① 大數據對廣告投放的影響有哪些
大數據對廣告投放的本身來說,是沒有影響的。影響廣告投放的是流量平台本身的價值所在。一個流量平台,是否吸引廣告主,決定著對廣告的投入。比如,一個廣告主有廣告投放計劃,他會首先選擇今日頭條,再考慮騰訊,或者考慮網路,這是平台價值決定其選擇誰,不是因為大數據來決定其選擇。
大數據,只是一個工具,其應用十分廣泛,可以針對需要為廣告主客戶畫像,可以鎖定地理圍欄找到精準用戶。大數據還有演算法,根據注冊用戶信息,算出用戶興趣愛穗或汪好,年齡結構,然後分發與興趣相關的資訊。實現精準推送。
由於移動互聯網時代,使信息碎片化,秒級瀏覽,在超級流量平台里要抓取用戶瀏覽,只有靠大數據手段來實現。比如,你喜歡釣魚,流量平台會根據你的興趣愛好精準推送各種釣魚訊息,有圖文,也有視頻,圍繞興趣愛好不斷更新內容,實現這個推送,就是大數據演算法,讓你了解更多內容。在瀏覽過程中,一些猜仔關於釣具廣告也推送過來,釣竿、魚餌,還有裝備全套服務為你定製打造最後,讓你點入廣告,自然下單。這就是神奇的大數團臘據的應用效果。
所以,大數據對廣告投放行為是沒影響的,而對投放後的廣告效果,卻有很大的影響。
② 如何解讀中國電信的RTB廣告平台
RTB廣告平台就是實時競價廣告平台,其中RTB是(Real Time Bidding)的簡寫;RTB廣告是目前最火的程序化購買網路廣告投放方式之一,也是技術最先進的網路廣告投放平台,數字媒體交易平台;中國第一個獨立的數字媒體交易平台(Media Trading Desk)是Chinapex創略中國;結合了傳統的網路廣告聯盟(Ad Network),網路廣告交易平台(Ad Exchange),網路媒體供應方需求平台(SSP)和需求方平台(DSP)同時也有網路數據管理平台和第三方數據檢測平台 。
③ 看看全球十大電信巨頭的大數據玩法
看看全球十大電信巨頭的大數據玩法
大數據時代,掌握海量數據無疑使自己在這競爭激烈的時代佔得先機,對於電信運營商來說,更是如此。通過深度挖掘這些數據,他們正試圖打造全新的商業生態圈,實現新的業績增長點,當然也實現從電信網路運營商到信息運營商的轉變。中雲網的這篇文章將從全球十大電信運營商的角度分析它們是如何利用大數據的,從中或許可以給你一點啟示。
對於電信運營商而言,沒有哪一個時代能比肩4G時代,輕松掌握如此海量的客戶數據。4G時代,手機購物、視頻通話、移動音樂下載、手機游戲、手機IM、移動搜索、移動支付等移動數據業務層出不窮。它們在為用戶創造了前所未有的新體驗同時,也為電信運營商挖掘用戶數據價值提供了大數據的視角。數據挖掘、數據共享、數據分析已經成為全球電信運營商轉變商業模式,贏取深度商業洞察力的基本共識。
目前,全球120家運營商中,已經有48%的企業正在實施大數據戰略。通過提高數據分析能力,他們正試圖打造著全新的商業生態圈,實現從電信網路運營商(Telecom)到信息運營商(Infocom)的華麗轉身。從曾經的「管道」到大數據戰略融合,電信運營商到底該如何善用大數據?全球10強電信「大佬們」的大數據應用之道及其培育的新經濟增長點啟示頗多。
1. AT&T:位置數據貨幣化
AT&T是美國最大的本地和長途電話公司,創建於1877年。2009年,AT&T利用全球領先的數據分析平台、應用和服務供應商Teradata天睿公司的大數據解決方案,開始了向信息運營商的轉變。
在培育新型業績增長點的過程中,AT&T決定和星巴克開展合作,利用大數據技術收集、分析用戶的位置信息,通過客戶在星巴克門店附近通話或者其他通信行為,預判消費者的購物行為。為此,AT&T挑選高忠誠度客戶,讓其了解AT&T與星巴克之間的這項業務,並簽署協議,將客戶隱私的管理權交給客戶自己。在獲得允許情況下,AT&T將這些信息服務以一定金額交付給星巴克。星巴克通過對這些數據的挖掘,可以預估消費者登門消費的大概時間段,並且預測個人用戶行為,並做出個性化的推薦。此外,在iPhone上市伊始,為了解iPhone的市場反響,AT&T還選擇與Facebook結成戰略聯盟,通過對Facebook的非結構化數據進行分析,發現用戶對價格、移動功能、服務感知等產品指標的體驗情況,從而推出更加准確的電信捆綁服務。
2. NTT:創新醫療行業的社會化整合
NTT是日本最大電信服務提供商,創立於1976年。它旗下的NTTDOCOMO是日本最大的移動通訊運營商,也是全球最大的移動通訊運營商之一,擁有超過6千萬的簽約用戶。
自2010年,NTTDOCOMO利用大數據解決方案,實現了醫療資源的社會化創新,培育了醫療信息服務增長點。面對日本社會的老齡化趨勢,NTTDOCOMO想到了通過搭建信息服務平台,滿足用戶的個性化醫療需求。因此,NTTDOCOMO和Teradata天睿公司進行充分合作,利用其大數據解決方案,建立自己的資料庫。通過開設MedicalBrain和MD+平台,聚合大量的醫療專業信息,網聚了大批醫療行業專業人士。這使用戶和各種專業醫療和保健服務提供商共同擁有了符合標準的、安全可靠的生命參數採集和分發平台。在這個平台上,NTTDOCOMO能夠根據用戶的以往行為洞察其個性化需求,再將這些需求反饋至對應的醫療人員,幫助用戶獲得高價值的信息反饋。
3. Verizon:數據倉庫促進精準營銷
Verizon是美國最大的本地電話公司、最大的無線通信公司之一,也是全世界最大的印刷黃頁和在線黃頁信息提供商。它在美國、歐洲、亞洲、太平洋等全球45個國家經營電信及無線業務。
隨著年輕一代用戶成為電信消費主力人群,通過多媒體、社交媒體等渠道了解他們的消費行為成為Verizon的營銷重點。因此,Verizon成立精準營銷部門(PrecisionMarketingDivision),利用Teradata天睿公司的企業級數據倉庫,對用戶產生的結構化、非結構化數據進行挖掘、探索和分析。在大數據解決方案的幫助下,Verizon實現了對消費者的精準營銷洞察,並且向他們提供商業數據分析服務,同時在獲得允許情況下,將用戶數據直接向第三方交易。此外,這些對用戶購買行為的洞察也為Verizon的廣告投放提供支撐,實現精準營銷。憑借著獲取的消費者行為的洞察力,Verizon還決定進軍移動電子商務,形成自己全新的業績增長點。
4. 德國電信:智能網路培育新增長點
德國電信是歐洲最大的電信運營商,全球第五大電信運營商。旗下T-Systems是全球領先的ICT解決方案和服務供應商。
正是T-Systems將德國電信帶上了大數據的發展快車道。基於擁有全球12萬平方米數據中心的優勢,T-Systems提出了「智能網路」的概念。通過實時獲得汽車、醫療以及能源企業的數據,T-Systems先後開發了車載互聯網導航系統、交通意外自動呼叫系統以及聲控電郵系統,以及能源網開發解決方案,實現電量的供需平衡。此外,它還通過設計安全的傳輸方式和便捷的解決方案,將醫生和患者對接,提供整合的醫療解決方案。
5. Telefónica:大數據支撐用戶體驗優化
Telefónica創立於1924年,是西班牙的一家大型跨國電信公司,主要在西班牙本國和拉丁美洲運營,它也是全球最大的固定線路和移動電信公司之一。
Telefónica一直將用戶體驗視為企業發展重點。Telefónica啟動一個針對移動寬頻網路的端到端用戶體驗管理項目,並建立了一個包含60多個用戶體驗指標的系統,支持無線網路控制器(RNC)、域名系統(DNS)、在線計費系統(OCS)、GPRS業務支撐節點(SGSN)、探針等各種網路節點的信息採集。所有採集來的信息經過整合後存儲到資料庫中,為後續的用戶體驗測量提供數據支撐。
6. Vodafone:動態數據倉庫支持商業決策
沃達豐是跨國性的行動電話運營商,現為全球最大的流動通訊網路公司之一。
Vodafone在大數據應用方面取得了豐碩成果。早在2009年,旗下SmarTone-Vodafone就委託Teradata天睿公司為其完成動態數據倉庫的部署,使企業所有管理人員可以根據信息輕松制定最佳決策。它主要通過開放API,向數據挖掘公司等合作方提供部分用戶匿名地理位置數據,以掌握人群出行規律,有效地與一些LBS應用服務對接。這些大數據解決方案極大提高了SmarTone-Vodafone的市場領導力。
7. 中國移動:客戶投訴智能識別系統降低投訴率
中國移動通信集團公司是中國規模最大的移動通信運營商,也是全球用戶規模最大的移動運營商。
在中國移動近實現客戶數量迅猛增長的同時,相應也帶來了客戶投訴量的增長。
為了辨別客戶投訴的真實原因、發現問題、改進產品、提升服務體驗,中國移動和Teradata天睿公司進行了密切合作。Teradata為其配置了基於CCR模型的客戶投訴智能識別系統,以投訴內容為源頭,通過智能文本分析,實現了從發現問題到分析問題,再到解決問題以及跟蹤評估的閉環管理。經過一段時間使用,僅中國移動某省級公司,就實現全網投訴內容的智能識別:769個投訴原因被識別,配合業務部門提出37個產品優化建議,協助優化11個產品;優化不滿意點58個,消除368,295客戶的潛在不滿隱患,每年節約成本達540萬。
8. 法國電信:數據分析改善服務水平
法國電信是法國最大的企業,也是全球第四大電信運營商,擁有全球最大的3G網路Orange。
為了優化用戶體驗,法國電信旗下企業Orange採用Teradata天睿公司大數據解決方案,開展了針對用戶消費數據的分析評估。Orange通過分析掉話率數據,找出了超負荷運轉的網路並及時進行擴容,從而有效完善了網路布局,給客戶提供了更好的服務體驗,獲得了更多的客戶以及業務增長。同時,Orange承建了一個法國高速公路數據監測項目。面對每天產生500萬條記錄,Orange深入挖掘和分析,為行駛於高速公路上的車輛提供准確及時的信息,有效提高道路通暢率。
9. 義大利電信:數據驅動的個性化業務
義大利電信是歐洲最大的移動運營商之一,同時也是基於單一網路提供GSM系列服務的領先歐洲運營商。
面對固網業務的下滑,義大利電信構建了面向全業務運營的客戶數據倉庫,以適應市場、銷售、客戶服務等領域的業務規則和需要。通過對客戶數據的洞察,有效地預測收入狀況與客戶行為的關聯性,推出了諸多個性化產品滿足客戶需求。義大利電信推出的NapsterMobile音樂業務就提供包括手機鈴聲、藝術家肖像牆紙以及接入NapsterMobile歌曲目錄等個性化服務,直接拉動了企業業績。
10. KDDI:數據管理服務是核心
KDDI是日本知名的電信運營商,在世界多個國家設有子公司。
通過大數據資產,提供數據管理服務是KDDI的核心業務之一。KDDI利用自身優勢,以數據中心為核心,向企業提供包括雲計算服務在內的信息通訊綜合服務。KDDI於2000年開始在中國開展為日系及當地企業提供數據管理服務,業務發展迅猛。2012年,KDDI在北京經濟技術開發區建設了當地最大規模數據中心,佔地2.5萬平米,試圖實現2015年海外營業額為2010年2倍的目標。
以4G為代表的移動互聯網時代,令信息、互聯網行為數據、話單數據、WAP日誌/WEB日誌、互聯網網頁、投訴文本、簡訊文本等結構化數據以及非結構數據呈現幾何式增長。面對新型海量數據,傳統電信運營商正面臨越來越大的挑戰:
客戶與內容服務提供商聯系更加緊密,但對電信企業的忠誠度反而下降;企業無法通過流量內容服務提供商業價值,盈利能力持續下降;「管道化」嚴重弱化對承載信息的掌控,喪失創新產品、業務發展的基礎。
電信運營商需要憑借數據分析來競爭,實現數據價值貨幣化。同時,利用大數據實現企業從電信網路運營商到信息運營商的轉型。通過對數據的分析,了解客戶流量業務的消費習慣,識別客戶消費的地理位置,洞察客戶接觸不同信息的渠道等等,電信運營商將獲得深度商業洞察力,打造基於大數據的租售數據模式、租售信息模式、數字媒體模式、數據使能模式、數據空間運營模式、大數據技術提供商等全新商業模式。
以上是小編為大家分享的關於看看全球十大電信巨頭的大數據玩法的相關內容,更多信息可以關注環球青藤分享更多干貨
④ 運營商大數據可以為企業精準營銷
以客戶為中心,依託強大的資料庫資源,通過對數據的分析整合,對客戶進行精確的分析定位,做到合適的時間、合適的地點、合適的價格、通過合適的營銷渠道,向准確的顧客提供需要的產品,實現企業效益的最大化。精準營銷的實質是根據目標客戶的個性化需求設計產品和服務,而大數據就是手段。
1,以用戶為導向。真正的營銷從來都是以用戶為中心的,而大數據把用戶實實在在「畫」在了眼前,營銷者可以根據資料庫內的數據構建用戶畫像,來了解用戶消費行為習慣、以及年齡、收入等各種情況,從而對產品、用戶定位、營銷做出指導性的調整。
2,一對一個性化營銷。很多銷售在推銷產品時常常會遇到這樣的問題:產品是一樣的,但是用戶的需求是各不相同的,如何把相同的產品賣給不同的用戶?這就需要我們進行「一對一」個性化營銷。利用大數據分析,可以構建完善的用戶畫像,了解消費者,從而做出精準的個性化營銷。
3,深度洞察用戶。深度洞察用戶,挖掘用戶潛在需求,是數據營銷的基礎。利用數據標簽,可以准確獲知用戶的潛在消費需求,例如:我們得知一位用戶曾購買過奶粉,那麼我們可以得知,家裡有小孩,相應的可以向他推送早教課程等適合嬰幼兒的產品。洞察消費者需求後再進行投放,營銷的效果將比撒網式有效且更易成交。
4,營銷的科學性。實踐證明,數據指導下的精準營銷相對與傳統營銷來說更具有科學性。向用戶「投其所好」,向意向客戶推薦他們感興趣的東西,遠遠要比毫無目標的被動式營銷更具成效。
⑤ 大數據營銷系統好用嗎
所謂大數據營銷系中團統是指移動、聯通、電信為代表的大型運營商所擁有的私域流量和數據積累,以磨歷此數據為營銷推廣的對象。
一般來說具有IP地址、電話號碼、姓名等欄位資源。近幾年運營商也開始推出了一些精準投放的廣告業務。
1,數據量龐大。主流的運營商客戶數據數以億計,不愁沒有廣告的推送量。
2,精準度較低。運營商一般都沒有做好用戶的人群畫像分析和標簽管理,對於用戶的顆粒度不是很精細,例如用戶的性別、興趣愛好、購買偏好、年齡段、參與的營銷活動等等,無法提供精細化的廣告投放。
3,運營商IP廣告。瞎培搜有點運營商會在PC端根據IP彈出廣告,這類型的廣告劫持了用戶的IP和DNS信息,有的還抓取了用戶的相關Cookie信息,所以有點像市面上流行的DSP或者信息流廣告的樣子,有了一定的人群DMP包可以指導廣告投放。
4,自動化營銷平台。企業在選擇運營商大數據精準營銷的時候,也應當建立自己的營銷自動化平台。一般來說營銷自動化平台由客戶數據平台(包括客戶管理和客戶屬性、標簽管理、群組管理等)、營銷活動平台(多渠道精準營銷平台)、數據分析平台等模塊組成。這樣不論是在什麼平台投放廣告或舉辦營銷活動,相關的數據和信息都可以存儲在自己的平台中,有利於客戶的個性化培育。以convertlab營銷實驗室為例,可以根據用戶自動化營銷平台可以根據用戶的精確畫像,推送相應的營銷活動和互動行為,客戶體驗較高,精準度也更好。
⑥ 大數據主要應用的行業有哪些
大數據應用領域極其廣泛,涵蓋了金融保險、醫葯醫療、基礎電信、交通管理、物流零售、文化娛樂、團野基能源、旅遊、農業、工業等。隨著政府與公共事業服務意識的不斷加強與轉變,以及更智慧的執政與管理理念的帶動,對於數據的管理與分析需求日益強化,大數據在政府/公共事業領域應用也將日趨廣泛。
製造業: 利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
金融塌謹業: 大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
汽車行業: 利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。
互聯網行業: 藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
餐飲行業: 利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。
電信行業: 利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。
能源行業: 隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。
物流行業: 利用大數據優化物流網路,提高物流效率,降低物流成本。
城市管理: 利用大數據實現智能交通、環保監測、城市規劃和智能安防。
生物醫學: 大數據可以幫助我們實現流行病預測、智慧醫療脊數、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。
公共安全領域: 政府利用大數據技術構建強大的國家安全保障體系,公共安全領域的大數據分析應用,反恐維穩與各類案件分析的信息化手段,藉助大數據預防犯罪。
個人生活: 大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為軌跡,為其提供更加周到的個性化服務。
⑦ 大數據可以應用在哪些方面
可以應用在雲計算方面。
大數據具體的應用:
1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。
5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。
7、及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。
8、為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。
9、分析所有SKU,以利潤最大化為目標來定價和清理庫存。
10、根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。
大數據的用處:
1、與雲計算的深度結合。大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。
自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。
2、科學理論的突破。隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。
網路--大數據