調、冰箱、飲水機、凈化器等也開始越來越智能並且具備了聯網功能,這些家用電器在更好地服務我們的同時,也在產生著大量的數據;甚至我們出去逛街,商戶的WIFI,運營商的3G網路,無處不在的攝像頭電子眼,百貨大樓的自助屏幕,銀行的ATM,加油站以及遍布各個便利店的刷卡機等也都在產生著數據。
挑戰二:數據挖掘分析模型建立
步入大數據時代,人們紛紛在談論大數據,似乎這已經演化為新的潮流趨勢。數據比以往任何時候都更加根植於我們生活中的每個角落。我們試圖用數據去解決問題、改善福利,並且促成新的經濟繁榮。人們紛紛流露出去大數據的高期待以及對大數據分析技術的格外看好。然而,關於大數據分析,人們鼓吹其神奇價值的喧囂聲浪很高,卻鮮見其實際運用得法的模式和方法。造成這種窘境的原因主要有以下兩點:一是對於大數據分析的價值邏輯尚缺乏足夠深刻的洞察;其次便是大數據分析中的某些重大要件或技術還不成熟。大數據時代下數據的海量增長以及缺乏這種大數據分析邏輯以及大數據技術的待發展,正是大數據時代下我們面臨的挑戰。
大數據的大,一般人認為指的是它數據規模的海量。隨著人類在數據記錄、獲取及傳輸方面的技術革命,造成了數據獲得的便捷與低成本,這便使原有的以高成本方式獲得的描述人類態度或行為的、數據有限的小數據已然變成了一個巨大的、海量規模的數據包。這其實是一種片面認識。其實,前大數據時代也有海量的數據集,但由於其維度的單一,以及和人或社會有機活動狀態的剝離,而使其分析和認識真相的價值極為有限。大數據的真正價值不在於它的大,而在於它的全面:空間維度上的多角度、多層次信息的交叉復現;時間維度上的與人或社會有機體的活動相關聯的信息的持續呈現。
挑戰三:數據開放與隱私的權衡
數據應用的前提是數據開放,這已經是共識。有專業人士指出,中國人口居世界首位,但2010年中國新存儲的數據為250PB,僅為日本的60%和北美的7%。目前我國一些部門和機構擁有大量數據但寧願自己不用也不願提供給有關部門共享,導致信息不完整或重復投資。2012年中國的數據存儲量達到64EB,其中55%的數據需要一定程度的保護,然而目前只有不到一半的數據得到保護。
開放與隱私如何平衡,亦是一大難題。任何技術都是雙刃劍,大數據也不例外。如何在推動數據全面開放、應用和共享的同時有效地保護公民、企業隱私,逐步加強隱私立法,將是大數據時代的一個重大挑戰。
挑戰四:大數據管理與決策
大數據的技術挑戰顯而易見,但其帶來的決策挑戰更為艱巨。大數據至關重要的方面,就是它會直接影響組織怎樣作決策、誰來作決策。在信息有限、獲取成本高昂且沒有被數字化的時代,組織內作重大決策的人,都是典型的位高權重的人,要不然就是高價請來的擁有專業技能和顯赫履歷的外部智囊。但是,在今時今日的商業世界中,高管的決策仍然更多地依賴個人經驗和直覺,而不是基於數據。
大數據開發的根本目的是以數據分析為基礎,幫助人們做出更明智的決策,優化企業和社會運轉。哈佛商業評論說,大數據本質上是「一場管理革命」。大數據時代的決策不能僅憑經驗,而真正要「拿數據說話」。因此,大數據能夠真正發揮作用,深層次看,還要改善我們的管理模式,需要管理方式和架構的與大數據技術工具相適配。這或許是我們最難邁過的一道坎了。
挑戰五:大數據人才缺口
如果說,以Hadoop為代表的大數據是一頭小象,那麼企業必須有能夠馴服它的馴獸師。在很多企業熱烈擁抱這類大數據技術時,精通大數據技術的相關人才也成為一個大缺口。
大數據建設的每個環節都需要依靠專業人員完成,因此,必須培養和造就一支懂指揮、懂技術、懂管理的大數據建設專業隊伍。
⑷ 大數據十大商業應用場景
大數據十大商業應用場景
大數據時代,在未來的幾十年裡,大數據都將會是一個重要都話題。大數據影響著每一個人,並在可以預見的未來繼續影響著。大數據沖擊著許多主要行業,包括零售業、金融行業、醫療行業等等,大數據也在徹底地改變著我們的生活。現在我們就來看看大數據給中國帶來的十商業應用場景,未來大數據產業將會是一個萬億市場。
1、智慧城市
如今,世界超過一半的人口生活在城市裡,到2050年這一數字會增長到75%。政府需要利用一些技術手段來管理好城市,使城市裡的資源得到良好配置。既不出現由於資源配置不平衡而導致的效率低下以及騷亂,又要避免不必要的資源浪費而導致的財政支出過大。大數據作為其中的一項技術可以有效幫助政府實現資源科學配置,精細化運營城市,打造智慧城市。
城市的道路交通,完全可以利用GPS數據和攝像頭數據來進行規劃,包括道路紅綠燈時間間隔和關聯控制,包括直行和左右轉彎車道的規劃、單行道的設置。利用大數據技術實施的城市交通智能規劃,至少能夠提高30%左右的道路運輸能力,並能夠降低交通事故率。在美國,政府依據某一路段的交通事故信息來增設信號燈,降低了50%以上的交通事故率。機場的航班起降依靠大數據將會提高航班管理的效率,航空公司利用大數據可以提高上座率,降低運行成本。鐵路利用大數據可以有效安排客運和貨運列車,提高效率、降低成本。
城市公共交通規劃、教育資源配置、醫療資源配置、商業中心建設、房地產規劃、產業規劃、城市建設等都可以藉助於大數據技術進行良好規劃和動態調整。
大數據技術可以了解經濟發展情況,各產業發展情況,消費支出和產品銷售情況,依據分析結果,科學地制定宏觀政策,平衡各產業發展,避免產能過剩,有效利用自然資源和社會資源,提高社會生產效率。大數據技術也能幫助政府進行支出管理,透明合理的財政支出將有利於提高公信力和監督財政支出。大數據及大數據技術帶給政府的不僅僅是效率提升、科學決策、精細管理,更重要的是數據治國、科學管理的意識改變,未來大數據將會從各個方面來幫助政府實施高效和精細化管理,具有極大的想像空間。
2、金融行業
大數據在金融行業應用范圍較廣,典型的案例有花旗銀行利用IBM沃森電腦為財富管理客戶推薦產品,美國銀行利用客戶點擊數據集為客戶提供特色服務。中國金融行業大數據應用開展得較早,但都是以解決大數據效率問題為主,很多金融行業建立了大數據平台,對金融行業的交易數據進行採集和處理。
金融行業過去的大數據應用以分析自身財務數據為主,以提供動態財務報表為主,以風險管理為主。在大數據價值變現方面,開展的不夠深入,這同金融行業每年上萬億的凈利潤相比是不匹配的。現在已經有一些銀行和證券開始和移動互聯網公司合作,一起進行大數據價值變現,其中招商銀行、平安集團、興業銀行、國信證券、海通證券和Talking Data在移動大數據精準營銷、獲客、用戶體驗等方面進行了不少的嘗試,大數據價值變現效果還不錯,大數據正在幫助金融行業進行價值變現。大數據在金融行業的應用可以總結為以下五個方面:
(1)精準營銷:依據客戶消費習慣、地理位置、消費時間進行推薦
(2)風險管控:依據客戶消費和現金流提供信用評級或融資支持,利用客戶社交行為記錄實施信用卡反欺詐
(3)決策支持:利用抉策樹技術進抵押貸款管理,利用數據分析報告實施產業信貸風險控制
(4)效率提升:利用金融行業全局數據了解業務運營薄弱點,利用大數據技術加快內部數據處理速度
(5)產品設計:利用大數據計算技術為財富客戶推薦產品,利用客戶行為數據設計滿足客戶需求的金融產品
3、醫療行業
醫療行業擁有大量病例、病理報告、醫療方案、葯物報告等。如果這些數據進行整理和分析,將會極大地幫助醫生和病人。在未來,藉助於大數據平台我們可以收集疾病的基本特徵、病例和治療方案,建立針對疾病的資料庫,幫助醫生進行疾病診斷。
如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診。在制定治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制定出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業開發出更加有效的葯物和醫療器械。
醫療行業的數據應用一直在進行,但是數據沒有打通,都是孤島數據,沒有辦法起大規模應用。未來需要將這些數據統一收集起來,納入統一的大數據平台,為人類健康造福。政府是推動這一趨勢的重要動力,未來市場將會超過幾千億元。
4、農牧業
農產品不容易保存,合理種植和養殖農產品對農民非常重要。藉助於大數據提供的消費能力和趨勢報告,政府將為農牧業生產進行合理引導,依據需求進行生產,避免產能過剩,造成不必要的資源和社會財富浪費。大數據技術可以幫助政府實現農業的精細化管理,實現科學決策。在數據驅動下,結合無人機技術,農民可以採集農產品生長信息,病蟲害信息。
農業生產面臨的危險因素很多,但這些危險因素很大程度上可以通過除草劑、殺菌劑、殺蟲劑等技術產品進行消除。天氣成了影響農業非常大的決定因素。過去的天氣預報僅僅能提供當地的降雨量,但農民更關心有多少水分可以留在他們的土地上,這些是受降雨量和土質來決定的。Climate公司利用政府開放的氣象站的數據和土地數據建立了模型,他們可以告訴農民可以在哪些土地上耕種,哪些土地今天需要噴霧並完成耕種,哪些正處於生長期的土地需要施肥,哪些土地需要5天後才可以耕種,大數據技術可以幫助農業創造巨大的商業價值。
5、零售行業
零售行業比較有名氣的大數據案例就是沃爾瑪的啤酒和尿布的故事,以及Target通過向年輕女孩寄送尿布廣告而告知其父親,女孩懷孕的故事。
零售行業可以通過客戶購買記錄,了解客戶關聯產品購買喜好,將相關的產品放到一起增加來增加產品銷售額,例如將洗衣服相關的化工產品例如洗衣粉、消毒液、衣領凈等放到一起進行銷售。根據客戶相關產品購買記錄而重新擺放的貨物將會給零售企業增加30%以上的產品銷售額。
零售行業還可以記錄客戶購買習慣,將一些日常需要的必備生活用品,在客戶即將用完之前,通過精準廣告的方式提醒客戶進行購買。或者定期通過網上商城進行送貨,既幫助客戶解決了問題,又提高了客戶體驗。
電商行業的巨頭天貓和京東,已經通過客戶的購買習慣,將客戶日常需要的商品例如尿不濕,衛生紙,衣服等商品依據客戶購買習慣事先進行准備。當客戶剛剛下單,商品就會在24小時內或者30分鍾內送到客戶門口,提高了客戶體驗,讓客戶連後悔等時間都沒有。
利用大數據的技術,零售行業將至少會提高30%左右的銷售額,並提高客戶購買體驗。
6、大數據技術產業
進入移動互聯網之後,非結構化數據和結構化數據呈指數方式增長。現在人類社會每兩年產生的數據將超過人類歷史過去所有數據之和。進入到2015年,人類社會所有的數據之和有望突破5澤B(5ZB),這些數據如何存儲和處理將會成為很大的問題。
這些大數據為大數據技術產業提供了巨大的商業機會。據估計全世界在大數據採集、存儲、處理、清晰、分析所產生的商業機會將會超過2000億美金,包括政府和企業在大數據計算和存儲,數據挖掘和處理等方面等投資。中國2014年大數據產業產值已經超過了千億人民幣,本屆貴陽大數據博覽會就吸引了400多家廠商來參展,充分說明大數據產業的未來的商業價值巨大。
未來中國的大數據產業將會呈幾何級數增長,在5年之內,中國的大數據產業將會形成萬億規模的市場。不僅僅是大數據技術產品的市場,也將是大數據商業價值變現的市場。大數據將會在企業的精準營銷、決策分析、風險管理、產品設計、運營優化等領域發揮重大的作用。
大數據技術產業將會解決大數據存儲和處理的問題,大數據服務公司將利用自身的數據將解決大數據價值變現問題,其所帶來的市場規模將會超過千億人民幣。中國目前擁有大數據,並提供大數據價值變現服務的公司除了我們眾所周知的BAT和移動運營商之外,360、小米、京東、Talking Data、九次方等都會成為大數據價值變現市場的有力參與者,市場足夠大,期望他們將市場做大,幫助所有企業實現大數據價值變現。
7、物流行業
中國的物流產業規模大概有5萬億左右,其中公里物流市場大概有3萬億左右。物流行業的整體凈利潤從過去的30%以上降低到了20%左右,並且下降的趨勢明顯。物流行業很多的運力浪費在返程空載、重復運輸、小規模運輸等方面。中國市場最大等物流公司所佔的市場份額不到1%。因此資源需要整合,運送效率需要提高。
物流行業藉助於大數據,可以建立全國物流網路,了解各個節點的運貨需求和運力,合理配置資源,降低貨車的返程空載率,降低超載率,減少重復路線運輸,降低小規模運輸比例。通過大數據技術,及時了解各個路線貨物運送需求,同時建立基於地理位置和產業鏈的物流港口,實現貨物和運力的實時配比,提高物流行業的運輸效率。藉助於大數據技術對物流行業進行的優化資源配置,至少可以增加物流行業10%左右的收入,其市場價值將在5000億左右。
8、房地產業
中國房地產業發展的高峰已經過去,其面臨的挑戰逐漸增加,房地產業正從過去的粗放發展方式轉向精細運營方式,房地產企業在拍賣土地、住房地產開發規劃、商業地產規劃方面也將會謹慎進行。
藉助於大數據,特別是移動大數據技術。房地產業可以了解開發土地所在范圍常駐人口數量、流動人口數量、消費能力、消費特點、年齡階段、人口特徵等重要信息。這些信息將會幫助房地商在商業地產開發、商戶招商、房屋類型、小區規模進行科學規劃。利用大數據技術,房地產行業將會降低房地產開發前的規劃風險,合理制定房價,合理制定開發規模,合理進行商業規劃。大數據技術可以降低土地價格過高,實際購房需求過低的風險。已經有房地產公司將大數據技術應用於用戶畫像、土地規劃、商業地產開發等領域,並取得了良好的效果。
9、製造業
製造業過去面臨生產過剩的壓力,很多產品包括家電、紡織產品、鋼材、水泥、電解鋁等都沒有按照市場實際需要生產,造成了資源的極大浪費。利用電商數據、移動互聯網數據、零售數據,我們可以了解未來產品市場都需求,合理規劃產品生產,避免生產過剩。
例如依據用戶在電商搜索產品的數據以及物流數據,可以推測出家電產品和紡織產品未來的實際需求量,廠家將依據這些數據來進行生產,避免生產過剩。移動互聯網的位置信息可以幫助了解當地人口進出的趨勢,避免生產過多的鋼材和水泥。
大數據技術還可以根據社交數據和購買數據來了解客戶需求,幫助廠商進行產品開發,設計和生產出滿足客戶需要的產品。
10、互聯網廣告業
2014年中國互聯網廣告市場迎來發展高峰,市場規模預計達到1500億元左右,較2013年增長56.5%。數字廣告越來越受到廣告主的重視,其未來市場規模越來越大。2014年美國的互聯網廣告市場規模接近500億美元,參考中國的人口消費能力,其市場規模會很快達到2000億人民幣左右。
過去到廣告投放都是以好的廣告渠道+廣播式投放為主,廣告主將廣告交給廣告公司,由廣告公司安排投放,其中SEM廣告市場最大,其他的廣告投放方式也是以頁面展示為主,大多是廣播式廣告投放。廣播式投放的弊端是投入資金大,沒有針對目標客戶,面對所有客戶進行展示,廣告的轉化率較低,並存在數字廣告營銷陷阱等問題。
大數據技術可以將客戶在互聯網上的行為記錄下來,對客戶的行為進行分析,打上標簽並進行用戶畫像。特別是進入移動互聯網時代之後,客戶主要的訪問方式轉向了智能手機和平台電腦,移動互聯網的數據包含了個人的位置信息,其360度用戶畫像更加接近真實人群。360度用戶畫像可以幫助廣告主進行精準營銷,廣告公司可以依據用戶畫像的信息,將廣告直接投放到用戶的移動設備,通過用戶經常使用的APP進行廣告投放,其廣告的轉化可以大幅度提高。利用移動互聯網大數據技術進行的精準營銷將會提高十倍以上的客戶轉化率,廣告行業的程序化購買正在逐步替代廣播式廣告投放。大數據技術將幫助廣告主和廣告公司直接將廣告投放給目標用戶,其將會降低廣告投入,提高廣告的轉化率。
目前,影響大數據產業發展主要有兩個大問題,一個是大數據應用場景,一個是大數據隱私保護問題。
大數據商業價值的應用場景,大數據公司和企業正在尋找,目前在移動互聯網的精準營銷和獲客、360度用戶畫像、房地產開發和規劃、互聯網金融的風險管理、金融行業的供應鏈金融,個人徵信等方面已經取得了進步,擁有了很多經典案例。
但在有關大數據隱私保護以及大數據應用過程中個人信息保護方面還停滯不前,大家都在摸石頭過河,不知道哪些事情可以做,哪些事情不可以做。國家在大數據隱私保護方面正在進行立法,估計不久的將來,大數據服務公司和企業將會了解大數據隱私保護方面的具體要求。在沒有明確有關大數據隱私保護法規前,我們可以參考國外的隱私法,嚴格遵守國際上通用的個人隱私保護法,在實施大數據價值變現的過程中,充分保護所有相關方的個人利益。
最後縱觀人類歷史,在任何領域,如果我們可以拿到數據進行分析,我們就會取得進步。如果我們拿不到數據,無法進行分析,我們註定要落後。我們過去因數據不足導致的錯誤遠遠好過那些根本不用數據的錯誤,因此我們需要掌握大數據這個武器,利用好它,幫助人類社會加速進化,幫助企業實現大數據的價值變現。
以上是小編為大家分享的關於大數據十大商業應用場景的相關內容,更多信息可以關注環球青藤分享更多干貨
⑸ 大數據時代可能影響你的7個商業趨勢
大數據時代可能影響你的7個商業趨勢
我們已經看到了許多這樣的案例出現企業願意分享他們在大數據使用上取得的成就。在IT行業任何的範式轉變(paradigmshift),一個特定的主題吸引新聞媒體、投資者和創新人才的大量關注,這個轉變需求很強的商業價格的支持。這個典型的案例是:客戶服務、分布式計算和以服務為導向的架構與語言,例如:JAVA.
我們也看到了一個有益的生態系統的出現,迅速的贊美或擴展能力的核心支持技術,在大數據案例中,大數據生態系統已經迅速集中一批技術提供者,例如:Hadoop,Cassandra,Accumulo,Oracle,IBM.
那麼在大數據的生態系統中我可以看到哪些趨勢會出現?
在hadoop上對於sql擴展性和一致性有一大批的技術公司努力構建一種no-sql技術,從而為大數據提供解決方案例如:hadoop。但是對於sql語言支持的深度與廣度各不相同,然而使用sql專業分析人員可以使用這些優點從而很好的通過sql語言來操作大數據。目前案例包括:Hadapt,Impala,.
(譯者註:由於目前的大數據存儲都不是基於關系型資料庫的,所以傳統通過sql語言來操作數據的方式無法直接使用,例如:對於hadoop存儲的數據是無法直接通過sql來查詢的。因而需要把傳統的sql語言進行中間轉換從而進行操作,例如:hadoop中hive,就是相當於將sql轉換成MapRece,從而去讀取、操作hadoop上的數據。)
對於結構化、非結構化與半結構化數據的統一支持隨時非結構化數據的增長,IDC公司預測了數據的數量,大多數據的將以非結構化的形式存儲,每天將增長40%-50%.到2020年,總體的數據量將達到40ZB.非結構化的數據主要來源於:郵件、論壇、博客、社交網路、POS系統和機器生成的數據。為了獲取和分析這些大數據量的數據,創新人員必須擴展他們的大數據解決方案,而不能僅僅適用於其中一個。
優化檢索從海量的數據中發現之前用戶的真正搜索需要,在之前就像大海撈針基本上不可能的。但是隨時時間發展,越來越多把大數據的解決方案融入到檢索支持中。在這方面中領先者有:LucidWorks,IBM,Oracle(其通過收購Endeca)AutonomyandMarkLogic。其中LucidWorks結合了一個開源的堆Lucene和Solr,Hadoop,Mahout和NLP。
ETL的擴展與支持許多人都認為hadoop最開始的使用安全是用於ETL因為其批處理的功能。然而,如果你看到基於etl解決方案進行與維護的復雜hadoop平台的所有的基礎設施,你可以會使用其它的純情etl工具(Informatica,Talend,Syncsort,CloverETL)來解決。多年來這些公司這些公司努力在建立最值組合的ETL解決方案,現在更多我們把其稱作為:數據整合解決方案。
純粹的ETL提供商正努力為大數據提供解決方案。這些支持不難包括:ETL,而且包括ELT那些從hadoop內部轉化為hadoop。這會使公司使用構建這樣的環境,使用純ETL的解決方案及hadoop本身強大的功能。隨著時間的發展,這些純ELT的公司起的支持的大數據的解決方案范圍包括從:NewSQL與NoSQL。
另外,我期望許多的大數據解決方案公司可以嵌入對於ETL與ELT的支持,就像許多傳統的資料庫供應商已經通過嵌入或收購ETL解決方案。
大數據運動趨穩在我之前的文章寫到,以Apache為開源框架的hadoop已被使用使用在以批處理為導向海量的分布式環境中,特別是以分析為背景的情況下。隨時企業開始關注如何支配和利用海量的數據資源用於實時決策,我們預計會對於』大數據運動』影響和增長有重要幫忙。這個「落地」代表的實時的信息流用於處理大數據流,在各個行業:包括資本市場、醫療7、能源和社會化媒體。
增加數據挖掘和分析技術在大數據領域的行業領域者知道需要在他們平台上擴展在數據分析與統計功能的需求。除了一般的分析功能還增加非常的數據挖掘功能。TeradataAste包括很多的分析功能,具體包括支持統計、文本挖掘、圖像、情感分析等。其它的公司例如IBMNetezza已經加入了對於R語言的支持,可以支持R的各類包,例如:並行運算演算法包、矩陣相關包。未來我們可以看到大數據解決方案將會不斷的大量增加這種功能。
從R語言中獲利毫無疑問R語言將會是越來流行的開源統計語言。RevolutionAnalytics公司在開發用於「工業」使用的R版本上,性能上有顯著的增強和滿足其它企業的特徵。更進一下,他們已經開發出了可以適用於hadoop、PureData的R擴展包。大學里也大量開設的R語言方面的課程,讓更多的學生擁有使用R語言的能力,也讓他們具備在處理復雜的統計分析方面的能力。可以預見R會被包括在許多大數據的解決方案中,而且會顯著改進該語言從而讓其有更好的性能。
隨著大數據生態系統的發展,相關的產業必然伴隨其發展。在今天的市場競爭環境中,那些實施以數據驅動戰略的公司將在競爭中取得優勢。
以上是小編為大家分享的關於大數據時代可能影響你的7個商業趨勢的相關內容,更多信息可以關注環球青藤分享更多干貨
⑹ 大數據專業有哪些創業機會
他們的創業機會我覺得很少,我一般這種大數據是為其他公司提供服務的,你要是開一個專門服務的那種公司也可以。
⑺ 在大數據時代中,你認為數據挖掘技術可以為電子商務帶來哪些商業價值
廣義的大數據包括數據處理本身以及數據挖掘。如今,大數據技術在電子商務領喊茄域的應用日漸深入和普及,大數據浪潮自15年高漲以來此卜並沒有消退跡象。
關於二者的結合,從人的角度來講,對消費者——成熟的推薦系統可以快速定位消費者興趣,減少尋找商品浪費的時間,大數據提供更加透明的比價服務,詳實的商品評價等,不再是兩眼一抹黑,找商品猶如大海撈針。對商家企業——用戶畫像體系幫助商戶精準的找到目標客戶,發現潛在的客戶,數據挖掘技術發現商品背後的統計學關聯,可以賣出更多的鄭扒察商品。(如經典的「啤酒和尿布」)
從業務功能角度,數據挖掘產品,如淘寶的「生意參謀」(「數據魔方」),使得商家對自身經營情況有了更加准確和及時的掌握,不再是拍腦袋決定。能夠大大降低決策失誤帶來的損失,大數據能夠幫助商家進一步挖掘市場機會,發現商機,結合運營策略使得自己的經營更上一層樓。現在主要的是用戶畫像領域,幫助商品廣告進行精準投放。
數據挖掘在電子商務的應用早已落地。歸根到底,電商本質也是賣東西,就是要在合適的時間地點把商品賣給合適的人。個人經營中的數據量一般不會很大,但若是掌握了數據挖掘技術的思想,進行數據驅動的決策,找到商品買賣的脈搏,因地制宜,就會降低企業經營風險,賣出更多的東西。長此以往,雪球就會越滾越大。你們說對嗎?
⑻ 移動互聯網在大數據時代有哪些垂直方向的創業機會
主要有三個方面,僅供您參考:
一、是圍繞智能城市建設的相關機會,如回政府的智答能交通、智能路牌、網格化管理等;
二、是圍繞健康醫療領域的相關機會,如構建個人健康資料庫、如醫療衛生系統圍繞治療本源的雲中心和雲數據。
三、是圍繞移動用戶的精準營銷,如移動支付、資訊個性化定製等!
垂直領域的機會更適合中小型企業的創新發展,這幾年是好時機,建議好好把握!