導航:首頁 > 網路數據 > 大數據電力應用案例

大數據電力應用案例

發布時間:2023-06-11 03:03:36

大數據在電力行業的應用前景有哪些

大數據是指無法在可容忍的時間內用傳統信息技術和軟硬體工具對其進行感知、獲取、管理、處理和服務的數據集合。

大數據已經滲透到每一個行業和業務職能領域,並逐漸成為重要的生產因素。

電力大數據:

對於電力行業而言,電力生產涉及的運行工況參數、設備運行狀態等實時生產數據,現場匯流排系統所採集的設備監測數據以及發電量電壓穩定性等方面的數據,電力企業運營和管理數據如交易電價、售電量用電、客戶信息、綜合數據等共同構成了。

根據電力行業特徵,電力大數據主要來源於:電力生產、管理運營、智能電網。

智慧電力解決方案:利用智能和科學的智慧電力解決方案,如管理及優化企業停電計劃的智能停電管理系統,幫助電網企業優化建設改造投資計劃的智能電網評估與投資優化決策系統,可智能感知電網實時運行狀態並輔助監管人員決策的電網狀態智能感知與報警系統等。

大數據支撐智能電網發展:

在本質上,智能電網是「大數據」在電力上的應用,智能電網的理念是通過獲取更多的如何用電、怎樣用電的信息,來優化電的生產、分配以及消耗。

在智能電網中引入了信息流的概念,即電網要能夠把電能流信息流結合在一起,實現傳輸能源的同時實現數據的採集。智能電網還通過優化模型對數據進行深度挖掘和分析,預測電能流的情況,最終實現清潔發電、高效輸電、動態配電、合理用電的智慧電力的目標。這些目標的實現都需要電力大數據
的支撐。

信息化與智能化是電力行業發展的趨勢,而若要實現電網的信息化與智能化,電力大數據 將是不可或缺的支撐。

㈡ 大數據在電力行業的應用前景有哪些

應用前景如下:參考《中國行業大數據市場發展前景預測與投資戰略規劃分析報告》顯專示,以物聯網和屬雲計算為代表的新一代IT技術在電力行業中的廣泛應用為基礎,電力數據資源開始急劇增長並形成了一定的規模。作為經濟社會發展的「晴雨表」,電力大數據將會在服務政府與社會、服務電力企業、服務電力用戶等方面發揮積極作用。
產業關聯分析
依據產業之間的關聯關系、產業用電量、分析產業發展潛能。例如:根據電力大數據分析房地產泡沫(利用智能電表採集用戶用電信息,統計分析房產空置率;利用房地產聯網統一登記信息,統計多套房信息);依據鋼鐵、水泥、裝飾等行業的用電量走勢、分析房地產的發展走勢。挖掘其他行業之間關聯度。
產業結構分析
分析用電與行業分布、地區產業結構的關系。根據各地區各行業用電信息,利用大數據分析技術,分析和研究行業用電量地區結構變化、地區用電量行業結構變化。通過分析各行業、各地區的產業結構變化,為了解地區各行業發展趨勢和行業發展前景提供數據支撐,等

㈢ 大數據有哪些具體的應用案例_大數據應用的典型案例

大數據有具體的應用案例還是很多的,比如:

1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

2.Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態銀頌的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。

3.沃爾瑪的搜索。自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。

4.快餐業的培搏鍵視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。

5.Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。

6.PredPolInc.。PredPol公司通過與洛杉磯和聖配巧克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。

7.TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。

8.AmericanExpress(美國運通,AmEx)和商業智能。以往,AmEx只能實現事後諸葛式的報告和滯後的預測。「傳統的BI已經無法滿足業務發展的需要。」Laney認為。於是,AmEx開始構建真正能夠預測忠誠度的模型,基於歷史交易數據,用115個變數來進行分析預測。該公司表示,對於澳大利亞將於之後四個月中流失的客戶,已經能夠識別出其中的24%。

㈣ 題1:大數據如何再電力系統各個領域提高經營效率

大數據在電力系統各個領域提高經營效率的方式。
1、通過統一的資源管理,數據安全和雲計算等技術,建立大數據的應用體系,將電力系統各個遲猛卜領域的數據集成起來,從而提高經營效率。
2、利用數據挖掘技術,從不同的資料庫中提取知梁相關數據,分析電力系統各個領域的運行情況,從而更有針對性地提高經營效率。
3、利用大數據預測技術,可以根據歷史數據分析,預測電力系碼穗統各個領域的發展趨勢,從而更有效地提高經營效率。
4、利用大數據技術和人工智慧技術,建立智能決策系統,實時檢測和分析電力系統各個領域的運行情況,從而提高經營效率。

㈤ 淺析電力行業如何擁抱大數據

淺析電力行業如何擁抱大數據

未來社會發展將會是大數據的時代,數據的意義已經不僅僅是記錄,而是一種能源,一種潛力巨大、影響深遠的能源。2015年8月19日,國務院常務會議通過了《關於促進大數據發展的行動綱要》,特別強調通過大數據的發展,提升創業創新活力和社會治理水平。大數據正在改變著各行各業,同樣,大數據在電力行業也得到廣泛的應用。
電力行業如何擁抱大數據 打破數據壁壘
近年來,在電力領域大數據已經得到了廣泛關注,國內的一些專業機構和高校開展了電力大數據理論和技術研究,我國電力行業也在積極開展大數據研究的應用開發,電網企業、發電企業在電力系統各專業領域開展大數據應用實踐,國家電網公司啟動了多項智能電網大數據應用研究項目。
智能電網是解決能源安全和環境污染問題的根本途徑,是電力系統的必然發展方向;全球能源互聯網則是智能電網的高級階段,「互聯網+智慧能源」進一步豐富了智能電網的內涵;這些新概念均與大數據密切相關,大數據為智能電網的發展和運營提供了全景性視角和綜合性分析方法。就物理性質而言,智能電網是能源電力系統與信息通信系統的高度融合;就其規劃發展和運營而言,智能電網離不開人的參與,且受到社會環境的影響,所以智能電網也可被看作是一個由內、外部數據構成的大數據系統。內部數據由智能電網本身的系統產生,外部數據包括可反映經濟、社會、政策、氣候、用戶特徵、地理環境等影響電網規劃和運行的數據。在智能電網的發展過程中,大數據必將發揮越來越重要的作用。
但是從目前來看,電力行業數據在可獲取的顆粒程度,數據獲取的及時性、完整性、一致性等方面的表現均不盡如人意,數據源的唯一性、及時性和准確性急需提升,部分數據尚需手動輸入,採集效率和准確度還有所欠缺,行業中企業缺乏完整的數據管控策略、組織以及管控流程。電力行業缺乏行業層面的數據模型定義與主數據管理,各單位數據口徑不一致。行業中存在較為嚴重的數據壁壘,業務鏈條間也尚未實現充分的數據共享,數據重復存儲的現象較為突出。
業內稱電力行業擁抱大數據,急需推動電力企業間的數據開放共享,建設電力行業統一的元數據和主數據管理平台,建立統一的電力數據模型和行業級電力數據中心,開發電力數據分析挖掘的模型庫和規則庫,挖掘電力大數據價值,面向行業內外提供內容增值服務。
協調發展智慧電力、智能電網和智慧城市。電力大數據是智慧城市的基石,緊密圍繞智能電力系統的發展開展電力大數據的應用實踐。以重塑電力核心價值、轉變電力發展方式為主線,未來必將實現智能電網與互聯網的深度融合:將與城市的電、熱、氣、水和交通系統實現交互,把電能與供熱、供水、供氣以及交通系統進行互聯互通,形成城市互聯網,通過城市互聯網技術來進行整合,比如給家庭、社區、工業園區、企事業單位、醫院、學校提供一攬子能源解決方案,解決它的水、電、氣、油甚至包括污水處理、垃圾處理、暖氣供應、冷氣供應,整個能源資源的成套解決方案,是人性化、智能化甚至量身定製的解決方案。
案例分析:電力行業如何擁抱大數據
以電力大數據的先行者——AutoGrid為例
1、正確姿勢
AutoGrid的核心為其能源數據雲平台——EnergyDataPlatform(EDP),創造了電力系統全面的、動態的圖景。
類似於高級搜索引擎或天氣預報演算法,AutoGrid的能源數據平台挖掘電網產生的結構化和非結構化數據的財富,進行數據集成,並建立其使用模式,建立定價和消費之間的相關性,並分析數以萬計的變數之間的相互關系。通過該能源數據平台EDP,公共事業單位可以提前預測數周,或只是分,秒的電量消耗。大型工業電力用戶可以優化他們的生產計劃和作業,以避開用電高峰。同時,電力供應商可使用該能源數據平台EDP來決定可再生資源,如太陽能,風能的並網,最大限度地減少這些能源間歇性對電網的影響。
DROMS(,需求響應優化及管理系統)為AutoGrid的需求響應管理工具。DROMS從已存在的AMI系統、有線網關、建築管理系統以及數據採集與監控(SCADA)系統獲得實時數據,結合配電系統的物理特性,基於機器智能,分析產生對單一負載的精確預測,在需求響應要求產生之前介入,迅速生成針對某一需求響應的應對策略。除此之外,對甩負荷要求及價格信號亦能有及時准確的反應。
2、優化需求管理
當需求側管理日益成為電力運營的一個重要部分時,電力大數據的應用也變得日益重要。通過電力大數據的採集、分析及應用,可以幫助電網各端匹配電力供應和需求,降低電網各端的成本。
AutoGrid的客戶覆蓋發電端、輸電端、配電端、用戶,可以幫助電網各端匹配電力供應和需求,降低電網各端的成本。AutoGrid的能源數據雲平台EDP,收集並處理其客戶接入智能電網的智能電表、建築管理系統、電壓調節器和溫控器等設備的數據,面向其用電客戶提供DROMS,獲取能量消耗情況,預測用電量,結合電價信息實現需求側響應,生成需求側管理項目的分析報告,提升客戶全生命周期的價值收益;面向電網運營者提供DROMS,可提供需求響應應對策略,預測發電情況和電網動態負荷,預測電網運行故障,改善客戶平均停電時間和系統運營時間,從而實現電網優化調度,減少非技術性損失,降低運營成本。
來自於ARPA-E項目的支持,AutoGrid還開發了一套軟體來監測電力在電網中的流動,幫助公用事業公司更好地滿足實時電力需求。在需求高峰期,公共事業公司可以讓精打細算的消費者知道他們在能源領域是如何花費的或要求具有環保意識的消費者主動減少自己的能源消耗。從而公共事業公司可以更好地快速有效地管理對電網的需求和供給的波動。
由於在需求響應的突出表現,AutoGrid被美國NavigantResearch列為2014年度需求響應領軍企業。
3、建立能耗圖景
基於EDP和DROMS,AutoGrid可以為客戶提供一個大規模的、動態的、不間斷的、供能范圍內的整體能耗圖景。利用該能耗圖景,公共事業公司可以可以實時「看」到本地區的能耗,以更好的進行電力控制。當數據不斷被累積,AutoGrid就能提供秒前、分鍾前甚至周前的用電預測,可以幫助電力企業客戶實現不影響舒適度和生產率情況下的優化排產計劃。因此,AutoGrid提供的不僅是能量消耗動態圖,它提供的還是需求側響應的應對方案。

以上是小編為大家分享的關於淺析電力行業如何擁抱大數據的相關內容,更多信息可以關注環球青藤分享更多干貨

㈥ 關於大數據應用有什麼例子

㈦ 電力行業如何應用大數據

挑戰中見需求: 質量較低、共享不暢、防禦脆弱、基礎不牢,對於這些電力行業推進大數據的困擾,電信行業是不是也有似曾相識的感覺?這些問題中的一部分,電信業同樣需要深思;還有一些問題,則恰恰是電信業的長處,是電信業推進電力行業信息化的機遇。 數據質量較低,數據管控能力不強。大數據時代,數據質量的高低、數據管控能力的強弱直接影響了數據分析的准確性和實時性。目前,電力行業數據在可獲取的顆粒程度,數據獲取的及時性、完整性、一致性等方面的表現均不盡如人意,數據源的唯一性、及時性和准確性急需提升,部分數據尚需手動輸入,採集效率和准確度還有所欠缺,行業中企業缺乏完整的數據管控策略、組織以及管控流程。 如何從海量數據中提取有價值的信息?這也是電信業面臨的問題。有觀點認為,可以用智能信息基礎設施替換復雜的孤立的資料庫,讓企業能夠在需要時捕捉、存儲信息。也有觀點認為,可以倚靠軟體的處理能力來甄別垃圾數據和有價值數據。究竟哪種方式更為有效,目前仍無定論。而無論哪種情況,都需要制定一個數據採集的標准,在時間、精度上進行規范,從而為後續的數據分析打好基礎。 數據共享不暢,數據集成度不高。大數據技術的本質是從關聯復雜的數據中挖掘知識,提升數據價值,單一業務、類型的數據即使體量再大,缺乏共享集成,其價值就會大打折扣。目前,電力行業缺乏行業層面的數據模型定義與主數據管理,各單位數據口徑不一致。行業中存在較為嚴重的數據壁壘,業務鏈條間也尚未實現充分的數據共享,數據重復存儲的現象較為突出。 打破企業的門戶之見,在行業中建立一個資源池,讓使用者可以按需獲取數據資源。從電信業的角度來看,現在,電信運營商之間的合作在不斷推進,例如,運營商開發了融合的手機游戲計費平台;在北京電信網上營業廳微信平台上,用戶不僅可以自助查詢電信業務,還能查詢聯通和移動業務的使用費,這樣共享數據資源的經驗也可在大數據的應用過程中加以推廣。 防禦能力不足,信息安全面臨挑戰。電力大數據由於涉及眾多電力用戶的隱私,對信息安全也提出了更高的要求。電力企業地域覆蓋范圍極廣,各類防護體系建設不平衡,信息安全水平不一致,特別是偏遠地區單位防護體系尚未全面建立,安全性有待提高。行業中企業的安全防護手段和關鍵防護措施也需要進一步加強,從目前的被動防禦向多層次、主動防禦轉變。 建立與大數據相適應的安全和隱私保護機制,通過技術手段和加強企業自律來保證數據的安全。 承載能力不足,基礎設施亟待完善。電力數據儲存時間要求以及海量電力數據的爆發式增長對IT基礎設施提出了更高的要求。目前,電力企業大多已建成一體化企業級信息集成平台,能夠滿足日常業務的處理要求,但其信息網路傳輸能力、數據存儲能力、數據處理能力、數據交換能力、數據展現能力以及數據互動能力都無法滿足電力大數據的要求,尚需進一步加強。 在這方面,電力行業和電信業各有優勢。盡管電力行業也在進行寬頻建設以及智慧社區的建設,但是,所謂術業有專攻,在IT基礎設施尤其是網路基礎設施上,電信業在運維、計費等方面有著得天獨厚的優勢。同時,在數據中心的建設上,電力行業對以電能為代表的能耗問題又有著豐富的經驗。因此,兩個行業不妨加強合作,實現共贏。 相關人才欠缺,專業人員供應不足。大數據是一個嶄新的事業,電力大數據的發展需要新型的專業技術人員,例如大數據處理系統管理員、大數據處理平台開發人員、數據分析員和數據科學家等。而當前行業內外此類技術人員的缺乏將會成為影響電力大數據發展的一個重要因素。 加強大數據人才的培養,鼓勵企業內部在大數據領域的創新。

㈧ 大數據應用案例有哪些

案例如下:

1、交通大數據暢通出行

交通作為人類行為的重要組成和重要條件之一,對於大數據的感知也是最急迫的。近年來,我國的智能交通已實現了快速發展,許多技術手段都達到了國際領先水平。交通的大數據應用主要在兩個方面,一方面可以利用大數據感測器數據來了解車輛通行密度,合理進行道路規劃包括單行線路規劃。另一方面可以利用大活數據來實現即時信號燈調度,提高已有線路運行能力。

2、教育大數據因材施教

在課堂上,數據不僅可以幫助改善教育教學,在重大教育決策制定和教育改革方面,大數據更有用武之地。利用數據來診斷處在輟學危險期的學生、探索教育開支與學生學習成績提升的關系、探索學生缺課與成績的關系。

3、環保大數據對抗PM2.5

在美國NOAA(國家海洋暨大氣總署)其實早就在使用大數據業務。每天通過衛星、船隻、飛機、浮標、感測器等收集超過35億份觀察數據。收集完畢後,NOAA會匯總大氣數據,海洋數據,以及地質數據,進行直接測定,繪制出復雜的高保真預測模型,將其提供給NWS(國家氣象局)做出氣象預報的參考數據。


大數據特點

1、大容量

例如,IDC最近的報告預測到2020年,世界數據量將擴大50倍.目前,大數據的規模仍然是不斷變化的指標,單一數據集的規模範圍從數十TB到數PB不同.簡單來說,存儲1PB數據需要2萬台配備50GB硬碟的PC.此外,各種意想不到的來源可以產生數據。

2、多樣性

數據多樣性的增加主要是由於網路日誌、社交媒體、網路檢索、手機通話記錄、感測器網路等數據類型。

3、高速

高速描述的是數據創建和移動的速度.在高速網路時代,通過實現軟體性能優化的高速計算機處理器和伺服器,創建實時數據流已成為流行趨勢.企業不僅要知道如何快速創建數據,還要知道如何快速處理、分析和返回用戶,以滿足他們的實時需求。

㈨ 國網湖南電力發布電力大數據應用成果

「激活數據價值 服務三高四新」

國網湖南電力發布電力大數據應用成果

本網訊(通訊員 唐軍 劉敏學)5 月28日,「激活數據價值 服務三高四新」國網湖南電力大數據應用發布會在長沙召開。發布會聚焦國網湖南電力大數據應用四大板塊,向 社會 各界與新聞媒體宣傳推介國網湖南電力2021年大數據應用10項階段性成果。

近年來,電力大數據在國民經濟發展過程中發揮了越來越重要的推動作用。國網湖南電力提前謀劃布局,重點聚焦電力大數據的價值挖掘,在電力大數據服務全省經濟發展、安全生產、供電用能、雙碳達標等方面持續加深、加大研發攻關力度,推動電力大數據應用的價值實現,取得顯著成效。

聚焦電力看經濟。「電力看商旅」應用以電力數據為抓手,繪制電力用戶畫像,准確洞悉了湖南本地企業復工復產、產業結構轉型、重點裝備製造業發展等經濟活動進程,在全國首發《通過電力看五一 旅遊 消費熱點分析》,獲得全國多家主流媒體轉發;「電力大數據+ 社會 精準救助」應用通過統計分析低收入群體用電情況,建立低收入群體動態監測信息庫,加強低收入群體返貧的監測預警;「鄉村振興電力指數」應用依據農村居民 歷史 年用電量、日用電量等數據進行精準建模,評估農村空心化指標,為制定有針對性的幫扶策略提供有力的數據支撐。

聚焦電眼察安全。「電力大數據+企業安全生產監測」應用監測范圍覆蓋全省102家煤礦企業,湘潭88家地下礦山企業,常德85家煙花爆竹企業和25家危化品企業,將接入的生產企業檔案數據與公司內部用電客戶數據進行關聯匹配,圍繞用戶電壓、電流、有功等運行數據建立17個預警模型,構建了違規生產先預警、生產異常先提醒、災害天氣先建議、企業信息全呈現、管理流程全閉環、違規生產可追溯的「三先兩全一追溯」安全生產監管體系,為政府部門提供企業停限產執行情況全過程實時監督,為企業提供特殊氣象條件下的排產建議等服務。

聚焦電力助雙碳。「碳市場監測管理平台」應用依託湖南能源大數據智慧平台建成覆蓋電力碳排放、能源碳排放、零碳電力、全國碳市場行情的碳排放監測體系,通過監測全省16家電廠、43台機組、近20000個測點,實時採集污染物排放、機組運行參數及效率等重要數據,監測全省水電、光伏、風電、特高壓、儲能電站、電動 汽車 等零碳電力減排趨勢,優化「能源-電力-碳」核算模型,為政府監管提供碳排放數據咨詢服務,為重點排放企業開展碳減排及碳交易提供咨詢服務,為下一階段我省參與全國碳市場交易做好技術儲備。

聚焦電力優服務。積極運用數據技術,打造「便捷電、透明電、智慧電、貼心電」系列為民服務大數據應用品牌。「陽光業擴e管家」應用基於數據中台獲取電網信息、客戶信息,開發了低壓業擴供電方案輔助決策應用場景,實現一鍵式生成供電方案,為業擴供電方案輔助決策提供支撐;「基於區塊鏈的電能計量可信平台」應用通過構建區塊鏈網路,接入電能表全生命周期檢定檢測數據,為全省2900萬運行電能表用戶提供便捷高效的檢定信息查詢,實現政府部門對電能計量檢定質量及資質100%監管,為供應商提供產品質量提升服務;「智能運維·智慧能效e衛士」應用為企業提供「用能體檢」「 健康 分析」「節能處方」「低碳診治」一站式節能減排服務,2020年至今,為客戶提供變壓器預試、緊急搶修等線下服務4217次。

下一步,國網湖南電力將認真貫徹落實省委、省政府決策部署,在國網公司的指導和支持下,深入推動數據要素發力,充分發揮電力大數據「經濟晴雨表」作用,聚焦經濟雙循環、消費升級、新基建、產業鏈、鄉村振興、中小微等關鍵領域開展多場景創新應用,服務智慧城市建設,創造能源數字產品新價值。構建「平台+數據+生態」發展模式,帶動產業鏈上下游相關方廣泛連接,通過聚合資源、交叉賦能,推動跨界融合創新,共同打造優勢互補、互利共贏的新生態,創造能源平台生態新價值,為我省實施「三高四新」戰略,建設現代化新湖南作出新的更大貢獻。

閱讀全文

與大數據電力應用案例相關的資料

熱點內容
模具繪圖自學教程 瀏覽:753
怎樣避免u盤吞文件 瀏覽:320
另存為圖層文件為什麼導入無效 瀏覽:340
怎麼把文件標題復制到excel 瀏覽:755
編程軟體用什麼編輯 瀏覽:993
ab編程plc怎麼讓綠燈閃爍3秒 瀏覽:171
linux查找五天內的文件 瀏覽:676
目標文件載入單片機需要什麼軟體 瀏覽:745
豬八戒網網站怎麼注冊 瀏覽:725
為什麼手機文件傳不到微信 瀏覽:212
哪個網站考公務員 瀏覽:164
建築方案設計教程 瀏覽:600
鄭州哪裡兒童學編程比較好 瀏覽:105
Mac登陸密碼怎麼改 瀏覽:388
硬碟什麼情況恢復不了數據 瀏覽:966
蘋果mac開windows界面 瀏覽:752
雲盤的文件夾怎麼發到u盤 瀏覽:87
手機主板修理專用工具 瀏覽:230
web伺服器開發pdf文件 瀏覽:706
word保存前的文件 瀏覽:618

友情鏈接