❶ 大數據、雲計算、人工智慧之間有什麼樣的關系
雲計算最初的目標是對資源的管理,管理的主要是計算資源,網路資源,存儲資源三個方面。想像你有一大堆的伺服器,交換機,存儲設備,放在你的機房裡面,你最想做的事情就是把這些東西統一的管理起來,最好能達到當別人向你請求分配資源的時候(例如1核1G內存,10G硬碟,1M帶寬的機器),能夠達到想什麼時候要就能什麼時候要,想要多少就有多少的狀態。
這就是所謂的彈性,俗話說就是靈活性。靈活性分兩個方面,想什麼時候要就什麼時候要,這叫做時間靈活性,想要多少就要多少,這叫做空間靈活性。
這個神經元有輸入,有輸出,輸入和輸出之間通過一個公式來表示,輸入根據重要程度不同(權重),影響著輸出。
於是將n個神經元通過像一張神經網路一樣連接在一起,n這個數字可以很大很大,所有的神經元可以分成很多列,每一列很多個排列起來,每個神經元的對於輸入的權重可以都不相同,從而每個神經元的公式也不相同。當人們從這張網路中輸入一個東西的時候,希望輸出一個對人類來講正確的結果。例如上面的例子,輸入一個寫著2的圖片,輸出的列表裡面第二個數字最大,其實從機器來講,它既不知道輸入的這個圖片寫的是2,也不知道輸出的這一系列數字的意義,沒關系,人知道意義就可以了。正如對於神經元來說,他們既不知道視網膜看到的是美女,也不知道瞳孔放大是為了看的清楚,反正看到美女,瞳孔放大了,就可以了。
對於任何一張神經網路,誰也不敢保證輸入是2,輸出一定是第二個數字最大,要保證這個結果,需要訓練和學習。畢竟看到美女而瞳孔放大也是人類很多年進化的結果。學習的過程就是,輸入大量的圖片,如果結果不是想要的結果,則進行調整。如何調整呢,就是每個神經元的每個權重都向目標進行微調,由於神經元和權重實在是太多了,所以整張網路產生的結果很難表現出非此即彼的結果,而是向著結果微微的進步,最終能夠達到目標結果。當然這些調整的策略還是非常有技巧的,需要演算法的高手來仔細的調整。正如人類見到美女,瞳孔一開始沒有放大到能看清楚,於是美女跟別人跑了,下次學習的結果是瞳孔放大一點點,而不是放大鼻孔。
聽起來也沒有那麼有道理,但是的確能做到,就是這么任性。
神經網路的普遍性定理是這樣說的,假設某個人給你某種復雜奇特的函數,f(x):
不管這個函數是什麼樣的,總會確保有個神經網路能夠對任何可能的輸入x,其值f(x)(或者某個能夠准確的近似)是神經網路的輸出。
如果在函數代表著規律,也意味著這個規律無論多麼奇妙,多麼不能理解,都是能通過大量的神經元,通過大量權重的調整,表示出來的。
這讓我想到了經濟學,於是比較容易理解了。
我們把每個神經元當成社會中從事經濟活動的個體。於是神經網路相當於整個經濟社會,每個神經元對於社會的輸入,都有權重的調整,做出相應的輸出,比如工資漲了,菜價也漲了,股票跌了,我應該怎麼辦,怎麼花自己的錢。這裡面沒有規律么?肯定有,但是具體什麼規律呢?卻很難說清楚。
基於專家系統的經濟屬於計劃經濟,整個經濟規律的表示不希望通過每個經濟個體的獨立決策表現出來,而是希望通過專家的高屋建瓴和遠見卓識總結出來。專家永遠不可能知道哪個城市的哪個街道缺少一個賣甜豆腐腦的。於是專家說應該產多少鋼鐵,產多少饅頭,往往距離人民生活的真正需求有較大的差距,就算整個計劃書寫個幾百頁,也無法表達隱藏在人民生活中的小規律。
基於統計的宏觀調控就靠譜的多了,每年統計局都會統計整個社會的就業率,通脹率,GDP等等指標,這些指標往往代表著很多的內在規律,雖然不能夠精確表達,但是相對靠譜。然而基於統計的規律總結表達相對比較粗糙,比如經濟學家看到這些統計數據可以總結出長期來看房價是漲還是跌,股票長期來看是漲還是跌,如果經濟總體上揚,房價和股票應該都是漲的。但是基於統計數據,無法總結出股票,物價的微小波動規律。
基於神經網路的微觀經濟學才是對整個經濟規律最最准確的表達,每個人對於從社會中的輸入,進行各自的調整,並且調整同樣會作為輸入反饋到社會中。想像一下股市行情細微的波動曲線,正是每個獨立的個體各自不斷交易的結果,沒有統一的規律可循。而每個人根據整個社會的輸入進行獨立決策,當某些因素經過多次訓練,也會形成宏觀上的統計性的規律,這也就是宏觀經濟學所能看到的。例如每次貨幣大量發行,最後房價都會上漲,多次訓練後,人們也就都學會了。
然而神經網路包含這么多的節點,每個節點包含非常多的參數,整個參數量實在是太大了,需要的計算量實在太大,但是沒有關系啊,我們有大數據平台,可以匯聚多台機器的力量一起來計算,才能在有限的時間內得到想要的結果。
於是工智能程序作為SaaS平台進入了雲計算。
網易將人工智慧這個強大的技術,應用於反垃圾工作中,從網易1997年推出郵箱產品開始,我們的反垃圾技術就在不停的進化升級,並且成功應用到各個億量級用戶的產品線中,包括影音娛樂,游戲,社交,電商等產品線。比如網易新聞、博客相冊、雲音樂、雲閱讀、有道、BOBO、考拉、游戲等產品。總的來說,反垃圾技術在網易已經積累了19年的實踐經驗,一直在背後默默的為網易產品保駕護航。現在作為雲平台的SaaS服務開放出來。
回顧網易反垃圾技術發展歷程,大致上我們可以把他分為三個關鍵階段,也基本對應著人工智慧發展的三個時期:
第一階段主要是依賴關鍵詞,黑白名單和各種過濾器技術,來做一些內容的偵測和攔截,這也是最基礎的階段,受限於當時計算能力瓶頸以及演算法理論的發展,第一階段的技術也能勉強滿足使用。
第二個階段時,基於計算機行業里有一些更新的演算法,比如說貝葉斯過濾(基於概率論的演算法),一些膚色的識別,紋理的識別等等,這些比較優秀成熟的論文出來,我們可以基於這些演算法做更好的特徵匹配和技術改造,達到更優的反垃圾效果。
最後,隨著人工智慧演算法的進步和計算機運算能力的突飛猛進,反垃圾技術進化到第三個階段:大數據和人工智慧的階段。我們會用海量大數據做用戶的行為分析,對用戶做畫像,評估用戶是一個垃圾用戶還是一個正常用戶,增加用戶體驗更好的人機識別手段,以及對語義文本進行理解。還有基於人工智慧的圖像識別技術,更准確識別是否是色情圖片,廣告圖片以及一些違禁品圖片等等。
❷ 大數據和雲計算,在汽車自動駕駛技術里的作用是什麼
數據和雲計算,在汽車自動駕駛技術里的作用是什麼?可以基於路況、車輛性能、駕駛員操作習慣等因素,提供節能減排、降低駕駛疲勞的駕駛方案。自動駕駛藉助汽車上的激光感測器和GPS,車輛通過相對先進的演算法進行自我定位。
在道路上行駛是一個處理大量數據並做出決策的過程,而自動駕駛汽車則使用各種感測器來「觀察」道路。這個過程也會產生大量的數據,平均1.5小時左右的駕駛時間會產生4TB的數據。在車輛方面,顯然不適合處理和儲存如此巨大的工作量。所以最好的辦法就是使用雲計算和雲存儲來支持自動駕駛汽車。
❸ 雲計算和大數據是什麼關系
1.雲計算是提取大數據的前提
信息社會,數據量在不斷增長,技術在不斷進步,大部分企業都能通過大數據獲得額外利益。在海量數據的前提下,如果提取、處理和利用數據的成本超過了數據價值本身,那麼有價值相當於沒價值。來自公有雲、私有雲以及混合雲之上的強大的雲計算能力,對於降低數據提取過程中的成本不可或缺。
2.雲計算是過濾無用信息的「神器」
首次收集的數據中,一般來說90%屬於無用數據,因此需要過濾出能為企業提供經濟利益的可用數據。在大量無用數據中,重點需過濾出兩大類,一是大量存儲著的臨時信息,幾乎不存在投入必要;二是從公司防火牆外部接入到內部的網路數據,價值極低。雲計算可以提供按需擴展的計算和存儲資源,可用來過濾掉無用數據,其中公有雲是處理防火牆外部網路數據的最佳選擇。
3.雲計算可高效分析數據
數據分析階段,可引入公有雲和混合雲技術,此外,類似Hadoop的分布式處理軟體平台可用於數據集中處理階段。當完成數據分析後,提供分析的原始數據不需要一直保留,可以使用私有雲把分析處理結果,即可用信息導入公司內部。
❹ 什麼是雲計算,物聯網和大數據
雲計算是一種按使用量付費的模式,這種模式提供可用的、便捷的、按需的網路訪問, 進入可配置的計算資源共享池(資源包括網路,伺服器,存儲,應用軟體,服務),這些資源能夠被快速提供,只需投入很少的管理工作,或與服務供應商進行很少的交互。
(4)大數據雲圖片擴展閱讀
大數據的價值體現在以下幾個方面:
1.對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷
2.做小而美模式的中小微企業可以利用大數據做服務轉型
3.面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值
例如:
1.洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2.google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3.統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4.麻省理工學院利用手機定位數據和交通數據建立城市規劃。
❺ 大數據是什麼意思
小調查:
請你收集幾個有關大數的信息,並把它們寫下來。
構成一個人體需要500萬億個細胞,一天有24小時即1440分鍾86400秒,一年有365天有8760小時525600分鍾31536000秒,中國的土地面積960萬平方公里(9600000),中國是世界上人口最多的國家,人口有1,300,000,000(十三億)。
大數據:
大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):
Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
大數,有交易員術語,指匯率的頭幾位數字;數學用語,指兩個數中較大的數;命運註定的壽限,如大數已盡等意思。
還是印度佛教的數量單位。
交易員術語,指匯率的頭幾位數字。這些數字在正常的市場波動中很少發生變化,因此通常在交易員的報價中被省略,特別是在市場活動頻繁的時候。比如,美元/日元匯率是 107.30/107.35,但是在被口頭報價時沒有前三位數字,只報"30/35" 。
❻ 大數據時代是什麼意思的
大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,而這個海量數據的時代則被稱為大數據時代。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。
大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
(6)大數據雲圖片擴展閱讀:
大數據時代的影響:
1、不是隨機樣本,而是全體數據:
在大數據時代,人們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前人們通常把這看成是理所應當的限制,但高性能的數字技術讓人們意識到,這其實是一種人為限制)。
2、不是精確性,而是混雜性:
研究數據如此之多,以至於人們不再熱衷於追求精確度;之前需要分析的數據很少,所以人們必須盡可能精確地量化人們的記錄,隨著規模的擴大,對精確度的痴迷將減弱。
擁有了大數據,人們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可,適當忽略微觀層面上的精確度,會讓人們在宏觀層面擁有更好的洞察力;
3、不是因果關系,而是相關關系:
人們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大數據時代,人們無須再緊盯事物之間的因果關系,而應該尋找事物之間的相關關系;相關關系也許不能准確地告訴人們某件事情為何會發生,但是它會提醒人們這件事情正在發生。
參考資料來源:網路-大數據時代
❼ 物聯網,雲計算,大數據,人工智慧怎麼區分與彼此關系
物聯網:
在之前被定義為通過射頻識別(RFID)、紅外線感應器、全球定位系統、激光掃描器、氣體感應器等信息感測設備按約定的協議把任何物品與互聯網連接起來進行信息交換,以實現智能化識別、定位、跟蹤、監控和管理的一種網路,簡言之物聯網就是「物物相連的互聯網」。
後來被重新定義為當下幾乎所有技術與計算機、互聯網技術的結合,實現物體與物體之間:環境以及狀態信息實時的實時共享以及智能化的收集、傳遞、處理、執行。廣義上說,當下涉及的信息技術的應用,都可以納入物聯網的范疇。
雲計算:
是一種按使用量付費的模式,這種模式提供可用的、便捷的、按需的網路訪問,進入可配置的計算資源共享池(資源包括網路、伺服器、存儲、應用軟體、服務),這些資源能夠快速提供,只需投入很少的管理工作,或與服務商進行很少的交互。
雲計算相當於人的大腦,是物聯網的神經中樞。雲計算是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。
大數據:
是一種規模大到在獲取、管理、分析方面大大超出傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。如果將大數據比作一個產業,那麼這種產業實現盈利的關鍵在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上來看,大數據和雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘,但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
人工智慧:
英文縮寫為AI,它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。
人工智慧其實就是大數據、雲計算的應用場景。現在已經比較火熱的VR,沉浸式體驗,就是依賴於大數據與雲計算,讓用戶能夠由更加真切的體驗,並且VR技術是可以使用到各行各業的。人工智慧不同於傳統的機器人,傳統機器人只是代替人類做一些已經輸入好的指令工作,而人工智慧則包含了機器學習,從被動到主動,從模式化實行指令,到自主判斷根據情況實行不同的指令,這就是區別。
❽ 什麼叫大數據 與雲計算有何關系
如今,兩種主流技術已成為IT領域關注的焦點-大數據和雲計算。根本不同的是,大數據只涉及處理海量數據,而雲計算則涉及基礎架構。但是,大數據和雲技術提供的簡化功能是其被大量企業採用的主要原因。例如,亞馬遜的「 Elastic Map Rece」演示了如何利用Cloud Elastic Computes的功能進行大數據處理。
兩者的結合為組織帶來了有益的結果。更不用說,這兩種技術都處於發展階段,但是它們的結合在大數據分析中利用了可擴展且具有成本效益的解決方案。
那麼,我們可以說大數據與雲計算完美結合嗎?好吧,有數據點支持它。除此之外,還需要處理一些實時挑戰。
大數據與雲計算的關系
大數據和雲計算這兩種技術本身都是有價值的。 此外,許多企業的目標是將兩種技術結合起來以獲取更多的商業利益。兩種技術都旨在提高公司的收入,同時降低投資成本。盡管Cloud管理本地軟體,但大數據有助於業務決策。
讓我們從這兩種技術的基本概述開始!
大數據與雲計算
大數據處理大量的結構化,半結構化或非結構化數據,以進行存儲和處理以進行數據分析。大數據有五個方面,通過5V來描述
數量–數據量
種類–不同類型的數據
速度–系統中的數據流率
價值 –基於其中包含的信息的數據價值
准確性 –數據保密性和可用性
雲計算以按需付費的模式向用戶提供服務。雲提供商提供三種主要服務,這些服務概述如下:
基礎架構即服務(IAAS)
在這里,服務提供商將提供整個基礎架構以及與維護相關的任務。
平台即服務(PAAS)
在此服務中,Cloud提供程序提供了諸如對象存儲,運行時,排隊,資料庫等資源。但是,與配置和實現相關的任務的責任取決於使用者。
軟體即服務(SAAS)
此服務是最便捷的服務,它提供所有必要的設置和基礎結構,並為平台和基礎結構提供IaaS。
大數據與雲計算的關系模型雲計算在大數據中的作用
大數據和雲計算的關系可以根據服務類型進行分類:
IAAS在公共雲中
IaaS是一種經濟高效的解決方案,利用此雲服務,大數據服務使人們能夠訪問無限的存儲和計算能力。對於雲提供商承擔所有管理基礎硬體費用的企業而言,這是一種非常經濟高效的解決方案。
私有雲中的PAAS
PaaS供應商將大數據技術納入其提供的服務。因此,它們消除了處理管理單個軟體和硬體元素的復雜性的需求,而這在處理TB級數據時是一個真正的問題。
混合雲中的SAAS
如今,分析社交媒體數據已成為公司進行業務分析的基本參數。在這種情況下,SaaS供應商提供了進行分析的出色平台。
大數據與雲計算有何關系?
因此,從以上描述中,我們可以看到,Cloud通過可伸縮且靈活的自助服務應用程序抽象了挑戰和復雜性,從而啟用了「即服務」模式。從最終用戶提取海量數據的分布式處理時,大數據需求是相同的。
雲中的大數據分析有多個好處。
改進分析
隨著雲技術的進步,大數據分析變得更加完善,從而帶來了更好的結果。因此,公司傾向於在雲中執行大數據分析。此外,雲有助於整合來自眾多來源的數據。
簡化的基礎架構
大數據分析是基礎架構上一項艱巨的艱巨工作,因為數據量大,速度和傳統基礎架構通常無法跟上的類型。由於雲計算提供了靈活的基礎架構,我們可以根據當時的需求進行擴展,因此管理工作負載很容易。
降低成本
大數據和雲技術都通過減少所有權來為組織創造價值。雲的按用戶付費模型將CAPEX轉換為OPEX。另一方面,Apache降低了大數據的許可成本,該成本應該花費數百萬美元來構建和購買。雲使客戶無需大規模的大數據資源即可進行大數據處理。因此,大數據和雲技術都在降低企業成本並為企業帶來價值。
安全與隱私
數據安全性和隱私性是處理企業數據時的兩個主要問題。此外,當您的應用程序由於其開放的環境和有限的用戶控制安全性而託管在Cloud平台上時,這成為主要的問題。另一方面,像Hadoop這樣的大數據解決方案是一個開源應用程序,它使用了大量的第三方服務和基礎架構。因此,如今,系統集成商引入了具有彈性和可擴展性的私有雲解決方案。此外,它還利用了可擴展的分布式處理。
除此之外,雲數據是在通常稱為雲存儲伺服器的中央位置存儲和處理的。服務提供商和客戶將與之一起簽署服務水平協議(SLA),以獲得他們之間的信任。如果需要,提供商還可以利用所需的高級安全控制級別。這可確保涵蓋以下問題的雲計算中大數據的安全性:
保護大數據免受高級威脅。
雲服務提供商如何維護存儲和數據。
有一些與服務級別協議相關的規則可以保護
數據
容量
可擴展性
安全
隱私
數據存儲的可用性和數據增長
另一方面,在許多組織中,大數據分析被用來檢測和預防高級威脅和惡意黑客。
虛擬化
基礎架構在支持任何應用程序中都起著至關重要的作用。虛擬化技術是大數據的理想平台。像Hadoop這樣的虛擬化大數據應用程序具有多種優勢,這些優勢在物理基礎架構上是無法訪問的,但它簡化了大數據管理。大數據和雲計算指出了各種技術和趨勢的融合,這使IT基礎架構和相關應用程序更加動態,更具消耗性和模塊化。因此,大數據和雲計算項目嚴重依賴虛擬化
❾ 大數據和雲計算的區別是什麼啊
一、大數據與雲計算的概念及特點
大數據:在維基網路中,大數據(big data)是用於數據集的一個術語,是指大小超出了常用軟體工具在運行時間內可以承受的收集,管理和處理數據能力的數據集。與傳統海量數據相比,它不僅在數據規模上呈幾何倍數的增長,還在於它集收集,分類,處理,分析於一體,能夠充分挖掘出一份數據的潛在價值。
雲計算:根據美國國家標准與技術研究院定義:雲計算是一種按使用量付費的模式,這種模式提供可用的、便捷的、按需的網路訪問,進入可配置的計算資源共享池(資源包括網路,伺服器,存儲,應用軟體,服務),這些資源能夠被快速提供,只需投人很少的管理工作,或與服務供應商進行很少的交互。也就是說雲計算既是一種商業模式,也是一種計算模式。
二、大數據和雲計算的區別及聯系
雲計算是一種商業模式,也是一種計算模式。所以,雲計算是在大數據的基礎上進行的,大數據的目的主要是通過海量數據發現潛在價值,使人們更好的理解和把握信息,雲計算更傾向於提供服務,二者相互關聯。
1、大數據和雲計算的區別
1)目的不同:大數據是為了發掘信息價值,而雲計算主要是通過互聯網管理資源,提供相應的服務。
2)對象不同:大數據的對象是數據,雲計算的對象是互聯網資源以及應用等。
3)背景不同:大數據的出現在於用戶和社會各行各業所產生大的數據呈現幾何倍數的增長;雲計算的出現在於用戶服務需求的增長,以及企業處理業務的能力的提高。
4)價值不同:大數據的價值在於發掘數據的有效信息,雲計算則可以大量節約使用成本。
2、大數據和雲計算的聯系
大數據和雲計算的相同點在於它們都是數據存儲和處理服務,都需要佔用大量的存儲和計算資源,因而都要用到海量數據存儲技術、海量數據管理技術等/隨著數據量的遞增、數據處理復雜程度的增加,相應的性能和擴展瓶頸將會越來越大。在這種情況下,雲計算所具備的彈性伸縮和動態調配、資源的虛擬化,按需使用,以及綠色節能等基本要素正好契合了新型大數據處理技術的需求。在數據量爆發增長以及對數據處理要求越來越高的先當下,實現大數據和雲計算的結合,才能最大程度上發揮二者的優勢,滿足用戶的需求,帶來更高的商業價值。
三、如何理解大數據與雲計算的關系
簡單來說就是,大數據的超大容量自然需要容量大,速度快,安全的存儲,滿足這種要求的存儲離不開雲計算。高速產生的大數據只有通過雲計算的方式才能在可等待的時間內對其進行處理。同時,雲計算是提高對大數據的分析與理解能力的一個可行方案。大數據的價值也只有通過數據挖掘才能從低價值密度的數據中發現其潛在價值,而大數據挖掘技術的實現離不開雲計算技術。總之,雲計算是大數據處理的核心支撐技術,是大數據挖掘的主流方式。沒有互聯網,就沒有虛擬化技術為核心的雲計算技術,沒有雲計算就沒有大數據處理的支撐技術。
其實,雲計算是工業時代的電,大數據就是福特生產線,雲存儲就是鋼鐵工業。也就是說,沒有鋼鐵,就沒有電,就不會有大規模工業化生產。沒有雲計算,大數據不會出來,如果雲計算沒有解決雲存儲的問題,也不會出來。
四、大數據和雲計算的發展前景
1、提升網路質量。隨著互聯網以及移動互聯網的持續發展網路將會更加繁忙,用於監測網路狀態的信令數據也會快速增長。通過對海量運維信息以及信令數據的智能分析,能夠提高網路維護的實時性,預測網路流量峰值,預警異常流量。從而有效地防止網路擁塞和系統宕機,從而提高網路服務質量,提升用戶體驗。
2、提升客戶價值通過使用大數據分析、數據挖掘等工具和方法,企業能夠整合來自市場部門、銷售部門、服務部門的數據,從各種不同的角度全面了解自己的客戶,對客戶形象進行精準刻畫,以尋找目標客戶,制定有針對性的營銷計劃、產品組合或商業決策,提升客戶價值。
3、提升行業信息化水平。智慧城市的發展以及教育、醫療、交通、環境保護等關繫到國計民生的行業,都具有極大的信息化需求。
4、提高用戶體驗。高速的信息處理,更優質的服務,能夠更好地滿足用戶需要,使用戶能夠以最廉價的成本為生活帶來更好的便利,最大程度上提高了用戶的生活學習工作質量。