『壹』 大數據在哪些領域應用比較好
一、電卜裂商行業
電商行業是最早利用大數據進行精準營銷,它根據客戶的消費習慣提前生產資料、物流管理等,有利於精細社會大生產。由於電商的數據較為集中,數據量足夠大,數據種類較多,因此未來電商數據應用將會有更多的想像空間,包括預測流行趨勢,消費趨勢、地域消費特點、客戶消費習慣、各種消費行為的相關度、消費熱點、影響消費的重要因素等。
二、金融行業
大數據在金融行業應用范圍是比較廣的,它更多應用於交易,現在很多股權的交易都是利用大數據演算法進行,這些演算法現在越來越多的考慮了社交媒體和網站新聞來決定在未來幾秒內是買出還是賣出。
三、醫療行業
醫療機構無論是病理報告、治癒方案還是葯物報告等方面都是數據比較龐大行業,面對眾多病毒、腫瘤細胞都處於不斷進化的過程,診斷時會發現對疾病的確診和治療方案的確定是很困難的,而未來,我們可以藉助大數據平台收集不通病例和治療方案,以及病人的基本特徵,可以建立針對疾病特點的資料庫。
四、農牧漁
未來大數據應用到農牧漁領域,這樣可以幫助農業降低菜賤傷農的概率,也可以精準預測天氣變化,幫助農民做好自然災害的預防工作,也能夠提高單位種植面積的高產出;牧農也可以根據大數據分析安排放牧范圍,有效利用農場,減少動物流失;漁民也可以利用大數據安排休漁期、定位捕魚等,同時,也能減少人員損傷。
五、生物技術
基因技術是人類未來挑戰疾病的重要武器,科學家可以藉助大數據技術的應用,從而也會加快自身基因和其它型盯閉動物基因的研究過程,這將是人類未來戰勝疾病的重要武器之一,未來生物基因技術不但能夠改良農作物,還能利用基因技術培養人類器官和消滅害蟲等。
六、改善城市
大數據還被應用改善我們日常生活的城市。例如基於城市實時交通信息、利用社交網路和天氣數據來優化最新的交通情況。目前很多城市都在進行大數據的分析和試點。
七、改善安全和執法
大數據現在已經廣泛應用到安全執法的過程當中。想必大家都知道美國安全局利用大數據進行恐怖主義打擊,甚至監控人們的日常生活。而企業則應用大數據技術進行防禦網路攻擊。警察應用大數據工具進行捕捉罪犯,信用卡公司應用大數據工具來檻車欺詐性交易。
在傳統領域大數據同樣將發揮巨大作用則灶:幫助農業根據環境氣候土壤作物狀況進行超精細化耕作;在工業生產領域全盤把握供需平衡,挖掘創新增長點;交通領域實現智能輔助乃至無人駕駛,堵車與事故將成為歷史;能源產業將實現精確預測及產量實時調控。
個人的生活數據將被實時採集上傳,飲食、健康、出行、家居、醫療、購物、社交,大數據服務將被廣泛運用並對用戶生活質量產生革命性的提升,一切服務都將以個性化的方式為每一個「你」量身定製,為每一個行為提供基於歷史數據與實時動態所產生的智能決策。
『貳』 消費大數據揭秘:健康化和年輕化是趨勢
消費大數據揭秘:健康化和年輕化是趨勢
大數據之美,在於它能從紛繁雜亂的數據中揭示出隱藏在水面以下的冰山部分,根據規律預測未來將要發生的事,告訴人們本不知道的信息。
比如,中國女性平均從什麼年齡段開始將關注度從游泳轉向跳廣場舞,不同年齡層消費者對健康飲食的關注度有何不同,Adroid終端和iOS終端在網購習慣上的差異等,這些都是龐大的銷售數據和用戶數據「勾兌」出的隱藏信息。
《決戰大數據》作者車品覺不久前曾向《第一財經日報》記者舉例說,後台系統可以通過跟蹤一個人敲擊鍵盤的速度和間隔來判斷他在購物網站上的瀏覽目的(是閑逛還是有目的購物)及其購買意願的程度,背後的大數據發現了電商網站本不知道的內容。
當然,如今的網購已進入移動化時代,今年雙11阿里巴巴移動端的成交額佔比高達68%,手機網購已成大勢所趨。手機比PC提供了更加多元化和復雜的數據維度,比如基於地理位置LBS,這個變數的引入使大數據規模呈幾何級數的增加,能給大數據分析提供更大價值。手機在手,人人都是數據感測器。
事實上,這次由第一財經商業數據中心和阿里巴巴聯合發布的大數據商業報告(以下簡稱「報告」),就從不同維度印證了移動化趨勢的明顯特徵。這份報告也是淘系平台首次將全局性的消費數據依託專業媒體機構進行系統性對外公開,所涉及的服裝、母嬰、家電、食品等8個行業基本覆蓋了消費者日常網購最高頻的幾個類目。
食品消費理念健康化,小眾化專業化運動消費映射全民健康意識覺醒,智能化浪潮引領3C數碼行業消費升級,個性化時尚化網購習慣深入人心……這些數據背後的行業特點和趨勢正是這份系列報告的核心價值所在。
眼下,中國經濟的活力正在越來越依靠消費提振,而消費層面正在經歷一場由消費者主導的變革。過去那種商家生產什麼消費者就買什麼的年代愈發受到個性化消費需求的挑戰,由消費者倒逼生產商的C2B模式正在不同的行業多點開花。在這個消費轉型升級的宏觀趨勢中,經過加工提煉的大數據就成為廠商和商戶最重要的決策依據。
第一財經商業數據中心(CBNData)負責人黃磊在淘寶數據盛典現場表示,以往當有企業說經營越來越困難了,專家學者說經濟要探底了,投資者說投資的這家企業很有發展潛力,他們常用的是直覺、經驗,是用眼睛能看到的地方來證明機會和危機在哪裡;現在這些都可以通過深度挖掘的大數據進行展示,並能更好地呈現出商業世界「魔鬼的細節」。
健康成為未來消費主方向
通過對過去5年淘系平台上的相關搜索和交易數據分析,報告展示出一條消費者愈發重視健康生活的曲線圖,這主要從食品、運動健身、健康家居用品三個大品類體現。人們在線上購買這些商品,展現了吃得更健康、運動更積極、對健康更關注的趨勢。
從2011年開始,健康相關的關鍵詞(比如有機、非轉基因、原生態、低脂、無糖、無農葯、全麥等)在淘寶上的銷售量逐漸增長,今年前三季度的交易額已經與2014年全年持平。地域分布上,廣東、江浙滬地區對這類商品的需求量最高。一個顯著變化是,2011年全國健康食品銷量最大的5個地區佔全國總銷量的近六成,到2015年三季度這一比例下降至近五成,健康食品的消費呈現出城市下沉的趨勢,由經濟發達的一線城市和沿海地區普及到內陸地區,各省份之間的健康食品消費份額差異正逐漸減少。
報告得出的結論之一是,年輕女性將成為未來健康食品的主力消費人群。數據顯示,作為食品中銷量增速最快的保健品,其細分品類中增速最快的酵素類產品在2015年前三季度銷售額環比增長了接近13倍,其次是膳食纖維、葡萄籽提取物等。女性是保健品消費主體,其中22歲到50歲的女性貢獻保健食品總銷售額的近六成份額,且年輕女性消費群體(18到28歲)在整體保健食品市場所佔份額在提升。這部分消費者將是健康食品類商家重點覆蓋的目標人群。
消費者在運動健身類商品的網購購買力近幾年維持在50%以上的年均增速,對跑步機等大型健身器械的銷售佔比排名第一,其次是游泳、舞蹈、瑜伽、羽毛球、跆拳道武術類相關商品。
對不同運動項目的偏好在性別和年齡層維度展現出很大差異性。比如,小鮮肉熱衷於足球、籃球、滑板、啞鈴等中小器械;而大叔級買家青睞乒羽等小球類,以及跑步機等有氧訓練。而女性以35歲為界分化明顯,35歲之前的女性消費者最喜歡購買游泳相關商品,特別是泳裝被當作時裝來消費;而35歲之後,舞蹈類、跑步機等運動的比例最高,但瑜伽並沒有體現出35歲這個年齡分水嶺,佔比基本持平。
在健康家居用品(家用電器類和醫療器械類)方面,最近幾年無論是從銷量、搜索量,還是商品豐富度上均增速明顯。其中空氣凈化器、口罩、凈水器等商品與嚴重霧霾天氣、水污染、疫情等公共安全事件表現出強關聯性。年輕人對於社交媒體的關注讓該群體對家用健康類產品表現出明顯的焦慮性消費趨勢。特別是空氣凈化器市場,在霧霾最嚴重的2012年初至2014年底迎來了其黃金發展期。而家用健康類產品消費群體的發展趨勢正在呈現年輕化與渠道下沉特點,年輕消費者和低城市級別消費者將發展為未來此類產品的消費主力之一。
網購年輕化浪潮加速到來
淘寶數據顯示,28歲以下年輕消費者已佔淘寶總用戶量一半以上,但2015年該群體創造的銷售額占整個淘寶平台的四成左右,小於其人數佔比,因此年輕消費群體的平均消費水平低於淘寶平台消費者的平均值。一個明顯特點是,所有商品品類的購買人群均出現了不同程度的年輕化趨勢,今年28歲以下消費者所佔比例較2014年有所上升。
總體來說,22歲至28歲的年輕群體增長逐漸趨於穩定,不同品類間差異並不明顯,而年輕化的程度差異主要體現在18到22歲群體份額中,這個群體的消費者增速十分迅猛,一些年輕化較快的行業如男裝和手機,份額遠超主食和傢具等年輕化較慢的行業。
年輕化不僅體現在年輕消費群體的增長與活躍,還體現在其他消費群體消費觀念的年輕化,各類被傳統認為年輕人才會消費的商品,如染發產品和運動用品,在年長的群體里也逐漸流行起來。
具體到吃穿住行細分領域,穿衣方面的年輕化趨勢主要體現在18至22歲群體高速增長,而22歲至28歲的年輕群體自2012、2013年後保持穩定的份額;28歲至35歲群體佔比下降十分明顯。
吃的方面,年輕化趨勢程度並不如穿的如此明晰,18至22歲群體的增長速度以及份額相對較慢,22歲至28歲群體仍處於緩慢增長中,休閑食品的年輕化趨勢更加顯著。
在玩上,年輕化趨勢更多體現在年輕人對於電子產品與運動的熱衷,年輕群體已經成為這兩類市場上的主流消費群體並且仍處於增長趨勢;運動與戶外產品領域,年輕用戶群體仍在快速增長,但28歲以上消費者仍是市場主體。
美妝和育兒方面,受人生不同年齡階段的影響,育兒產品年輕化趨勢體現在22歲至28歲的年輕群體的高速增長,成為市場的主流消費群體之一,22歲以下消費者鮮有亮點;而美妝方面18-22歲群體成為主要增長點,22-28歲用戶則趨於穩定。
在購物時段偏好上,18-22歲用戶以打工者與學生為主,他們喜歡在時間充裕的午飯前後購物;而22-28歲年齡段消費者較為統一地喜歡在午後時間購物,且購物時段更為集中,這可能是一天中工作相對不太繁忙的時段。在男女差異上,22-28歲男性的購物行為轉移到了傍晚和夜間,尤其在21時和19時這兩個下班後時段;而該年齡段女性的購物行為集中在午後。
年輕化的趨勢已經深入所有的商品種類中,年輕消費者群體的獨特需求將深刻影響整個電子商務市場的格局。針對不同商品類別年輕化的速度不同,比如在服裝、運動和科技產品等年輕消費者已經成為主流的市場中,商家需要採取更受年輕消費者歡迎的營銷策略才能跟上市場腳步;而在諸如家裝、食品類等年輕消費者正在增長的市場中,商家可以開發針對該群體的商品來挖掘新的增長點。
『叄』 大數據分析在疾病與健康研究方面的應用
大數據分析在疾病與健康研究方面的應用
大數據分析技術將在以上方面發揮著特殊的作用。
一、疾病與健康研究
在疾病與健康研究方面,我們可將其分為三個子方面:健康研究、亞健康研究和疾病研究。
1、健康研究
中國是地域遼闊的多民族國家,不同地區不同種群的人的基因和健康指標有所不同,同一地區同一種群的人在不同的性別和年齡上健康標准也有差異。深入研究和分析上述人群的健康規律,對衛生保健、健康促進、疾病預防和治療有著重大的指導意義。例如:
1.1 對體檢數據分析和挖掘,得出不同地區、不同人群的健康差異,以確定精確的不同人群的健康標准,針對不同人群制定適宜的防病,治病方法以及預後標准,並量身打造個性化,地區化的健康評估模型。
1.2 在制定不同地區不同人群的參考值時,可進一步分析健康指標在不同性別、年齡和季節的差別,以及權重比,從而完善適合於國人全面的系統化的更科學的健康參考值。
1.3 人體存在的內在平衡,使得各個可觀察數據間有其特有的規律,基於經驗只能發現簡單的規律如鈣、磷常數等,使應用數據挖掘等大數據分析技術可以主動發現復雜的系統性的人體醫學規律,大幅提升防病,治病以及預後推測的技術水平,並且也對亞健康有個更科學的判斷依據,以及了解健康到亞健康的逐漸失衡的過程。
1.4 對孕婦在孕產期、產後及新生兒的健康數據進行深入分析,研究孕產婦和新生兒的健康規律,開發對孕產婦和新生兒的健康評價和因素的評估模型,給出更科學的孕產婦和新生兒保健的指導。
1.5 對兒童成長的體檢數據分析和挖掘,研究兒童的健康規律,開發對兒童成長的評價和因素的評估模型,分別適應中國遼闊的地域和眾多的人群,給出更科學的兒童成長發育指導。
1.6 對老年人的健康數據分析和研究,研究老年人的健康特點,開發對老年人健康的評價和因素的評估模型,給出更科學的老年人養生的指導。
1.7 對健康人的精神和心理數據進行深入分析,制定健康人的精神和心理參考標准,開發對健康精神和心理的評價和影響因素的評估模型,給出更科學的精神和心理衛生方面的保健指導。
2、亞健康研究
世界衛生組織將機體無器質性病變,但是有一些功能改變的狀態稱為「第三狀態」,也稱為「亞健康狀態」,主要包括:功能性改變,而不是器質性病變;體征改變,但現有醫學技術不能發現病理改變;生命質量差,長期處於低健康水平;慢性疾病伴隨的病變部位之外的不健康體征。
對亞健康進行深入分析與研究對保持健康狀態,預防和糾正亞健康狀態以及對疾病的預防和治療都有十分重要的意義。例如:
2.1 研究亞健康與疾病間的相互關系。研究各種可觀察指標(體檢數據)在亞健康中的權重,以及在不同地區、人群中的分布。應用時間序列,線性/非線性回歸研究亞健康觀察指標之間的關聯性。通過亞健康體檢數據挖掘,分析導致疾病的影響因素,建立評估模型來預測危險度,並進一步建立疾病的預測模型。
2.2 研究亞健康與健康間的相互關系。通過對體檢人群的地區、職業、年齡等因素的分析,研究最新的健康和亞健康的人群分布。不同的人群地區環境不同,生活習慣不同,加入亞健康醫學指標以外的相關外部數據(如職業、飲食、習慣、性格、愛好等)後,可發現綜合因素對亞健康的影響,以及這些因素的各自權重,及相關關系,從而探究出亞健康的原因,對預防和治療亞健康起著指導作用。
2.3 研究亞健康治療和預後的研究。通過對亞健康治療和預後的數據分析,評價治療效果,評估最佳治療方案,進一步開展對專科亞健康治療和預後的研究,同時研究其與疾病的關系。
2.4 對精神和心理亞健康的研究。如對常見的精神亞健康狀態:如神經衰弱、抑鬱、焦慮和強迫等症狀,進行數據歸納整理、分析挖掘,從而導出精神和心理亞健康的新知識發現,探究出精神疾病的原因,對預防和治療精神疾病起著指導作用。
2.5 將住院和社區健康管理數據相結合,進行因素權重分析和多因素的特性抽取,最後形成模型指導治療。最理想的情況是個體化評估模型,為每個病人建立專用預測模型。
3、疾病研究
中國面臨的嚴重危害人民健康的疾病包括:
傳染性疾病,如結核病、艾滋病、SARS、禽流感、甲型H1N1流感等;
慢性非傳染性疾病,如惡性腫瘤、腦血管病、心臟病、糖尿病等;
精神和心理疾病;
小兒出生缺陷。
對患有各種疾病的病人的醫學數據及相關數據的研究分析,對各種疾病的預防和治療都有十分重要的價值。例如:
3.1 對傳染性疾病,如結核病、艾滋病、SARS、禽流感、甲型H1N1流感等疾病的研究。應用數據挖掘技術對傳染性疾病的數據進行分析,找出傳染性疾病的發病規律,揭示傳染性疾病的病因,進一步摸索出傳染性疾病的變異規律,建立傳染性疾病的預測模型。
3.2 對慢性非傳染性疾病,如惡性腫瘤、腦血管病、心臟病、糖尿病等疾病的研究。應用數據倉庫技術和數據挖掘技術對慢性常見病的數據進行分析,找出慢性常見病的發病規律,探索慢性常見病的病因,進一步摸索出慢性常見病的並發症規律,科學評估各種治療方案的療效,建立慢性常見病的預測模型。
3.3 對精神和心理疾病的研究。應用數據倉庫技術、數據挖掘技術和數理統計技術對精神和心理疾病的數據進行分析,從廣泛的多變數集中找出影響精神和心理疾病的主要因素,在遺傳學、後天影響和病理學等多方面探索精神和心理疾病的病因,科學評估各種治療方案的療效,建立精神和心理疾病的預測模型。
3.4 對小兒出生缺陷的研究。應用大數據分析技術對兒童出生缺陷的數據進行分析,從廣泛的大變數集中找出影響兒童出生缺陷的主要因素,在環境、遺傳學、病理學等多方面探索兒童出生缺陷的病因,建立兒童出生缺陷的預測模型。
3.5 針對門診和住院病人數據在線分析統計學差異,尋找陽性案例,為研究提供素材,並為科研的預實驗提供思路和准備。對住院數據進行多維度分析和挖掘,橫向達到單病種的水平,縱向包括所有可觀測數據,所收集來的知識有很大可能會啟發醫學專家有新發現。
3.6不同 治療手段和治療效果的在線分析。結合收集來的大量資料全面分析,盡量提前全面的了解治療的臨床效果。
3.7 葯品治療效果在線分析,治療效果、副作用、對其他疾病的效果評估。結合收集來的大量資料全面分析,盡量提前全面的了解新葯和老葯。目前的葯品不良反應主要靠醫生的通報,對醫生的職業素養和敏感有很大的依賴,而使用數據挖掘及資料庫中的知識發現,可以極大限度地改進這項工作。
二、環境與健康研究
環境因素對健康造成的損害較其他健康損害復雜,是微量、慢性、長期和不可逆轉的。環境健康影響與公眾利益息息相關,環境健康損害如得不到妥善處理還將轉化為社會、經濟問題。環境與公共健康研究以人類生態系統可持續發展研究為基礎,關懷人類現在和未來的健康與安全,從環境研究途徑關注社會、經濟活動對人類生理和心理的健康影響,探索環境變遷對人民健康造成危害的預防和治理措施。
應用大數據分析技術對環境健康的研究,主要包括發現案例、發病機理和臨床治療研究,預防和治理各類環境流行病在污染源以及污染途徑控制的研究等。例如:
1. 應用大數據分析技術研究環境因素對健康的影響,實行 一體化的環境和健康監測,並在全國實現數據共享。
2. 應用大數據分析技術研究環境污染對兒童的影響,以解決環境對兒童所造成的不健康和疾病迅速增長的問題,從而給予兒童特殊注意的環境和健康指導。
3. 應用大數據分析技術開展職業病和職業多發病的預防預測。對於各種職業的發病分布和嚴重程度,以及對職業病的深入分析。不僅包括傳統意義的職業病,也包括不同職業的不同的疾病分布和在病因中的權重。另外,還可以分析不同職業的暴露特點進而對病因進行研究。
4. 應用大數據分析技術開展對空氣污染顯著提高城市人群呼吸道和過敏性疾病的發生 率的研究。
5. 應用大數據分析技術開展雜訊污染損害兒童的聽力和干擾他們的學習能力的研究。
6. 應用大數據分析技術開展快餐業的發展使肥胖病發病率不斷增長的研究,尤其是不合理的營養對兒童健康的影響。
7. 應用大數據分析技術開展對轉基因生物技術的應用對自然界生物和人類基因的潛在影響的研究。
三、醫葯生物技術與健康
生物技術涵蓋生命科學的所有領域,醫葯生物技術是生物技術的重要組成部分。當今人類面臨的人口、食物、健康、環境和資源問題,無不與之緊密相關。醫葯生物技術最鮮明的特點是大量新思想、新技術、新材料、新方法和新產品引入醫學研究和醫療保健之中,如全新的醫學成像技術、基因工程技術、微電子技術、幹細胞工程技術、組織工程技術、納米技術、生物晶元技術、克隆技術、酶工程技術、細胞工程技術、發酵工程技術、蛋白質工程技術、生物醫學工程技術、基因組與蛋白質組技術、生物信息技術和中醫葯技術等及其產品,將大大提高疾病預防、診斷、治療和葯物設計研製水平,以及對突發事件(如傳染病和生物恐怖等)的檢測、預防與治療水平。
以大數據分析技術為核心的生物信息技術在由眾多新技術構成的醫葯生物技術中發揮有獨特的作用。例如:
1. 利用生物信息技術進行生物信息的存儲與獲取。
2. 利用生物信息技術開展基因的序列對比、測序和拼接。
3. 利用生物信息技術進開展基因預測。
4. 利用生物信息技術進行生物進化與系統發育分析。
5. 利用生物信息技術進行蛋白質結構預測和RAN結構預測。
6. 利用生物信息技術進行分子設計和葯物設計。
7. 利用生物信息技術進行腫瘤分類及遺傳學分析。
8. 利用生物信息技術開展在生物分子層面對精神病的研究及遺傳學分析。
9. 利用生物信息技術開展在生物分子層面對如H1N1等傳染病的研究。
四、衛生宏觀決策支持
衛生宏觀決策支持系統是以數據倉庫為數據中心、以數據挖掘為技術核心、以商務智能為展現工具的綜合衛生信息平台。它可以建立在各級別衛生系統上,如醫院、地區衛生系統、全國衛生系統,為各級衛生部門提供智能決策系統,深入了解衛生系統的歷史和現在,把握衛生系統業務發展的未來,評估衛生系統內部各部門的業務效績,幫助各級決策者提供最佳實施方案,給決策者一雙慧眼,清晰認知系統內各方面變化趨勢和業務得失,使對系統各部門的評價、考核、獎勵更加科學、公正、客觀,使系統內各級關系更加和諧,積極發揮各部門的潛能,提高系統的整體業務水平和經濟效益。使用商務智能輔助決策,可以提供各種有價值的信息,各種事件的關聯,以及不同於微觀的角度分析各種衛生信息,如預防接種基本數據,傳染病報告等等。
以上是小編為大家分享的關於 大數據分析在疾病與健康研究方面的應用的相關內容,更多信息可以關注環球青藤分享更多干貨