㈠ 雲計算與大數據學習報告
雲計算與大數據概述
雲計算(cloud computing)是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。雲是網路、互聯網的一種比喻說法。過去在圖中往往用雲來表示電信網,後來也用來表示互聯網和底層基礎設施的抽象。狹義雲計算指IT基礎設施的交付和使用模式,指通過網路以按需、易擴展的方式獲得所需資源;廣義雲計算指服務的交付和使用模式,指通過網路以按需、易擴展的方式獲得所需服務。這種服務可以是IT和軟體、互聯網相關,也可是其他服務。它意味著計算能力也可作為一種商品通過互聯網進行流通。
大數據(big data),或稱海量數據,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。它的特色在於對海量數據的挖掘,但它必須依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術。
大數據管理,分布式進行文件系統,如Hadoop、Maprece數據分割與訪問執行;同時SQL支持,以Hive+HADOOP為代表的SQL界面支持,在大數據技術上用雲計算構建下一代數據倉庫成為熱門話題。從系統需求來看,大數據的架構對系統提出了新的挑戰:
1、集成度更高。一個標准機箱最大限度完成特定任務。
2、配置更合理、速度更快。存儲、控制器、I/O通道、內存、CPU、網路均衡設計,針對數據倉庫訪問最優設計,比傳統類似平台高出一個數量級以上。
3、整體能耗更低。同等計算任務,能耗最低。
4、系統更加穩定可靠。能夠消除各種單點故障環節,統一一個部件、器件的品質和標准。
5、管理維護費用低。數據藏的常規管理全部集成。
6、可規劃和預見的系統擴容、升級路線圖。
雲計算與大數據的關系
簡單來說:雲計算是硬體資源的虛擬化,而大數據是海量數據的高效處理。雖然從這個解釋來看也不是完全貼切,但是卻可以幫助對這兩個名字不太明白的人很快理解其區別。當然,如果解釋更形象一點的話,雲計算相當於我們的計算機和操作系統,將大量的硬體資源虛擬化後在進行分配使用。
可以說,大數據相當於海量數據的「資料庫」,通觀大數據領域的發展我們也可以看出,當前的大數據發展一直在向著近似於傳統資料庫體驗的方向發展,一句話就是,傳統資料庫給大數據的發展提供了足夠大的空間。
大數據的總體架構包括三層:數據存儲,數據處理和數據分析。數據先要通過存儲層存儲下來,然後根據數據需求和目標來建立相應的數據模型和數據分析指標體系對數據進行分析產生價值。
而中間的時效性又通過中間數據處理層提供的強大的並行計算和分布式計算能力來完成。三者相互配合,這讓大數據產生最終價值。
不看現在雲計算發展情況,未來的趨勢是:雲計算作為計算資源的底層,支撐著上層的大數據處理,而大數據的發展趨勢是,實時互動式的查詢效率和分析能力,借用Google一篇技術論文中的話:「動一下滑鼠就可以在妙極操作PB級別的數據」,確實讓人興奮不能止。
㈡ 什麼叫大數據什麼叫雲計算
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。它的特色在於對海量數據的挖掘,但它必須依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術。
㈢ 什麼是雲計算,物聯網和大數據
雲計算是一種按使用量付費的模式,這種模式提供可用的、便捷的、按需的網路訪問, 進入可配置的計算資源共享池(資源包括網路,伺服器,存儲,應用軟體,服務),這些資源能夠被快速提供,只需投入很少的管理工作,或與服務供應商進行很少的交互。
(3)大數據雲計算ppt模板擴展閱讀
大數據的價值體現在以下幾個方面:
1.對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷
2.做小而美模式的中小微企業可以利用大數據做服務轉型
3.面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值
例如:
1.洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。
2.google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。
3.統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。
4.麻省理工學院利用手機定位數據和交通數據建立城市規劃。
㈣ 簡述什麼是大數據,雲計算,以及它們的應用實例
大數據:是一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫專軟體工具能力屬范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
雲計算:是基於互聯網的相關服務的增加、使用和交付模式,通常涉及通過互聯網來提供動態易擴展且經常是虛擬化的資源。雲計算最初的目標是對資源的管理,管理的主要是計算,存儲,網路資源。
海量數據上傳到雲平台後,大數據就會對數據進行深入分析和挖掘。說到大數據,就不得不講雲計算。這些數據是怎麼計算,怎麼處理的,就和雲計算分不開家。雲計算是提取大數據的前提,強大的雲計算能力,對於降低數據提取過程中的成本不可或缺。雲計算技術就是一個容器,大數據正是存放在這個容器中的水,大數據是要依靠雲計算技術來進行存儲和計算的。
㈤ 大數據和雲計算關系
大數據和雲計算關系
關於大數據和雲計算的關系人們通常會有誤解。而且也會把它們混起來說,分別做一句話直白解釋就是:雲計算就是硬體資源的虛擬化;大數據就是海量數據的高效處理。
雖然上面的一句話解釋不是非常的貼切,但是可以幫助你簡單的理解二者的區別。另外,如果做一個更形象的解釋,雲計算相當於我們的計算機和操作系統,將大量的硬體資源虛擬化之後再進行分配使用,在雲計算領域目前的老大應該算是Amazon,可以說為雲計算提供了商業化的標准,另外值得關注的還有VMware(其實從這一點可以幫助你理解雲計算和虛擬化的關系),開源的雲平台最有活力的就是Openstack了;
大數據相當於海量數據的「資料庫」,而且通觀大數據領域的發展也能看出,當前的大數據處理一直在向著近似於傳統資料庫體驗的方向發展,Hadoop的產生使我們能夠用普通機器建立穩定的處理TB級數據的集群,把傳統而昂貴的並行計算等概念一下就拉到了我們的面前,但是其不適合數據分析人員使用(因為MapRece開發復雜),所以PigLatin和Hive出現了(分別是Yahoo!和facebook發起的項目,說到這補充一下,在大數據領域Google、facebook、twitter等前沿的互聯網公司作出了很積極和強大的貢獻),為我們帶來了類SQL的操作,到這里操作方式像SQL了,但是處理效率很慢,絕對和傳統的資料庫的處理效率有天壤之別,所以人們又在想怎樣在大數據處理上不只是操作方式類SQL,而處理速度也能「類SQL」,Google為我們帶來了Dremel/PowerDrill等技術,Cloudera(Hadoop商業化最強的公司,Hadoop之父cutting就在這里負責技術領導)的Impala也出現了。
整體來看,未來的趨勢是,雲計算作為計算資源的底層,支撐著上層的大數據處理,而大數據的發展趨勢是,實時互動式的查詢效率和分析能力,借用Google一篇技術論文中的話,「動一下滑鼠就可以在秒級操作PB級別的數據」難道不讓人興奮嗎?(田原)
在談大數據的時候,首先談到的就是大數據的4V特性,即類型復雜,海量,快速和價值。IBM原來談大數據的時候談3V,沒有價值這個V。而實際我們來看4V更加恰當,價值才是大數據問題解決的最終目標,其它3V都是為價值目標服務。在有了4V的概念後,就很容易簡化的來理解大數據的核心,即大數據的總體架構包括三層,數據存儲,數據處理和數據分析。類型復雜和海量由數據存儲層解決,快速和時效性要求由數據處理層解決,價值由數據分析層解決。
數據先要通過存儲層存儲下來,然後根據數據需求和目標來建立相應的數據模型和數據分析指標體系對數據進行分析產生價值。而中間的時效性又通過中間數據處理層提供的強大的並行計算和分布式計算能力來完成。三層相互配合,讓大數據最終產生價值。
數據存儲層
數據有很多分法,有結構化,半結構化,非結構化;也有元數據,主數據,業務數據;還可以分為GIS,視頻,文件,語音,業務交易類各種數據。傳統的結構化資料庫已經無法滿足數據多樣性的存儲要求,因此在RDBMS基礎上增加了兩種類型,一種是hdfs可以直接應用於非結構化文件存儲,一種是nosql類資料庫,可以應用於結構化和半結構化數據存儲。
從存儲層的搭建來說,關系型資料庫,NoSQL資料庫和hdfs分布式文件系統三種存儲方式都需要。業務應用根據實際的情況選擇不同的存儲模式,但是為了業務的存儲和讀取方便性,我們可以對存儲層進一步的封裝,形成一個統一的共享存儲服務層,簡化這種操作。從用戶來講並不關心底層存儲細節,只關心數據的存儲和讀取的方便性,通過共享數據存儲層可以實現在存儲上的應用和存儲基礎設置的徹底解耦。
數據處理層
數據處理層核心解決問題在於數據存儲出現分布式後帶來的數據處理上的復雜度,海量存儲後帶來了數據處理上的時效性要求,這些都是數據處理層要解決的問題。
在傳統的雲相關技術架構上,可以將hive,pig和hadoop-maprece框架相關的技術內容全部劃入到數據處理層的能力。原來我思考的是將hive劃入到數據分析層能力不合適,因為hive重點還是在真正處理下的復雜查詢的拆分,查詢結果的重新聚合,而maprece本身又實現真正的分布式處理能力。
maprece只是實現了一個分布式計算的框架和邏輯,而真正的分析需求的拆分,分析結果的匯總和合並還是需要hive層的能力整合。最終的目的很簡單,即支持分布式架構下的時效性要求。
數據分析層
最後回到分析層,分析層重點是真正挖掘大數據的價值所在,而價值的挖掘核心又在於數據分析和挖掘。那麼數據分析層核心仍然在於傳統的BI分析的內容。包括數據的維度分析,數據的切片,數據的上鑽和下鑽,cube等。
數據分析我只關注兩個內容,一個就是傳統數據倉庫下的數據建模,在該數據模型下需要支持上面各種分析方法和分析策略;其次是根據業務目標和業務需求建立的KPI指標體系,對應指標體系的分析模型和分析方法。解決這兩個問題基本解決數據分析的問題。
傳統的BI分析通過大量的ETL數據抽取和集中化,形成一個完整的數據倉庫,而基於大數據的BI分析,可能並沒有一個集中化的數據倉庫,或者將數據倉庫本身也是分布式的了,BI分析的基本方法和思路並沒有變化,但是落地到執行的數據存儲和數據處理方法卻發生了大變化。
談了這么多,核心還是想說明大數據兩大核心為雲技術和BI,離開雲技術大數據沒有根基和落地可能,離開BI和價值,大數據又變化為捨本逐末,丟棄關鍵目標。簡單總結就是大數據目標驅動是BI,大數據實施落地式雲技術。
㈥ 什麼是大數據的40頁ppt免費下載
不要用設計模板,用修改背景的方法1、在幻燈片空白地方單擊右鍵選擇背景,可以選擇填充效果 2、在填充效果立選擇你需要的圖片背景或者其他 3、最後選擇全部應用就可以了