導航:首頁 > 網路數據 > 大數據練習

大數據練習

發布時間:2023-06-08 15:14:48

Ⅰ 零基礎應該如何學習大數據

首先,學習大數據我們就要認識大數據,大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。 大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Veracity(真實性)。

其次,學習有關大數據課程的內容,第一階段:java語言基礎(只只需要學習Java的標准版JavaSE就可以了,做大數據不需要很深的Java 技術,當然Java怎麼連接資料庫還是要知道);

第二階段:Linux精講(因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,學好Linux對你快速掌握大數據相關技術會有很大的幫助,能讓你更好的理解hadoop、hive、hbase、spark等大數據軟體的運行環境和網路環境配置,能少踩很多坑);

第三階段:Hadoop生態系統(這是現在流行的大數據處理平台幾乎已經成為大數據的代名詞,所以這個是必學的。Hadoop裡麵包括幾個組件HDFS、MapRece和YARN,HDFS是存儲數據的地方就像我們電腦的硬碟一樣文件都存儲在這個上面,MapRece是對數據進行處理計算的,它有個特點就是不管多大的數據只要給它時間它就能把數據跑完,但是時間可能不是很快所以它叫數據的批處理。)

第四階段:strom實時開發(torm是一個免費並開源的分布式實時計算系統。利用Storm可以很容易做到可靠地處理無限的數據流,像Hadoop批量處理大數據一樣,Storm可以實時處理數據。Storm簡單,可以使用任何編程語言。)

第五階段:Spark生態體系(它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。);

第六階段:大數據項目實戰(大數據實戰項目可以幫助大家對大數據所學知識更加深刻的了解、認識,提高大數據實踐技術)。

關於零基礎應該如何學習大數據,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅱ 大數據怎麼學

大數據零基礎系統學習,這里給你分享一條入門學習路線——
第一步:培養對於大數據的基本認知
大數據是什麼,大數據未來的發展方向和應用場景有哪些,想要入行做大數據,先對培養其基本的行業背景知識是很有必要的。推薦可以看一些相關書籍,例如《大數據時代》、《數據之美》等。
第二步:大數據技術理論知識學習
零基礎小白能不能學懂大數據,能不能形成系統的技術體系,這一步很關鍵。
1、Java:主要為Java的標准版JavaSE。另外,JDBC是一定要掌握的,因為它關繫到Java與資料庫的連接。
2、Linux:因為大數據相關軟體都是在Linux上運行的,所以Linux要學習的扎實一些,大數據軟體的運行環境和網路環境配置會常常用到。
3、Hadoop:這個是必學的,核心組件HDFS、MapRece和YARN,還有生態圈的常用組件。
4、Oozie:用於管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確。
5、python:用於編寫網路爬蟲。
6、Kafka:比較好用的消息隊列工具,數據吞吐量很大。
7、Spark:用來彌補基於Hadoop中MapRece處理數據速度上的缺點,特別適合做迭代運算。
學完這些技術框架之後,最好還要有相應的項目來做實戰練習,鞏固對理論知識的掌握,能夠實際去完成一個大數據項目周期當中的所有環節,這樣才能在就業市場上獲得更大的競爭優勢。

Ⅲ 大數據開發怎麼學習

先要學一些基礎知識學習,例如現在流行的資料庫管理,java開發語言,熟練掌握Linux系統,望採納

Ⅳ 初學者如何高效學習大數據技術

目前想要轉型做大數據的人群當中,零基礎的學習者不在少數,對於零基礎學習者,比較中肯的建議是不要自學。大數據作為一門新興技術,市面上能夠找到的學習資料非常有限,並且大數據技術不斷在更新迭代,自學很難跟上最新技術趨勢。

對於大部分零基礎學習者來說,想要學大數據,通過大數據培訓是效率最高的方式。而市面上的大數據培訓,可以分為線上培訓和線下培訓兩種模式,不管是這些機構課程如何宣傳,作為初學者,應該重視的是,如果能夠達到高效的學習。

大數據線上培訓,有直接賣錄制好的視頻的,也有視頻直播課程,相對來說,視頻直播課程具有更好的課堂互動性,如果能堅持下來,那麼應當也能有一定的收獲。

而大數據線下培訓,應該說是各種培訓模式下,學習效率和學習效果都最好的方式了。大數據線下培訓有完備的教學體系,系統化的大數據課程,資深的專業講師,三管齊下,能夠幫助學習者更快地入門,打下良好的基礎。

在大數據的學習中,除了基礎技術知識的學習,更重要的是理論與實踐的結合,畢竟我們最終還是要將技術知識運用到工作實際中,這也是就業當中的核心競爭力來源。

大數據線下培訓,擁有良好的硬體環境支持,在不同的學習階段,還有相應的實戰項目來做聯系,大大提升學習者的技術實戰能力。

關於初學者如何高效學習大數據技術,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅳ 怎樣學習大數據

1.首先,我們想學習大數據,就要了解一下大數據的前景。大數據廣泛應用於電版網運行權、經營管理及優質服務等各大領域,並正在改變著各行各業,也引領了大數據人才的變革。大數據就業前景怎麼樣?這對於在就業迷途中的我們是一個很重要的信息。隨著國家重視大數據,政府扶持大數據,大數據在企業中生根發芽,開花結果。未來三至五年,中國需要180萬數據人才,但目前只有約30萬人。到2020年,企業基於大數據計算分析存儲、數據挖掘、數據分析等數據產業的發展,我國需要更多的數據人才。
2.學大數據之前,要有一定的電腦基礎,如果對電腦一竅不通,那麼無法快速接觸,因為大數據就是電腦專業。大數據屬於編程,學大數據JAVA這一塊很重要,JAVA是學習大數據的基礎。正所謂基礎打撈才能學得更好。
3.我介意去專業的電腦學校學習,學校從辦學開始就一張從事計算機專業,那麼學校就會有專業的老師,專業的設備。

Ⅵ 零基礎學習大數據該從哪裡入手,有什麼好的學習方法嗎

"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。大數據工程師需要學習哪些知識?
一、從入門到進階,大致羅列了8大學習階段:
第一階段 Java語言基礎
Java開發介紹、熟悉Eclipse開發工具、Java語言基礎、Java流程式控制制、Java字元串、Java數組與類和對象、數字處理類與核心技術、I/O與反射、多線程、Swing程序與集合類
第二階段 HTML、CSS與JavaScript
PC端網站布局、HTML5+CSS3基礎、WebApp頁面布局、原生JavaScript交互功能開發、Ajax非同步交互、jQuery應用
第三階段 JavaWeb和資料庫
資料庫、JavaWeb開發核心、JavaWeb開發內幕
第四階段 Linux&Hadoopt體系
Linux體系、Hadoop離線計算大綱、分布式資料庫Hbase、數據倉庫Hive、數據遷移工具Sqoop、Flume分布式日誌框架
第五階段 實戰(一線公司真實項目)
數據獲取、數據處理、數據分析、數據展現、數據應用
第六階段 Spark生態體系
Python編程語言、Scala編程語言、Spark大數據處理、Spark—Streaming大數據處理、Spark—Mlib機器學習、Spark—GraphX 圖計算
第七階段 Storm生態體系
storm技術架構體系、Storm原理與基礎、消息隊列kafka、Redis工具、zookeeper詳解
第八階段 大數據分析 —AI(人工智慧)
Data Analyze工作環境准備&數據分析基礎、數據可視化、Python機器學習
1、Python機器學習
2、圖像識別&神經網路、自然語言處理&社交網路處理;
學習大數據 的方法技巧:
一:提升學習能力
很多人問這是什麼技巧,我們都知道,學習能力不同,那麼在學習效率上就會產生很大的差別,在學大數據上也是一樣。學習能力是天生的嗎?當然不是,我們都知道學習能力是後天可以培養的,學習能力也不是隨隨便便可以培養的,每個人的學習能力都不一樣,你要做的就是把你的學習能力提升,那麼在大數據學習上你就會輕松很多。
二:保持良好的心態
學大數據心態很重要,我們都知道大數據的學習不是那麼容易的,有時候你越想快速的把大數據學好,反而越靜不下心來學,學著學著有時候會莫名的感覺到厭倦,想放棄大數據的學習,這時候你就需要保持良好的心態,比如遇到難題,鼓勵自己不要放棄,在大數據的學習上保持良好心態,你才不會輕言放棄。
三:堅持、堅持、再堅持
學習最忌諱的就是一曝十寒,不能堅持。知識是個累積的過程,堅持下去才會有所獲。學習大數據過程中也會遇到很多的誘惑,比如更多比大數據新潮的IT技術出現了,又比如雲計算、人工智慧你覺得發展的比大數據要好,這時候千萬別動搖,見異思遷是最不可取的,如果中途放棄,不僅浪費時間和精力,還會一無所獲,得不償失。

Ⅶ 大數據怎麼學習

興趣是第一老師。選擇學習一門課程和技能時,個人興趣是至關重要,對於學習像大專數據這樣抽象的技能更是如屬此。

學習Java語言和Linux操作系統,這兩個是學習大數據的基礎。

最關鍵的是學習Hadoop+spark,掌握大數據的收集、生成、調用工具。

樹立大數據思維,創造性開發、使用大數據。

深度了解大數據的意義、價值、市場、開發及運用前景。

到大數據管理中心、運用企業實習實踐,掌握開發、運用技能。

Ⅷ 怎樣進行大數據的入門級學習

怎樣進行大數據的入門級學習?

文 | 郭小賢

數據科學並沒有一個獨立的學科體系,統計學,機器學習,數據挖掘,資料庫,分布式計算,雲計算,信息可視化等技術或方法來對付數據。

但從狹義上來看,我認為數據科學就是解決三個問題:

1. datapre-processing;(數據預處理)

2. datainterpretation;(數據解讀)

3.datamodeling and analysis.(數據建模與分析)

這也就是我們做數據工作的三個大步驟:

1、原始數據要經過一連串收集、提取、清洗、整理等等的預處理過程,才能形成高質量的數據;

2、我們想看看數據「長什麼樣」,有什麼特點和規律;

3、按照自己的需要,比如要對數據貼標簽分類,或者預測,或者想要從大量復雜的數據中提取有價值的且不易發現的信息,都要對數據建模,得到output。

這三個步驟未必嚴謹,每個大步驟下面可能依問題的不同也會有不同的小步驟,但按我這幾年的經驗來看,按照這個大思路走,數據一般不會做跑偏。

這樣看來,數據科學其實就是門復合型的技術,既然是技術就從編程語言談起吧,為了簡練,只說說R和Python。但既然是薦數據科學方面的書,我這里就不提R/Python編程基礎之類的書了,直接上跟數據科學相關的。

R programming

如果只是想初步了解一下R語言已經R在數據分析方面的應用,那不妨就看看這兩本:

R inaction:我的R語言大數據101。其實對於一個沒有任何編程基礎的人來說,一開始就學這本書,學習曲線可能會比較陡峭。但如果配合上一些輔助材料,如官方發布的R basics(http://cran.r-project.org/doc/contrib/usingR.pdf),stackoverflow上有tag-R的問題集(Newest 『r』 Questions),遇到復雜的問題可在上面搜索,總會找到解決方案的。這樣一來,用這本書拿來入門學習也問題不大。而且這本書作者寫得也比較輕松,緊貼實戰。

Dataanalysis and graphics using R:使用R語言做數據分析的入門書。這本書的特點也是緊貼實戰,沒有過多地講解統計學理論,所以喜歡通過情境應用來學習的人應該會喜歡這本入門書。而且這本書可讀性比較強,也就是說哪怕你手頭沒電腦寫不了代碼,有事沒事拿出這本書翻一翻,也能讀得進去。

但如果你先用R來從事實實在在的數據工作,那麼上面兩本恐怕不夠,還需要這些:

Modernapplied statistics with S:這本書里統計學的理論就講得比較多了,好處就是你可以用一本書既復習了統計學,又學了R語言。(S/Splus和R的關系就類似於Unix和Linux,所以用S教程學習R,一點問題都沒有)

Datamanipulation with R:這本書實務性很強,它教給你怎麼從不同格式的原始數據文件里讀取、清洗、轉換、整合成高質量的數據。當然和任何一本注重實戰的書一樣,本書也有豐富的真實數據或模擬數據供你練習。對於真正從事數據處理工作的人來說,這本書的內容非常重要,因為對於任何研究,一項熟練的數據預處理技能可以幫你節省大量的時間和精力。否則,你的研究總是要等待你的數據。

RGraphics Cookbook:想用R做可視化,就用這本書吧。150多個recipes,足以幫你應付絕大多數類型的數據。以我現在極業余的可視化操作水平來看,R是最容易做出最漂亮的圖表的工具了。

Anintroction to statistical learning with application in R:這本書算是著名的the element of statistical learning的姊妹篇,後者更注重統計(機器)學習的模型和演算法,而前者所涉及的模型和演算法原沒有後者全面或深入,但卻是用R來學習和應用機器學習的很好的入口。

Ahandbook of statistical analysis using R:這本書內容同樣非常扎實,很多統計學的學生就是用這本書來學慣用R來進行統計建模的。

Python

Think Python,ThinkStats,Think Bayes:這是AllenB. Downey寫的著名的Think X series三大卷。其實是三本精緻的小冊子,如果想快速地掌握Python在統計方面的操作,好好閱讀這三本書,認真做習題,答案鏈接在書里有。這三本書學通了,就可以上手用Python進行基本的統計建模了。

PythonFor Data Analysis: 作者是pandas的主要開發者,也正是Pandas使Python能夠像R一樣擁有dataframe的功能,能夠處理結構比較復雜的數據。這本書其實analysis講得不多,說成數據處理應該更合適。掌握了這本書,處理各種糟心的數據就問題不大了。

Introctionto Python for Econometrics, Statistics and DataAnalysis:這本書第一章就告訴你要安裝Numpy, Scipy, Matplotlib, Pandas, IPython等等。然後接下來的十好幾章就是逐一介紹這幾個庫該怎麼用。很全面,但讀起來比較枯燥,可以用來當工具書。

PracticalData Analysis: 這本書挺奇葩,貌似很暢銷,但作者把內容安排得東一榔頭西一棒子,什麼都講一點,但一個都沒講透。這本書可以作為我們學習數據分析的一個索引,看到哪塊內容有意思,就順著它這個藤去摸更多的瓜。

PythonData Visualization Cookbook: 用Python做可視化的教材肯定不少,我看過的也就這一本,覺得還不錯。其實這類書差別都不會很大,咬住一本啃下來就是王道。

Exploratory Data Analysis 和 Data Visualization

Exploratory DataAnalysis:John Tukey寫於1977年的經典老教材,是這一領域的開山之作。如今EDA已經是統計學里的重要一支,但當時還是有很多人對他的工作不屑一顧。可他愛數據,堅信數據可以以一種出人意料的方式呈現出來。正是他的努力,讓數據可視化成為一門無比迷人的技術。但這本書不推薦閱讀了,內容略過時。要想完整地了解EDA,推薦下一本:

ExploratoryData Analysis with MATLAB:這本書雖然標題帶了個MATLAB,但實際上內容幾乎沒怎麼講MATLAB,只是每講一個方法的時候就列出對應的MATALB函數。這本書的重要之處在於,這是我讀過的講EDA最系統的一本書,除了對visualization有不輸於John Tucky的講解外,對於高維的數據集,通過怎樣的方法才能讓我們從中找到潛在的pattern,這本書也做了詳盡的講解。全書所以案例都有對應的MATALB代碼,而且還提供了GUI(圖形用戶界面)。所以這本書學起來還是相當輕松愉悅的。

VisualizeThis:中譯本叫「鮮活的數據」,作者是個「超級數據迷」,建立了一個叫http://flowingdata.com的網頁展示他的數據可視化作品,這本書告訴你該選擇什麼樣的可視化工具,然後告訴你怎樣visualize關系型數據、時間序列、空間數據等,最後你就可以用數據講故事了。如果你只想感受一下數據可視化是個什麼,可以直接點開下面這個鏈接感受下吧!A tour through the visualization zoo(A TourThrough the Visualization Zoo)

Machine Learning & Data Mining

這一塊就不多說了,不是因為它不重要,而是因為它太太太重要。所以這一部分就推兩本書,都是」世界名著「,都比較難讀,需要一點點地啃。這兩本書拿下,基本就算是登堂入室了。其實作為機器學習的延伸和深化,概率圖模型(PGM)和深度學習(deep learning)同樣值得研究,特別是後者現在簡直火得不得了。但PGM偏難,啃K.Daphne那本大作實在太燒腦,也沒必要,而且在數據領域的應用也不算很廣。deep learning目前工業界的步子邁得比學術界的大,各個domain的應用如火如荼,但要有公認的好教材問世則還需時日,所以PGM和deep learning這兩塊就不薦書了。

TheElement of Statistical Learning:要學機器學習,如果讓我只推薦一本書,我就推薦這本巨著。Hastie、Tibshirani、Friedman這三位大牛寫書寫得太用心了,大廈建得夠高夠大,結構也非常嚴謹,而且很有前瞻性,納入了很多前沿的內容,而不僅僅是一部綜述性的教材。(圖表也做得非常漂亮,應該是用R語言的ggplot2做的。)這本書注重講解模型和演算法本身,所以需要具備比較扎實的數理基礎,啃起這本書來才不會太吃力。事實上掌握模型和演算法的原理非常重要。機器學習(統計學習)的庫現在已經非常豐富,即使你沒有完全搞懂某個模型或演算法的原理和過程,只要會用那幾個庫,機器學習也能做得下去。但你會發現你把數據代進去,效果永遠都不好。但是,當你透徹地理解了模型和演算法本身,你再調用那幾個庫的時候,心情是完全不一樣的,效果也不一樣。

DataMining: Concepts and Techniques, by Jiawei Han and Micheline Kamber 數據挖掘的教材汗牛充棟,之所以推薦這本韓家煒爺爺的,是因為雖然他這本書的出發點是應用,但原理上的內容也一點沒有落下,內容非常完整。而且緊跟時代,更新的很快,我看過的是第二版,就已經加進去了social network analysis這種當時的前沿內容。現在已經有第三版了,我還沒看過,但應該也加入了不少新內容。其實這本書並不難讀,只是篇幅較長,啃起來比較耗時。

其實這兩本書里單拎出來一塊內容可能又是幾本書的節奏,比如bayesian方法,再拿出兩三本書來講也不為過,我個人用到的比較多,而且也確實有不少好書。但並非是所有data scientist都要用到,所以這一塊就不再細說。

還有一些印象比較深刻的書:

Big DataGlossary: 主要講解大數據處理技術及工具,內容涵蓋了NoSQL,MapRece,Storage,Servers,NLP庫與工具包,機器學習工具包,數據可視化工具包,數據清洗,序列化指南等等。總之,是一本辭典式的大數據入門指導。

Mining ofMassive Datasets:這本書是斯坦福大學Web Mining的講義,裡面很多內容與韓家煒的Data Mining那本書重合,但這本書里詳細地講了MapRece的設計原理,PageRank(Google創業時期的核心排序演算法,現在也在不斷優化更新)講解得也比較詳細。

DevelopingAnalytic Talent: 作者是個從事了十幾年數據工作的geek,技術博客寫得很有個人風格,寫的內容都比較偏門,通常只有具備相關數據處理經驗的人能體會出來,絲毫不照顧初學者的感受。比如他會談到當數據流更新太快時該怎麼辦,或者MapRece在什麼時候不好用的問題,才不管你懂不懂相關基礎原理。所以這本書不太適合初學者閱讀。這本書其實是作者的博客文章的集結,用how to become a data scientist的邏輯把他近幾年的博客文章串聯了起來。

Past, Present and Future of Statistical Science:這本書是由COPSS(統計學社主席委員會,由國際各大統計學會的帶頭人組成)在50周年出版的一本紀念冊,裡面有50位統計學家每人分別貢獻出的一兩篇文章,有的回憶了自己當年如何走上統計學這條路,有的探討了一些統計學的根本問題,有的談了談自己在從事的前沿研究,有的則給年輕一代寫下了寄語。非常有愛的一本書。

其它資料

Harvard Data Science:這是H大的Data science在線課,我沒有修過,但口碑很好。這門課需要費用8千刀左右,比起華盛頓大學的4千刀的Data science在線課雖貴一倍,但比斯坦福的14千刀要便宜將近一半(而且斯坦福的更偏計算機)。如果想自學,早有好心人分享了slides:(https://drive.google.com/folderview?id=0BxYkKyLxfsNVd0xicUVDS1dIS0k&usp=sharing)和homeworks and solutions: (https://github.com/cs109/content)

PyData:PyData是來自各個domain的用Python做數據的人每年舉行一次的聚會,期間會有各路牛人舉行一些規模不大的seminar或workshop,有好心人已經把video上傳到github,有興趣的去認領吧(DataTau/datascience-anthology-pydata · GitHub)

工具

R/Python/MATLAB(必備):如果是做數據分析和模型開發,以我的觀察來看,使用這三種工具的最多。R生來就是一個統計學家開發的軟體,所做的事也自然圍繞統計學展開。MATLAB雖然算不上是個專業的數據分析工具,但因為很多人不是專業做數據的,做數據還是為了自己的domain expertise(特別是科學計算、信號處理等),而MATLAB又是個強大無比的Domain expertise工具,所以很多人也就順帶讓MATLAB也承擔了數據處理的工作,雖然它有時候顯得效率不高。Python雖然不是做數據分析的專業軟體,但作為一個面向對象的高級動態語言,其開源的生態使Python擁有無比豐富的庫,Numpy, Scipy 實現了矩陣運算/科學計算,相當於實現了MATLAB的功能,Pandas又使Python能夠像R一樣處理dataframe,scikit-learn又實現了機器學習。

SQL(必備):雖然現在人們都說傳統的關系型資料庫如Oracle、MySQL越來越無法適應大數據的發展,但對於很多人來說,他們每天都有處理數據的需要,但可能一輩子都沒機會接觸TB級的數據。不管怎麼說,不論是用關系型還是非關系型資料庫,SQL語言是必須要掌握的技能,用什麼資料庫視具體情況而定。

MongoDB(可選):目前最受歡迎的非關系型資料庫NoSQL之一,不少人認為MongoDB完全可以取代mySQL。確實MongoDB方便易用,擴展性強,Web2.0時代的必需品。

Hadoop/Spark/Storm(可選): MapRece是當前最著名也是運用最廣泛的分布式計算框架,由Google建立。Hadoop/Spark/storm都是基於MapRece的框架建立起來的分布式計算系統,要說他們之間的區別就是,Hadoop用硬碟存儲數據,Spark用內存存儲數據,Storm只接受實時數據流而不存儲數據。一言以蔽之,如果數據是離線的,如果數據比較復雜且對處理速度要求一般,就Hadoop,如果要速度,就Spark,如果數據是在線的實時的流數據,就Storm。

OpenRefine(可選):Google開發的一個易於操作的數據清洗工具,可以實現一些基本的清洗功能。

Tableau(可選):一個可交互的數據可視化工具,操作簡單,開箱即用。而且圖表都設計得非常漂亮。專業版1999美刀,終身使用。媒體和公關方面用得比較多。

Gephi(可選):跟Tableau類似,都是那種可交互的可視化工具,不需要編程基礎,生成的圖表在美學和設計上也是花了心血的。更擅長復雜網路的可視化。

來自知乎

以上是小編為大家分享的關於怎樣進行大數據的入門級學習?的相關內容,更多信息可以關注環球青藤分享更多干貨

Ⅸ 想要學習大數據,應該怎麼入門

記住學到這里可以作為你學大數據的一個節點。

Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。

Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。

Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。

Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。

Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。

Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。

Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。

Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。

Ⅹ 新手學大數據的方法

大數據(bigdata,megadata),或稱巨量資料,當下可以稱為大數據新手的朋友是不可計數,大數據新手顧名思義就是剛剛接觸大數據、但對大數據有著濃厚興趣,特別想學大數據的朋友,那麼新手應該如何自學大數據呢?你有什麼好的見解沒呢?趕緊跟昌平IT培訓,往下看。

新手應該如何自學大數據?


1.很多新手剛開始會考慮自學大數據,時間安排自由,但是新手如何自學大數據?是個敏御相當嚴峻的問題,看視頻學大數據可以嗎?可以,但問題的關鍵,在於你要找出優質的大數據視頻教程,然後要確保基拿告自己在學習中無遺漏,並且最好是伴隨著你相應的筆記。


2.新手自學大數據中,特別注意的是要進行項目練習,大數據在剛接觸時會有些新鮮感,但是接下來就是一些乏味感,一味的只看不練,那麼學搏明起來更乏味,大數據本身也是門需要大量項目練習鞏固知識的專業,不多多進行項目練習,那麼很大程度上就等於白學,學不能致用。


3.新手自學大數據難嗎?其實相當有難度,大數據知識學習起來其實還滿雜的,既得學大數據基礎,又得掌握很多統計學等等的知識,自學大數據一個人的視野也畢竟有限,遇到難題時,想找個人一起商討如何解決,難,想證明自己所做的數據分析正確全面,但是無人可證。


閱讀全文

與大數據練習相關的資料

熱點內容
為什麼硬碟裡面沒有文件卻占內存 瀏覽:242
模具繪圖自學教程 瀏覽:753
怎樣避免u盤吞文件 瀏覽:320
另存為圖層文件為什麼導入無效 瀏覽:340
怎麼把文件標題復制到excel 瀏覽:755
編程軟體用什麼編輯 瀏覽:993
ab編程plc怎麼讓綠燈閃爍3秒 瀏覽:171
linux查找五天內的文件 瀏覽:676
目標文件載入單片機需要什麼軟體 瀏覽:745
豬八戒網網站怎麼注冊 瀏覽:725
為什麼手機文件傳不到微信 瀏覽:212
哪個網站考公務員 瀏覽:164
建築方案設計教程 瀏覽:600
鄭州哪裡兒童學編程比較好 瀏覽:105
Mac登陸密碼怎麼改 瀏覽:388
硬碟什麼情況恢復不了數據 瀏覽:966
蘋果mac開windows界面 瀏覽:752
雲盤的文件夾怎麼發到u盤 瀏覽:87
手機主板修理專用工具 瀏覽:230
web伺服器開發pdf文件 瀏覽:706

友情鏈接