⑴ 大數據的特徵
大數據的四大特徵如下:
第一,數據容量大
從TB級別,躍升到PB級別。
第二,數據類型繁多
相對於以往便於存儲的以文本為主的結構化數據,非結構化數據越來越多,包括網路日誌、音頻、視頻、圖片、地理位置信息等,這些多類型的數據對數據的處理能力提出了更高要求。
第三,商業價值高
價值密度的高低與數據總量的大小成反比。以視頻為例,一部1小時的視頻,在連續不間斷的監控中,有用數據可能僅有一二秒。如何通過強大的機器演算法更迅速地完成數據的價值「提純」成為目前大數據背景下亟待解決的難題。
第四,處理速度快
這是大數據區分於傳統數據挖掘的最顯著特徵。根據IDC的「數字宇宙」的報告,預計到2020年,全球數據使用量將達到35.2ZB。在如此海量的數據面前,處理數據的效率就是企業的生命。
大數據的作用
1、提供個性服務
很多人覺得大數據好像離我們很遠,其實我們在日常所使用的智能設備,就需要大數據的幫助。比如說我們運動時候戴的運動手錶或者是運動手環,就可以在我們平時運動的時候,幫助我們採集運動數據及熱量消耗情況。進入睡眠時,還可以幫助監控我們的睡眠,從而對這些數據進行分析,對未來階段進行規劃。
2、幫助企業
有了大數據企業就可以更便捷的收集到客戶的愛好,從而幫助分析客戶的需求。再根據每個客戶的需要來提出應對方案,推測客戶喜愛什麼樣的產品,對企業起到很大的幫助,也節省了很多時間和精力。同時大數據可以收集到市場上的各種產品數據,對未來市場走向進行預測,並對企業當前情況進行分析,為接下來的走向提供一個參考依據。
⑵ 大數據具有哪些特徵
什麼是大數據?它有哪四個基本特徵
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。
1. 數據量大,TB,PB,乃至EB等數據量的數據需要分析處理。
2. 要求快速響應,市場變化快,要求能及時快速的響應變化,那對數據的分析也要快速,在性能上有更高要求,所以數據量顯得對速度要求有些「大」。亂掘純
3. 數據多樣性:不同的數據源,非結構化數據越來越多,需要進行清洗,整理,篩選等操作,變為結構數據。
4.
價值密度低,由於數據採集的不及時,數據樣本不全面,數據可能不連續等等,數據可能會失真,但當數據量達到一定規模,可以通過更多的數據達到更真實全面的反饋。
大數據已經成為各類大會的重要議題,管理人士們都不願錯過這一新興趨勢。毫無疑問,當未來企業嘗試分析現有海量信息以推動業務價值增值時,必定會採用大數據技術。
大數據具有如下哪些特徵
大數據技術是指從各種各樣海量類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據具備以下4個特點:
一是數據量巨大。例如,人類生產的所有印刷材料的數據量僅為200PB。典型個人計算機硬碟的容量為TB量級,而一些大企業的數據量已經接近EB量級。
二是數據類型多樣。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。
三是處理速度快。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。
四是價值密度低。以視頻為例,一小時的視頻,在不間斷的測試過程中,可能有用的數據僅僅只有一兩秒。
大數據有什麼特點呢?
大數據具有4V特點,即Volume(大量)、Velocity(高速)、Variety(多樣)和Veracity(精確),其核心在於對這些含有意義的數據進行專業化處理。比如微碼鄧白氏通過數據分析發現采購A產品的用戶80%也會要同時采購B產品,而采購周期大約是3個月,這樣就可以每三個月來向采購A產品的客戶推送一次信息,推送的時候除了A產品的信息也同時推送B的信息。
大數據具有哪些特徵.2fen
大數據變現為:1、數據量大;2、速度快;3、類型多;4、價值;5、真實性。
分析的方面:1. 可視化分析;2. 數據挖掘演算法;3. 預測性分析能力;4. 語義引擎;5. 數據質量和數據管理;6.數據存儲,數據倉庫。
大數據具有哪些特徵 公需
大數據整合,讓我們的生活更加的方便快捷,比比鯨就是很好的例子。
大數據的三大特點
大數據的三大特點:
首先,「海量數據」最大限度解決了人類主觀世界與客觀世界之間的信息不對稱性難題。
其次,「相關分析」突破了傳統簡單的因果分析方法,並利用數據一致性法多方驗證。
最後,「瞬間互動」節約了巨大的社會創新的試錯成本。
大數據具有如下哪些特徵
大數據變現為:1、數據量大;2、速度快;3、類型多;4、價值;5、真實性。
分析的方面:1. 可視化分析;2. 數據挖掘演算法;3. 預測性分析能力;4. 語義引擎;5. 數據質量和數據管理;6.數據存儲,數據倉庫。
大數據具有哪些特徵.公需
大數據具有4V特點,即Volume(大量)、Velocity(高速)、Variety(多樣)和Veracity(精確),其核心在於對這些含有意義的數據進行專業化處理。比如 通過數據分析發現采購A產品的用戶80%也會要同時采購B產品,而采購周期大約是3個月,這樣就可以每三個月來向采購A產品的客戶推送一次信息,推送的時候除了A產品的信息也同時推送B的信息。
大數據的特點主要有什麼?
大數據(big data),是指在可嘩咐承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。
大數據的特點:
1、容量(Volume):數據的大小決定所考慮的數據的價值的和潛在的信息;
2、種類(Variety):數據類型的多樣性;
3、速度(Velocity):指獲得數據的速度;
4、可散此變性(Variability):妨礙了處理和有效地管理數據的過程。
5、真實性(Veracity):數據的質量
6、復雜性(plexity):數據量巨大,來源多渠道
大數據的意義:
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。
大數據的缺陷:
不過,「大數據」在經濟發展中的巨大意義並不代表其能取代一切對於社會問題的理性思考,科學發展的邏輯不能被湮沒在海量數據中。著名經濟學家路德維希·馮·米塞斯曾提醒過:「就今日言,有很多人忙碌於資料之無益累積,以致對問題之說明與解決,喪失了其對特殊的經濟意義的了解。」 這確實是需要警惕的。
大數據時代有哪些主要特點
產生的數據將會越來越多,需要專門技術的人去管理和分析,挖掘出有價值的數據,會有越來越多的行業去利用大數據助其發展,大數據共享到底會不會發生呢?可能人們的隱私會越來越難了吧。大數據培訓檸檬學院。
⑶ 大數據的特徵包括哪些
1、規模性
隨著信息化技術的高速發展,數據開始爆發性增長。大數據中的數據不再以幾個GB或幾個TB為單位來衡量,而是以PB(1千個T)、EB(1百萬個T)或ZB(10億個T)為計量單位。
2、多樣性
多樣性主要體現在數據來源多、數據類型多和數據之間關聯性強這三個方面。
數據來源多,企業所面對的傳統數據主要是交易數據,而互聯網和物聯網的發展,帶來了諸如社交網站、感測器等多種來源的數據。
而由於數據來源於不同的應用系統和不同的設備,決定了大數據形式的多樣性。大體可以分為三類:一是結構化數據,如財務系統數據、信息管理系統數據、醫療系統數據等,其特點是數據間因果關系強;二是非結構化的數據,如視頻、圖片、音頻等,其特點是數據間沒有因果關系;三是半結構化數據,如HTML文檔、郵件、網頁等,其特點是數據間的因果關系弱。
數據類型多,並且以非結構化數據為主。傳統的企業中,數據都是以表格的形式保存。而大數據中有70%-85%的數據是如圖片、音頻、視頻、網路日誌、鏈接信息等非結構化和半結構化的數據。
數據之間關聯性強,頻繁交互,如遊客在旅遊途中上傳的照片和日誌,就與遊客的位置、行程等信息有很強的關聯性。
3、高速性
這是大數據區分於傳統數據挖掘最顯著的特徵。大數據與海量數據的重要區別在兩方面:一方面,大數據的數據規模更大;另一方面,大數據對處理數據的響應速度有更嚴格的要求。實時分析而非批量分析,數據輸入、處理與丟棄立刻見效,幾乎無延遲。數據的增長速度和處理速度是大數據高速性的重要體現。
4、價值性
盡管企業擁有大量數據,但是發揮價值的僅是其中非常小的部分。大數據背後潛藏的價值巨大。由於大數據中有價值的數據所佔比例很小,而大數據真正的價值體現在從大量不相關的各種類型的數據中。挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,並運用於農業、金融、醫療等各個領域,以期創造更大的價值。
⑷ 大數據的特點包括哪些
1、容量():
數據的大小決定所考慮的數據的價值和潛在的信息。
2、種類(Variety):
數據類型的多樣性。
3、速度(Velocity):
指獲得數據的速度。
4、可變性(Variability):
妨礙了處理和有效地管理數據的過程。
5、真實性(Veracity):
數據的質量。
6、復雜性(Complexity):
數據量巨大,來源多渠道。
7、價值(value):
合理運用大數據,以低成本創造高價值。
大數據,指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。
(4)大數據的特徵都包括哪些擴展閱讀:
一、結構
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
二、意義
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。
阿里巴巴創辦人馬雲來台演講中就提到,未來的時代將不是IT時代,而是DT的時代,DT就是Data Technology數據科技,顯示大數據對於阿里巴巴集團來說舉足輕重。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。
與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是贏得競爭的關鍵。
大數據的價值體現在以下幾個方面:
1)對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷
2) 做小而美模式的中小微企業可以利用大數據做服務轉型
3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值
⑸ 大數據的特徵包括
大數據的特徵如下:
1、大量
大數據的特徵首先就是數據規模大。隨著互聯網、物聯網、移動互聯技術的發展,人和事物的所有軌跡都可以被記錄下來,數據呈現出爆發性增長。
2、多樣
數據來源的廣泛性,決定了數據形式的多樣性。可以分為三類,一是結構化數據,如財務系統數據等,其特點是數據間因果關系強;二是非結構化的數據,如視頻、圖片等,其特點是數據間沒有因果關系;三是半結構化數據,如文檔、網頁等,其特點是數據問的因果關系弱。
3、高速
數據的增長速度和處理速度是大數據高速性的重要體現。與以往的報紙、書信等傳統數據載體生產傳播方式不同,在大數據時代,大數據的交換和傳播主要是通過互聯網和雲計算等方式實現的,其生產和傳播數據的速度是非常迅速的。
4、價值
大數據的核心特徵是價值,其實價值密度的高低和數據總量的大小是成反比的,即數據價值密度越高數據總量越小,數據價值密度越低數據總量越大。任何有價值的信息的提取依託的就是海量的基礎數據,當然如何通過強大的機器演算法更迅速的在海量數據中完成數據的價值提純。
⑹ 大數據的特徵
大數據的特徵有大量化、多樣化、快速化、價值密度低。大數據,或稱巨量數據、海量數據、大資料,指的是所涉及的數據量規模巨大到無法通過人工,在合理時間內達到截取、管理、處理、並整理成為人類所能解讀的信息。大數據具有數據規模大、數據類型多樣、數據處理速度快和數據價值密度高。
大數據的結構:
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
⑺ 大數據的特徵有哪些
大數據的特徵都有哪些
數據量大(Volume)
第一個特徵是數據量大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
類型繁多(Variety)
第二個特徵是數據類型繁多。包括網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
價值密度低(Value)
第三個特徵是數據價值密度相對較低。如隨著物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何通過強大的機器演算法更迅速地完成數據的價值「提純」,是大數據時代亟待解決的難題。
速度快、時效高(Velocity)
第四個特徵是處理速度快,時效性要求高。這是大數據區分於傳統數據挖掘最顯著的特徵。
既有的技術架構和路線,已經無法高效處理如此海量的數據,而對於相關組織來說,如果投入巨大採集的信息無法通過及時處理反饋有效信息,那將是得不償失的。可以說,大數據時代對人類的數據駕馭
⑻ 大數據的特徵有哪些
大數據所包含特徵,具體如下:
第一個特徵是數據類型繁多。包括網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
第二個特徵是數據價值密度相對較低。如隨著物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何通過強大的機器演算法更迅速地完成數據的價值「提純」,是大數據時代亟待解決的難題。
第三個特徵是處理速度快,時效性要求高。這是大數據區分於傳統數據挖掘最顯著的特徵。
大數據的作用及其用途
大數據,其影響除了經濟方面的,它同時也能在政治、文化等方面產生深遠的影響,大數據可以幫助人們開啟循「數」管理的模式,也是我們當下「大社會」的集中體現,三分技術,七分數據,得數據者得天下。
「大數據」的影響,增加了對信息管理專家的需求。事實上,大數據的影響並不僅僅限於信息通信產業,而是正在「吞噬」和重構很多傳統行業,廣泛運用數據分析手段管理和優化運營的公司其實質都是一個數據公司。
1、變革價值的力量
2、變革經濟的力量,生產者是有價值的,消費者是價值的意義所在。有意義的才有價值,消費者不認同的,就賣不出去,就實現不了價值;只有消費者認同的,才賣得出去,才實現得了價值。大數據幫助我們從消費者這個源頭識別意義,從而幫助生產者實現價值。這就是啟動內需的原理。
3、變革組織的力量,隨著具有語義網特徵的數據基礎設施和數據資源發展起來,組織的變革就越來越顯得不可避免。大數據將推動網路結構產生無組織的組織力量。
⑼ 大數據的主要特徵有哪些
大量化(Volume)指數據的數量巨大。日新月異的信息存儲技術使得存儲大量數據的成本越來越低,特別是分布式存儲技術的日益成熟,逐漸使得存儲 PB、EB 甚至 ZB 級別的數據成為可能。
多樣性(Variety)指數據的種類繁多。只需要連上互聯網,就可以隨時隨地查看並獲取想要的數據,但與此同時也面臨了一系列的挑戰。互聯網上的數據雖多,但大部分數據的呈現形式為非結構化或半結構化的。如何將不同的數據結構歸結到統一的結構中是一個重要的問題。
快速化(Velocity)是指目前大數據時代,數據越來越實時化,數據的產生與處理速度逐漸能夠滿足人們的需求。
價值密度低(Value)是大數據中最為關鍵的一點, 雖然真實世界中的數據量極大,但真正有價值的內容 卻較少。以監控視頻為例,雖然監控視頻的內容極其之大,但實際有價值的部分可能不過幾分鍾。如何利用雲計算等技術從大量的數據中提取出最為關鍵、最有價值的部分,並將信息轉換成知識是值得研究的內容。