導航:首頁 > 網路數據 > 管理信息系統大數據時代皮特

管理信息系統大數據時代皮特

發布時間:2023-06-06 13:14:48

大數據的預測功能是增值服務的核心

大數據的預測功能是增值服務的核心
從走在大數據發展前沿的互聯網新興行業,到與人類生活息息相關的醫療保健、電力、通信等傳統行業,大數據浪潮無時無刻不在改變著人們的生產和生活方式。大數據時代的到來,給國內外各行各業帶來諸多的變革動力和巨大價值。
最新發布的報告稱,全球大數據市場規模將在未來五年內迎來高達26%的年復合增長率——從今年的148.7億美元增長到2018年的463.4億美元。全球各大公司、企業和研究機構對大數據商業模式進行了廣泛地探索和嘗試,雖然仍舊有許多模式尚不明朗,但是也逐漸形成了一些成熟的商業模式。
兩種存儲模式為主
互聯網上的每一個網頁、每一張圖片、每一封郵件,通信行業每一條短消息、每一通電話,電力行業每一戶用電數據等等,這些足跡都以「數據」的形式被記錄下來,並以幾何量級的速度增長。這就是大數據時代帶給我們最直觀的沖擊。
正因為數據量之大,數據多為非結構化,現有的諸多存儲介質和系統極大地限制著大數據的挖掘和發展。為更好地解決大數據存儲問題,國內外各大企業和研究機構做了許許多多的嘗試和努力,並不斷摸索其商業化前景,目前形成了如下兩種比較成熟的商業模式:
可擴展的存儲解決方案。該存儲解決方案可幫助政府、企業對存儲的內容進行分類和確定優先順序,高效安全地存儲到適當存儲介質中。而以存儲區域網路(SAN)、統一存儲、文件整合/網路連接存儲(NAS)的傳統存儲解決方案,無法提供和擴展處理大數據所需要的靈活性。而以Intel、Oracle、華為、中興等為代表的新一代存儲解決方案提供商提供的適用於大、中小企業級的全系存儲解決方案,通過標准化IT基礎架構、自動化流程和高擴展性,來滿足大數據多種應用需求。
雲存儲。雲存儲是一個以數據存儲和管理為核心的雲計算系統,其結構模型一般由存儲層、基礎管理、應用介面和訪問層四層組成。通過易於使用的API,方便用戶將各種數據放到雲存儲裡面,然後像使用水電一樣按用量進行收費。用戶不用關心數據的存儲介質、網路狀況以及安全性的管理,只需按需向提供方購買空間。
源數據價值水漲船高
在紅紅火火的大數據時代,隨著數據的累積,數據本身的價值也在不斷升值,這種情況很好地反應了事物由量變到質變的規律。例如有一種罕見的疾病,得病率為十萬分之一,如果從小樣本數據來看非常罕見,但是擴大到全世界70億人,那麼數量就非常龐大。以前技術落後,不能將該病情數字化集中研究,所以很難攻克。但是,我們現在把各種各樣的數據案例搜集起來統一分析,我們很快就能攻克很多以前想像不到的科學難題。類似的例子,不勝枚舉。
正是由於可以通過大數據挖掘到很多看不見的價值,源數據本身的價值也水漲船高。一些掌握海量有效數據的公司和企業找到了一條行之有效的商業路徑:對源數據直接或者經過簡單封裝銷售。在互聯網領域,以Facebook、twitter、微博為代表的社交網站擁有大量的用戶和用戶關系數據,這些網站正嘗試以各種方式對該源數據進行商業化銷售,Google、Yahoo!、網路[微博]等搜索公司擁有大量的搜索軌跡數據以及網頁數據,他們可以通過簡單API提供給第三方並從中盈利;在傳統行業中,中國聯通[微博](3.44, 0.03, 0.88%)、中國電信[微博]等運營商擁有大量的底層用戶資料,可以通過簡單地去隱私化,然後進行銷售盈利。
各大公司或者企業通過提供海量數據服務來支撐公司發展,同時以免費的服務補償用戶,這種成熟的商業模式經受住了時間的考驗。但是對於任何用戶數據的買賣,還需處理好用戶隱私信息,通過去隱私化方式,來保護好用戶隱私。
預測是增值服務的核心
在大數據基礎上進行深度挖掘,所衍生出來的增值服務,是大數據領域最具想像空間的商業模式。大數據增值服務的核心是什麼?預測!大數據引發了商業分析模式轉變,從過去的樣本模式到現在的全數據模式,從過去的小概率到現在的大概率,從而能夠得到比以前更准確的預測。目前形成了如下幾種比較成熟的商業模式。
個性化的精準營銷。一提起「垃圾簡訊」,大家都很厭煩,這是因為本來在營銷方看來是有價值的、「對」的信息,發到了「錯」的用戶手裡。通過對用戶的大量的行為數據進行詳細分析,深度挖掘之後,能夠實現給「對」的用戶發送「對」的信息。比如大型商場可以對會員的購買記錄進行深度分析,發掘用戶和品牌之間的關聯。然後,當某個品牌的忠實用戶收到該品牌打折促銷的簡訊之後,一定不是厭煩,而是欣喜。如優捷信達、中科嘉速等擁有強大數據處理技術的公司在數據挖掘、精準廣告分析等方面擁有豐富的經驗。
企業經營的決策指導。針對大量的用戶數據,運用成熟的數據挖掘技術,分析得到企業運營的各種趨勢,從而給企業的決策提供強有力的指導。例如,汽車銷售公司,可以通過對網路上用戶的大量評論進行分析,得到用戶最關心和最不滿意的功能,然後對自己的下一代產品進行有針對性的改進,以提升消費者的滿意度。
總體來說,從宏觀層面來看,大數據是我們未來社會的新能源;從企業微觀層面來看,大數據分析和運用能力正成為企業的核心競爭力。深入研究和積極探索大數據的商業模式,對企業的未來發展有至關重要的意義。

⑵ 大數據時代有哪些主要特點

大數據有4個特點,為別為:Volume(大量)、Variety(多樣)、Velocity(高速)、Value(價值),一般我們稱之為4V。

1.大量。大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。

隨著信息技術的高速發展,數據開始爆發性增長。社交網路(微博、推特、臉書)、移動網路、各種智能工具,服務工具等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB;臉書約10億的用戶每天產生的日誌數據超過300TB。

迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。

2.多樣。廣泛的數據來源,決定了大數據形式的多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統,如淘寶,網易雲音樂、今日頭條等,這些平台都會通過對用戶的日誌數據進行分析,從而進一步推薦用戶喜歡的東西。

日誌數據是結構化明顯的數據,還有一些數據結構化不明顯,例如圖片、音頻、視頻等,這些數據因果關系弱,就需要人工對其進行標注。

3.高速。大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。

並且這些數據是需要及時處理的,因為花費大量資本去存儲作用較小的歷史數據是非常不劃算的,對於一個平台而言,也許保存的數據只有過去幾天或者一個月之內,再遠的數據就要及時清理,不然代價太大。

基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。

4.價值。這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。

相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析。

發現新規律和新知識,並運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。

⑶ 新興信息技術和大數據對管理信息系統產生了哪些影響

新興信息技術和大數據對管理信息系統產生了以下幾方面的影響:

1、數據採集和處理能力的提升:新興信息技術和大數據技術的發展,使得管理信息譽兆悉系統可以更加高效地採集和處理海量數據,從而為企業提供更加精準的決策支持。

⑷ 大數據時代是什麼

問題一:什麼是大數據時代 世界包含的多得難以想像的數字化信息變得更多更快……從商業到科學,從 *** 到藝術,這種影響無處不在。科學家和計算機工程師們給這種現象創造了一個新名詞:「大數據」。大數據時代什麼意思?大數據概念什麼意思?大數據分析什麼意思?所謂大數據,那到底什麼是大數據,他的來源在哪裡,定義究竟是什麼呢?

一:大數據的定義。
1、大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營友巧決策更積極目的的資訊。
2、大數據技術,是指從各種各樣類型的大數據中,快速獲得有價值信息的技術的能力,包括數據採集、存儲、管理、分析挖掘、可視化等技術及其集成。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
互聯網是個神奇的大網,大數據開發也是一種模式,你如果真想了解大數據,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
3、大數據應用,是 指對特定的大數據 *** ,集成應用大數據技術,獲得有價值信息的行為。對於不同領域、不同企業的不同業務,甚至同一領域不同企業的相同業務來說,由於其業務需求、數據 *** 和分析挖掘目標存在差異,所運用的大數據技術和大數據信息系統也可能有著相當大的不同。惟有堅持「對象、技術、應用」三位一體同步發展,才能充分實現大數據的價值。
當你的技術達到極限時,也就是數據的極限」。大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起答空,這些非結構化的數據服務的價值在哪裡。

二:大數據的類型和價值挖掘方法
1、大數據的類型大致可分為三類:
1)傳統企業數據(Traditionalenterprisedata):包括 CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。
2)機器和感測器數據(Machine-generated/sensor data):包括呼叫記錄(CallDetail Records),智能儀表,工業設備感測器,設備日誌(通常是Digital exhaust),交易數據等。
3)社交數據(Socialdata):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平台。
2、大數據挖掘商業價值的方法主要分為四種:
1)客戶群體細分,然後為每個群體量定製特別的服務。
2)模擬現實環境,發掘新的需求同時提高投好舉鍵資的回報率。
3)加強部門聯系,提高整條管理鏈條和產業鏈條的效率。
4)降低服務成本,發現隱藏線索進行產品和服務的創新。

三:大數據的特點
業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。具體來說,大數據具有4個基本特徵:
1、是數據體量巨大
數據體量(volumes)大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;網路資料表明,其新......>>

問題二:大數據時代:大數據是什麼? 大數據是什麼?是一種運營模式,是一種能力,還是一種技術,或是一種數據 *** 的統稱?今天我們所說的「大數據」和過去傳統意義上的「數據」的區別又在哪裡?大數據的來源又有哪些?等等。當然,我不是專家學者,我無法給出一個權威的,讓所有人信服的定義,以下所談只是我根據自己的理解進行小結歸納,只求表達出我個人的理解,並不求全面權威。先從「大數據」與「數據」的區別說起吧,過去我們說的「數據」很大程度上是指「數字」,如我們所說的客戶量,業務量,營業收入額,利潤額等等,都是一個個數字或者是可以進行編碼的簡單文本,這些數據分析起來相對簡單,過去傳統的數據解決方案(如資料庫或商業智能技術)就能輕松應對;而今天我們所說的「大數據」則不單純指「數字」,可能還包括「文本,圖片,音頻,視頻……」等多種格式,其涵括的內容十分豐富,如我們的博客,微博,輕博客,我們的音頻視頻分享,我們的通話錄音,我們位置信息,我們的點評信息,我們的交易信息,互動信息等等,包羅萬象。用正規的語句來概括就是,「數據」是結構化的,而「大數據」則包括了「結構化數據」「半結構化數據」和「非結構化數據」。關於「結構化」「半結構化」「非結構化」可能從字面上比較難理解,在此我試著用我的語言看能否形象點地表達出來:由於數據是結構化的,數據分析可以遵循一定現有規律的,如通過簡單的線性相關,數據分析可以大致預測下個月的營業收入額;而大數據是半結構化和非結構化的,其在分析過程中遵循的規律則是未知的,它通過綜合方方面面的信息進行模擬,它以分析形式評估證據,假設應答結果,並計算每種可能性的可信度,通過大數據分析我們可以准確找到下一個市場熱點。 基於此,或許我們可以給「大數據」這樣一個定義,「大數據」指的是收集和分析大量信息的能力,而這些信息涉及到人類生活的方方面面,目的在於從復雜的數據里找到過去不容易昭示的規律。相比「數據」,「大數據」有兩個明顯的特徵:第一,上文已經提到,數據的屬性是包括結構化、非結構化和半結構化數據;第二,數據之間頻繁產生交互,大規模進行數據分析,並實時與業務結合進行數據挖掘。解決了大數據是什麼,接下來還有一個問題,大數據的來源有哪些?或者這個問題這樣來表達會更清晰「大數據的數據來源有哪些?」對於企業而言,大數據的數據來源主要有兩部分,一部分來自於企業內部自身的信息系統中產生的運營數據,這些數據大多是標准化、結構化的。(若繼續細化,企業內部信息系統又可分兩類,一類是「基幹類系統」,用來提高人事、財會處理、接發訂單等日常業務的效率;另一類是「信息類系統」,用於支持經營戰略、開展市場分析、開拓客戶等。)傳統的商業智能系統中所用到的數據基本上數據該部分。而另外一部分則來自於外部,包括廣泛存在於社交網路、物聯網、電子商務等之中的非結構化數據。這些非結構化數據由源於 Facebook、Twitter、LinkedIn 及其它來源的社交媒體數據構成,其產生往往伴隨著社交網路、移動計算和感測器等新的渠道和技術的不斷涌現和應用。具體包括了:如,呼叫詳細記錄、設備和感測器信息、GPS 和地理定位映射數據、通過管理文件傳輸協議傳送的海量圖像文件、Web 文本和點擊流數據、科學信息、電子郵件等等。由於來源不同,類型不同的數據透視的是同一個事物的不同的方面,以消費客戶為例,消費記錄信息能透視客戶的消費能力,消費頻率,消費興趣點等,渠道信息能透視客戶的渠道偏好,消費支付信息能透視客戶的支付渠道情況,還有很多,如,客戶會否在社交網站上分享消費情況,消費前後有否在搜索引擎上搜索過相關的關鍵詞等等,這些信息(或說數據)......>>

問題三:大數據時代是什麼意思?詳解 最早提出「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。大數據作為雲計算、物聯網之後IT行業又一大顛覆性的技術革命。雲計算主要為數據資產提供了保管、訪問的場所和渠道,而數據才是真正有價值的資產。企業內部的經營交易信息、互聯網世界中的商品物流信息,互聯網世界中的人與人交互信息、位置信息等,其數量將遠遠超越現有企業IT架構和基礎設施的承載能力,實時性要求也將大大超越現有的計算能力。如何盤活這些數據資產,使其為國家治理、企業決策乃至個人生活服務,是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向。

問題四:大數據時代,大數據概念,大數據分析是什麼意思? 世界包含的多得難以想像的數字化信息變得更多更快……從商業到科學,從 *** 到藝術,這種影響無處不在。科學家和計算機工程師們給這種現象創造了一個新名詞:「大數據」。大數據時代什麼意思?大數據概念什麼意思?大數據分析什麼意思?所謂大數據,那到底什麼是大數據,他的來源在哪裡,定義究竟是什麼呢?
一:大數據的定義。
1、大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。 2、大數據技術,是指從各種各樣類型的大數據中,快速獲得有價值信息的技術的能力,包括數據採集、存儲、管理、分析挖掘、可視化等技術及其集成。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
互聯網是個神奇的大網,大數據開發也是一種模式,你如果真想了解大數據,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
3、大數據應用,是 指對特定的大數據 *** ,集成應用大數據技術,獲得有價值信息的行為。對於不同領域、不同企業的不同業務,甚至同一領域不同企業的相同業務來說,由於其業務需求、數據 *** 和分析挖掘目標存在差異,所運用的大數據技術和大數據信息系統也可能有著相當大的不同。惟有堅持「對象、技術、應用」三位一體同步發展,才 能充分實現大數據的價值。 當你的技術達到極限時,也就是數據的極限」。大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。
二:大數據的類型和價值挖掘方法1、大數據的類型大致可分為三類:1)傳統企業數據(Traditionalenterprisedata):包括 CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。2)機器和感測器數據(Machine-generated/sensor data):包括呼叫記錄(CallDetail Records),智能儀表,工業設備感測器,設備日誌(通常是Digital exhaust),交易數據等。3)社交數據(Socialdata):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平台。2、大數據挖掘商業價值的方法主要分為四種:1)客戶群體細分,然後為每個群體量定製特別的服務。2)模擬現實環境,發掘新的需求同時提高投資的回報率。3)加強部門聯系,提高整條管理鏈條和產業鏈條的效率。4)降低服務成本,發現隱藏線索進行產品和服務的創新。
三:大數據的特點業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。具體來說,大數據具有4個基本特徵:1、是數據體量巨大數據體量(volumes)大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;網路資料表明,其新首頁導航每天需要提供的數據超過1.5PB(1PB=1024TB),這些數據如果列印出來將超過5千億張A4紙。有資料證實,到目前為止,人類生產的所有印刷材料的數據量僅為200PB。2、是數據類別大和類......>>

問題五:什麼是大數據,大數據時代怎麼理解 大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。

問題六:什麼是大數據時代 大數據時代
(巨量資料(IT行業術語))
編輯
最早提出「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。
產生背景
編輯
進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數
大數據時代來臨
據,並命名與之相關的技術發展與創新。它已經上過《 *** 》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。[1]
數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。
正如《 *** 》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。
哈佛大學社會學教授加里・金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是 *** ,所有領域都將開始這種進程。」[2]
影響
編輯
大數據
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。[3]
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。[2]
在現今的社會,大數據的應用越來越彰顯他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。有了大數據這個概念,對於消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。[4]
「大數據」在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量。
大數據到底有多大?一組名為「互聯網上一天」的數據告訴我們,一天之中,互聯網產生的全部內容可以刻滿1.68億張DVD;發出的郵件有2940億封之多(相當於美國兩年的紙質信件數量);發出的社區帖子達200萬個(相當於《時代》雜志770年的文字量);賣出的手機為37.8萬台,高於全球每天出生的嬰兒數量37.1萬……[1]
截止到2012年,數據量已經從TB(1024GB=1TB)級別躍升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別。國際數據公司(IDC)的研究結果表明,2008年全球產生的數據量為0.49ZB,2009年的數據量為0.8ZB,2010年增長為1.2ZB,2011年的數量更是高達1.82ZB,相當於全球每人產生200GB以上的數據。而到2012年為止,人類生產的所有印刷材料的數據量是200PB,全人類歷史上說過的所......>>

問題七:什麼是大數據時代 大數據時代
(巨量資料(IT行業術語))
編輯
最早提出「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。
中文名
大數據時代
外文名
Big data
提出者
麥肯錫
類 屬
科技名詞
目錄
1 產生背景
2 影響
? 大數據
? 大數據的精髓
? 數據價值
? 可視化
3 特徵
4 案例分析
5 產業崛起
6 提供依據
7 應對措施
產生背景
編輯
進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數
大數據時代來臨
據,並命名與之相關的技術發展與創新。它已經上過《 *** 》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。[1]
數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。
正如《 *** 》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。
哈佛大學社會學教授加里・金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是 *** ,所有領域都將開始這種進程。」[2]
影響
編輯
大數據
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。[3]
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。[2]
在現今的社會,大數據的應用越來越彰顯他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。有了大數據這個概念,對於消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。[4]
「大數據」在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量。
大數據到底有多大?一組名為「互聯網上一天」的數據告訴我們,一天之中,互聯網產生的全部內容可以刻滿1.68億張DVD;發出的郵件有2940億封之多(相當於美國兩年的紙質信件數量);發出的社區帖子達200萬個(相當於《時代》雜志770年的文字量);賣出的手機為37.8萬台,高於全球每天出生的嬰兒數量37.1萬……[1]
截止到2012年,數據量已經從TB(1024GB=1TB)級別躍升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別。國際數據公司(IDC)的研究結果表......>>

問題八:簡述什麼是大數據時代 一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據 *** ,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

問題九:什麼是大數據時代。什麼又叫做雲商。? 隨著分布式計算技術的成熟,大公司已經有了分析處理大數據的能力。這也讓數據挖掘等數據分析技術逐漸成熟,以往只能採取抽樣數據分析而現在可以分析所有的數據了。分析結果隨著數據量的增加也越來越精確,范圍也越來越廣,而數據也隨之越來越有價值這就造成幾乎所有公司開始拚命搜集各類數據以提高自己的服務。
雲商也叫智慧雲商。信息 + 應用+ 基礎設施無處不在 = 平台應用跨地域、跨終端、跨系統、跨平台。

問題十:馬雲說大數據時代已經開始到來,那麼大數據是指什麼內容呢?想深入學習這方面的知識 您好,看你選擇什麼行業了,我先說說大數據概念包含幾個方面的內涵吧 1. 數據量大,TB,PB,乃至EB等數據量的數據需要分析處理。 2. 要求快速響應,市場變化快,要求能及時快速的響應變化,那對數據的分析也要快速,在性能上有更高要求,所以數據量顯得對速度要求有些「大」。 3. 數據多樣性:不同的數據源,非結構化數據越來越多,需要進行清洗,整理,篩選等操作,變為結構數據。 4. 價值密度低,由於數據採集的不及時,數據樣本不全面,數據可能不連續等等,數據可能會失真,但當數據量達到一定規模,可以通過更多的數據達到更真實全面的反饋。 很多行業都會有大數據需求,譬如電信行業,互聯網行業等等容易產生大量數據的行業,很多傳統行業,譬如醫葯,教育,采礦,電力等等任何行業,都會有大數據需求。 隨著業務的不斷擴張和歷史數據的不斷增加,數據量的增長是持續的。 如果需要分析大數據,則可以Hadoop等開源大數據項目,或Yonghong Z-Suite等商業大數據BI工具。 隨著互聯網和移動的快速發展,大數據在各個領域不斷增加應用。也越來越面向個人大數據應用。

⑸ 大數據時代的數據分析師該了解哪些事情

大數據時代的數據分析師該了解哪些事情
近幾年來,大數據養精蓄銳,從剛開始的無人談及,到現在的盛行談論,就這樣走進了公眾的視野。什麼是大數據呢?對於數據分析師,它有意味著什麼?處在人人高談的大數據時代,數據分析師該了解哪些內容,本文將為您解答。
用Google搜索了一下「BigData」,得到了19,600,000個結果……而使用同樣的詞語,在兩年前你幾乎搜索不到什麼內容,而現在大數據的內容被大肆宣傳,內容多得讓人眼花繚亂。而這些內容主要是來自IBM、麥肯錫和O』Reilly ,大多數文章都是基於營銷目的的誇誇其談,對真實的情況並不了解,有些觀點甚至是完全錯誤的。我問自己…… 大數據之於數據分析師,它意味著什麼呢?如下圖所示,谷歌趨勢顯示,與「網站分析」(web analytics)和」商業智能」(business intelligence)較為平穩的搜索曲線相比,「大數據」(big data)的搜索量迎來了火箭式的大幅度增長。
被神話的大數據
Gartner把「大數據」的發展階段定位在「社交電視」和「移動機器人」之間,正向著中部期望的高峰點邁進,而現在是達到較為成熟的階段前的二至五年。這種定位有著其合理性。各種奏唱著「大數據」頌歌的產品數量正在迅速增長,大眾媒體也進入了「大數據」主題的論辯中,比如紐約時報的「大數據的時代「,以及一系列在福布斯上發布的題為」 大數據技術評估檢查表「的文章。
進步的一面體現在
,大數據的概念正在促使內部組織的文化發生轉變,對過時的「商務智能」形成挑戰,並促進了「分析」意識的提升。
基於大數據的創新技術可以很容易地被應用到類似數據分析的各種環境中。值得一提的是,企業組織通過應用先進的業務分析,業務將變得更廣泛、更復雜,價值也更高,而傳統的網站分析受到的關注將會有所減弱。
大數據的定義
什麼是「大數據」,目前並沒有統一的定義。維基網路提供的定義有些拙劣,也不完整:「 大數據,指的是所涉及的數據量規模巨大到無法通過主流的工具,在合理的時間內擷取、管理、處理、並整理成為人們所能解讀的信息 「。
IBM 提供了一個充分的簡單易懂的概述:
大數據有以下三個特點:大批量(Volume)、高速度(Velocity)和多樣化(Variety) 。 大批量 – 大數據體積龐大。企業里到處充斥著數據,信息動不動就達到了TB級,甚至是PB級。 高速度 – 大數據通常對時間敏感。為了最大限度地發揮其業務價值,大數據必須及時使用起來。 多樣化 – 大數據超越了結構化數據,它包括所有種類的非結構化數據,如文本、音頻、視頻、點擊流、日誌文件等等都可以是大數據的組成部分。 MSDN的布萊恩·史密斯在IBM的基礎上增加了第四點: 變異性 – 數據可以使用不同的定義方式來進行解釋。不同的問題需要不同的闡釋。
從技術角度看大數據
大數據包括了以下幾個方面:數據採集、存儲、搜索、共享、分析和可視化,而這些步驟在商務智能中也可以找到。在皮特·沃登的「 大數據詞彙表 「中,囊括了60種創新技術,並提供了相關的大數據技術概念的簡要概述。
獲取 :數據的獲取包括了各種數據源、內部或外部的、結構化或非結構化的數據。「大多數公共數據源的結構都不清晰,充滿了噪音,而且還很難獲得。」 技術: Google Refine、Needlebase、ScraperWiki、BloomReach 。
序列化:「你在努力把你的數據變成有用的東西,而這些數據會在不同的系統間傳遞,並可能存儲在不同節點的文件中。這些操作都需要某種序列化,因為數據處理的不同階段可能需要不同的語言和API。當你在處理非常大量的記錄時,該如何表示和存儲數據,你所做的選擇對你的存儲要求和性能將產生巨大影響。 技術: JSON、BSON、Thrift、Avro、Google Protocol Buffers 。
存儲 :「大規模的數據處理操作使用了全新的方式來訪問數據,而傳統的文件系統並不適用。它要求數據能即時大批量的讀取和寫入。效率優先,而那些有助於組織信息的易於用戶使用的目錄功能可能就顯得沒那麼重要。因為數據的規模巨大,這也意味著它需要被存儲在多台分布式計算機上。「 技術: Amazon S3、Hadoop分布式文件系統 。
伺服器 :「雲」是一個非常模糊的術語,我們可能對它所表示的內容並不很了解,但目前在計算資源的可用性方面已有了真正突破性的發展。以前我們都習慣於購買或長期租賃實體機器,而現在更常見的情況是直接租用正運行著虛擬實例的計算機來作為伺服器。這樣供應商可以以較為經濟的價格為用戶提供一些短期的靈活的機器租賃服務,這對於很多數據處理應用程序來說這是再理想不過的事情。因為有了能夠快速啟動的大型集群,這樣使用非常小的預算處理非常大的數據問題就可能成為現實。「 技術: Amazon EC2、Google App Engine、Amazon Elastic Beanstalk、Heroku 。
NoSQL:在IT行為中,NoSQL(實際上意味著「不只是SQL」)是一類廣泛的資料庫管理系統,它與關系型資料庫管理系統(RDBMS)的傳統模型有著一些顯著不同,而最重要的是,它們並不使用SQL作為其主要的查詢語言。這些數據存儲可能並不需要固定的表格模式,通常不支持連接操作,也可能無法提供完整的ACID(原子性—Atomicity、一致性—Consistency、隔離性—Isolation、持久性—Durability)的保證,而且通常從水平方向擴展(即通過添加新的伺服器以分攤工作量,而不是升級現有的伺服器)。 技術: Apache Hadoop、Apache Casandra、MongoDB、Apache CouchDB、Redis、BigTable、HBase、Hypertable、Voldemort 。
處理 :「從數據的海洋中獲取你想要的簡潔而有價值的信息是一件挑戰性的事情,不過現在的數據系統已經有了長足的進步,這可以幫助你把數據集到轉變成為清晰而有意義的內容。在數據處理的過程中你會遇上很多不同的障礙,你需要使用到的工具包括了快速統計分析系統以及一些支持性的助手程序。「 技術: R、Yahoo! Pipes、Mechanical Turk、Solr/ Lucene、ElasticSearch、Datameer、Bigsheets、Tinkerpop 。 初創公司: Continuuity、Wibidata、Platfora 。
MapRece :「在傳統的關系資料庫的世界裡,在信息被載入到存儲器後,所有的數據處理工作才能開始,使用的是一門專用的基於高度結構化和優化過的數據結構的查詢語言。這種方法由Google首創,並已被許多網路公司所採用,創建一個讀取和寫入任意文件格式的管道,中間的結果橫跨多台計算機進行計算,以文件的形式在不同的階段之間傳送。「 技術: Hadoop和Hive、Pig、Cascading、Cascalog、mrjob、Caffeine、S4、MapR、Acunu、Flume、Kafka、Azkaban、Oozie、Greenplum 。
自然語言處理 :「自然語言處理(NLP)……重點是利用好凌亂的、由人類創造的文本並提取有意義的信息。」 技術: 自然語言工具包Natural Language Toolkit、Apache OpenNLP、Boilerpipe、OpenCalais。
機器學習:「機器學習系統根據數據作出自動化決策。系統利用訓練的信息來處理後續的數據點,自動生成類似於推薦或分組的輸出結果。當你想把一次性的數據分析轉化成生產服務的行為,而且這些行為在沒有監督的情況下也能根據新的數據執行類似的動作,這些系統就顯得特別有用。亞馬遜的產品推薦功能就是這其中最著名的一項技術應用。「 技術: WEKA、Mahout、scikits.learn、SkyTree 。
可視化 :「要把數據的含義表達出來,一個最好的方法是從數據中提取出重要的組成部分,然後以圖形的方式呈現出來。這樣就可以讓大家快速探索其中的規律而不是僅僅籠統的展示原始數值,並以此簡潔地向最終用戶展示易於理解的結果。隨著Web技術的發展,靜態圖像甚至互動式對象都可以用於數據可視化的工作中,展示和探索之間的界限已經模糊。「 技術: GraphViz、Processing、Protovis、Google Fusion Tables、Tableau 。
大數據的挑戰
最近舉行的世界經濟論壇也在討論大數據,會議確定了一些大數據應用的機會,但在數據共用的道路上仍有兩個主要的問題和障礙。
1.隱私和安全
正如Craig & Ludloff在「隱私和大數據「的專題中所提到的,一個難以避免的危機正在形成,大數據將瓦解並沖擊著我們生活的很多方面,這些方麵包括私隱權、政府或國際法規、隱私權的安全性和商業化、市場營銷和廣告……試想一下歐盟的cookie法規,或是這樣的一個簡單情景,一個公司可以輕易地在社交網路上收集各種信息並建立完整的資料檔案,這其中包括了人們詳細的電子郵箱地址、姓名、地理位置、興趣等等。這真是一件嚇人的事情!
2.人力資本
麥肯錫全球研究所的報告顯示 ,美國的數據人才的缺口非常大,還將需要140,000到190,000個有著「深度分析」專業技能的工作人員和1.500個精通數據的經理。尋找熟練的「網站分析」人力資源是一個挑戰,另外,要培養自己的真正擁有分析技能的人員,需要學習的內容很多,這無疑是另一個大挑戰。
大數據的價值創造
很多大數據的內容都提及了價值創造、競爭優勢和生產率的提高。要利用大數據創造價值,主要有以下六種方式。
透明度 :讓利益相關人員都可以及時快速訪問數據。實驗 :啟用實驗以發現需求,展示不同的變體並提升效果。隨著越來越多的交易數據以數字形式存儲,企業可以收集更准確、更詳細的績效數據。決策支持 :使用自動化演算法替換/支持人類決策,這可以改善決策,減少風險,並發掘被隱藏的但有價值的見解。創新 :大數據有助於企業創造出新的產品和服務,或提升現有的產品和服務,發明新的商業模式或完善原來的商業模式。細分 :更精細的種群細分,可以帶來不同的自定義行為。
工業領域的增長 :有了足夠的和經過適當培訓的人力資源,那些重要的成果才會成為現實並產生價值。
數據分析的機會領域
當「網站分析」發展到「數據智能「,毫無疑問,數據分析人員也工作也應該發生一些轉變,過去的工作主要是以網站為中心並制定渠道的具體戰術,而在將來則需要負責更具戰略性的、面向業務和(大)數據專業知識的工作。
數據分析師的主要關注點不應該是較低層的基礎設施和工具開發。以下幾點是數據分析的機會領域:
處理:掌握正確的工具以便可以在不同條件下(不同的數據集、不同的業務環境等)進行高效的分析。目前網站分析專家們最常用的工具無疑是各類網站分析工具,大多數人並不熟悉商業智能和統計分析工具如Tableau、SAS、Cognos等的使用。擁有這些工具的專業技能將對數據分析人員的發展大有好處。
NLP:學習非結構化數據分析的專業技能,比如社交媒體、呼叫中心日誌和郵件的數據多為非結構化數據。從數據處理的角度來看,在這個行業中我們的目標應該是確定和掌握一些最合適的分析方法和工具,無論是社會化媒體情感分析還是一些更復雜的平台。
可視化 :掌握儀錶板的展示技能,或者寬泛點來說,掌握數據可視化的技術是擺在數據分析師面前一個明顯的機會(註:不要把數據可視化與現在網路營銷中常用的「信息圖」infographics相混淆)。
行動計劃
在大數時代,其中一個最大的挑戰將是滿足需求和技術資源的供給。當前的「網站分析」的基礎普遍並不足夠成熟以支持真正的大數據的使用,填補技能差距,越來越多的「網站分析師」將成長為「數據分析師」。

⑹ 大數據背景管理信息系統有哪些

大數據背景管理信息系統有騰訊純孝分析、阿里雲大數據、國家電網智能化管理信息系統。
1、騰訊分析:騰訊分析是騰訊公司推出的一款大數據分析工具,主要用於對社交媒體、電子商務、游戲等業務數據進行分析和挖掘,以幫助企業做出更好的決策。
2、阿里雲大數據:阿里雲大數據是阿里雲推出的一整套大數據解決方案,包括數據存儲、計算、分析和可視化等各個環節,能夠滿足企業在大數據管理和應用方面的需求。
3、國家電網智能化管理信息系統:國家電網智能化管理信息系統是叢褲液中國國家電網公司推出的一款大滲物數據管理和決策支持系統,主要用於電力系統的數據採集、存儲、分析和決策支持。

⑺ 企業管理信息系統在互聯網+,大數據等技術廣泛運用的背景下,存在哪些風險

大數據時代傳統企業管理遇到的問題:隨著信息化程度不斷提高,互聯網、物聯網、雲計算和智能手機終端等技術的不斷發展,數據的產生、存儲、傳播和分析等,不論從數量、方式方法上都較以往有了天壤之別,大數據時代給各行各業帶來了巨大的沖擊,給傳統的企業管理帶來一系列挑戰。1、企業決策過程傳統企業的經營決策往往地依靠企業的管理者,依靠管理者的經驗、直覺和魄力,這樣的企業在以前可能會發展壯大,但是缺乏對決策管理過程的監控,缺乏對數據的搜集、提取和分析,沒有明確數據與決策結果的關聯關系。另外,傳統企業的數據分散在各個部門,數據的集中度不高,人們對其關注程度也不高。隨著大數據時代的到來,傳統企業的組織結構和決策過程必將面臨前所未有的考驗。2、智能化、信息化程度不夠大數據的「4V」特徵在數據存儲、傳輸、分析、處理等方面較以往均有本質變化。數據量幾何倍數的增長,對存儲技術提出了挑戰,需要高速信息傳輸能力支持,對非結構化的數據、低密度有價值數據的快速分析和處理能力提出更高要求。據統計,企業中85%的數據都屬於非結構化、低密度的數據,大多數企業現有的數據處理方法和系統無法將大量的非結構化數據進行處理。另外,隨著數據量的快速增長,對數據的存儲、傳輸能力也提出更高的要求,這都將成為企業在大數據時代遇到的難題。3、信息安全問題隨著大數據的發展,企業的海量數據中不僅包括業務數據、客戶數據、公司內部數據,也不乏大量個人信息,數據本身的安全及個人隱私面臨著泄露的挑戰。大數據環境下通過對用戶數據的深度分析,很容易了解用戶行為和喜好,嚴重的將導致企業的商業機密及個人隱私泄露。如何保證商業秘密、個人隱私秘密等安全問題,對企業是一道難題。4、人力資源匱乏大數據改變了企業的傳統管理思維,大數據時代的到來企業的管理者和員工都需要重新認識數據的重要性,提高相應的素質才能勝任原有的職位。在大數據時代,對數據的處理和分析已經超出了信息化的范疇,超出了市場營銷的范疇,超出了運營管理的范疇,需要具有綜合能力的人才,需要有相應新的部門來整合數據資源。對大數據的處理需求,必須有專業的數據分析人才運用這些大數據,才能將其轉化為經濟價值,數據人才必須能夠深入了解企業業務與組織,具有統計應用知識、熟悉大數據數據分析工具的運用等,這就要求數據分析人員必須有整合運用3項基本技能的要求,而傳統企業這方面人才非常稀少。

⑻ 大數據時代數據管理方式研究

大數據時代數據管理方式研究
1數據管理技術的回顧
數據管理技術主要經歷了人工管理階段、文件系統階段和資料庫系統階段。隨著數據應用領域的不斷擴展,數據管理所處的環境也越來越復雜,目前廣泛流行的資料庫技術開始暴露出許多弱點,面臨著許多新的挑戰。
1.1 人工管理階段
20 世紀 50 年代中期,計算機主要用於科學計算。當時沒有磁碟等直接存取設備,只有紙帶、卡片、磁帶等外存,也沒有操作系統和管理數據的專門軟體。該階段管理的數據不保存、由應用程序管理數據、數據不共享和數據不具有獨立性等特點。
1.2 文件系統階段
20 世紀 50 年代後期到 60 年代中期,隨著計算機硬體和軟體的發展,磁碟、磁鼓等直接存取設備開始普及,這一時期的數據處理系統是把計算機中的數據組織成相互獨立的被命名的數據文件,並可按文件的名字來進行訪問,對文件中的記錄進行存取的數據管理技術。數據可以長期保存在計算機外存上,可以對數據進行反復處理,並支持文件的查詢、修改、插入和刪除等操作。其數據面向特定的應用程序,因此,數據共享性、獨立性差,且冗餘度大,管理和維護的代價也很大。
1.3資料庫階段
20 世紀 60 年代後期以來,計算機性能得到進一步提高,更重要的是出現了大容量磁碟,存儲容量大大增加且價格下降。在此基礎上,才有可能克服文件系統管理數據時的不足,而滿足和解決實際應用中多個用戶、多個應用程序共享數據的要求,從而使數據能為盡可能多的應用程序服務,這就出現了資料庫這樣的數據管理技術。資料庫的特點是數據不再只針對某一個特定的應用,而是面向全組織,具有整體的結構性,共享性高,冗餘度減小,具有一定的程序與數據之間的獨立性,並且對數據進行統一的控制。
2大數據時代的數據管理技術
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據有 3 個 V,一是大量化(Volume),數據量是持續快速增加的,從 TB級別,躍升到 PB 級別;二是多樣化(Variety),數據類型多樣化,結構化數據已被視為小菜一碟,圖片、音頻、視頻等非結構化數據正以傳統結構化數據增長的兩倍速快速創建;三是快速化 (Velocity),數據生成速度快,也就需要快速的處理能力,因此,產生了「1 秒定律」,就是說一般要在秒級時間范圍內給出分析結果,時間太長就失去價值了,這個速度要求是大數據處理技術和傳統的數據挖掘技術最大的區別。
2.1 關系型資料庫(RDBMS)
20 世紀 70 年代初,IBM 工程師 Codd 發表了著名的論文「A Relational Model of Data for Large Shared DataBanks」,標志著關系資料庫時代來臨。關系資料庫的理論基礎是關系模型,是藉助於集合代數等數學概念和方法來處理資料庫中的數據,現實世界中的實體以及實體之間的聯系非常容易用關系模型來表示。容易理解的模型、容易掌握的查詢語言、高效的優化器、成熟的技術和產品,使得關系資料庫占據了資料庫市場的絕對的統治地位。隨著互聯網 web2.0 網站的興起,半結構化和非結構化數據的大量涌現,傳統的關系資料庫在應付 web2.0 網站特別是超大規模和高並發的 SNS(全稱 Social Networking Services,即社會性網路服務) 類型的 web2.0 純動態網站已經顯得力不從心,暴露了很多難以克服的問題。
2.2 noSQL資料庫
順應時代發展的需要產生了 noSQL資料庫技術,其主要特點是採用與關系模型不同的數據模型,當前熱門的 noSQL資料庫系統可以說是蓬勃發展、異軍突起,很多公司都熱情追捧之,如:由 Google 公司提出的 Big Table 和 MapRece 以及 IBM 公司提出的 Lotus Notes 等。不管是那個公司的 noSQL資料庫都圍繞著大數據的 3 個 V,目的就是解決大數據的 3個 V 問題。因此,在設計 noSQL 時往往考慮以下幾個原則,首先,採用橫向擴展的方式,通過並行處理技術對數據進行劃分並進行並行處理,以獲得高速的讀寫速度;其次,解決數據類型從以結構化數據為主轉向結構化、半結構化、非結構化三者的融合的問題;再次,放鬆對數據的 ACID 一致性約束,允許數據暫時出現不一致的情況,接受最終一致性;最後,對各個分區數據進行備份(一般是 3 份),應對節點失敗的狀況等。
對數據的應用可以分為分析型應用和操作型應用,分析型應用主要是指對大量數據進行分類、聚集、匯總,最後獲得數據量相對小的分析結果;操作型應用主要是指對數據進行增加、刪除、修改和查詢以及簡單的匯總操作,涉及的數據量一般比較少,事務執行時間一般比較短。目前資料庫可分為關系資料庫和 noSQL資料庫,根據數據應用的要求,再結合目前資料庫的種類,所以目前資料庫管理方式主要有以下 4 類。
(1)面向操作型的關系資料庫技術。
首先,傳統資料庫廠商提供的基於行存儲的關系資料庫系統,如 DB2、Oracle、SQL Server 等,以其高度的一致性、精確性、系統可恢復性,在事務處理方面仍然是核心引擎。其次,面向實時計算的內存資料庫系統,如 Hana、Timesten、Altibase 等通過把對數據並發控制、查詢和恢復等操作控制在內存內部進行,所以獲得了非常高的性能,在很多特定領域如電信、證券、網管等得到普遍應用。另外,以 VoltDB、Clustrix 和NuoDB 為代表的 new SQL 宣稱能夠在保持 ACDI 特性的同時提高了事務處理性能 50 倍 ~60 倍。
(2)面向分析型的關系資料庫技術。
首先,TeraData 是數據倉庫領域的領頭羊,Teradata 在整體上是按 Shared Nothing 架構體系進行組織的,定位就是大型數據倉庫系統,支持較高的擴展性。其次,面向分析型應用,列存儲資料庫的研究形成了另一個重要的潮流。列存儲資料庫以其高效的壓縮、更高的 I/O 效率等特點,在分析型應用領域獲得了比行存儲資料庫高得多的性能。如:MonetDB 和 Vertica是一個典型的基於列存儲技術的資料庫系統。
(3)面向操作型的 noSQL 技術。
有些操作型應用不受 ACID 高度一致性約束,但對大數據處理需要處理的數據量非常大,對速度性能要求也非常高,這樣就必須依靠大規模集群的並行處理能力來實現數據處理,弱一致性或最終一致性就可以了。這時,操作型 noSQL資料庫的優點就可以發揮的淋漓盡致了。如,Hbase 一天就可以有超過 200 億個到達硬碟的讀寫操作,實現對大數據的處理。另外,noSQL資料庫是一個數據模型靈活、支持多樣數據類型,如對圖數據建模、存儲和分析,其性能、擴展性是關系資料庫無法比擬的。
(4)面向分析型的 noSQL 技術。
面向分析型應用的 noSQL 技術主要依賴於Hadoop 分布式計算平台,Hadoop 是一個分布式計算平台,以 HDFS 和 Map Rece 為用戶提供系統底層細節透明的分布式基礎架構。《Hadoop 經典實踐染技巧》傳統的資料庫廠商 Microsoft,Oracle,SAS,IBM 等紛紛轉向 Hadoop 的研究,如微軟公司關閉 Dryad 系統,全力投入 Map Rece 的研發,Oracle 在 2011 年下半年發布 Big Plan 戰略計劃,全面進軍大數據處理領域,IBM 則早已捷足先登「,沃森(Watson)」計算機就是基於 Hadoop 技術開發的產物,同時 IBM 發布了 BigInsights 計劃,基於 Hadoop,Netezza 和 SPSS(統計分析、數據挖掘軟體)等技術和產品構建大數據分析處理的技術框架。同時也涌現出一批新公司來研究Hadoop 技術,如 Cloudera、MapRKarmashpere 等。
3數據管理方式的展望
通過以上分析,可以看出關系資料庫的 ACID 強調數據一致性通常指關聯數據之間的邏輯關系是否正確和完整,而對於很多互聯網應用來說,對這一致性和隔離性的要求可以降低,而可用性的要求則更為明顯,此時就可以採用 noSQL 的兩種弱一致性的理論 BASE 和 CAP.關系資料庫和 noSQL資料庫並不是想到對立的矛盾體,而是可以相互補充的,根據不同需求使用不同的技術,甚至二者可以共同存在,互不影響。最近幾年,以 Spanner 為代表新型資料庫的出現,給資料庫領域注入新鮮血液,這就是融合了一致性和可用性的 newSQL,這種新型思維方式或許會是未來大數據處理方式的發展方向。
4 結束語
隨著雲計算、物聯網等的發展,數據呈現爆炸式的增長,人們正被數據洪流所包圍,大數據的時代已經到來。正確利用大數據給人們的生活帶來了極大的便利,但與此同時也給傳統的數據管理方式帶來了極大的挑戰。

閱讀全文

與管理信息系統大數據時代皮特相關的資料

熱點內容
在北京學java哪裡好 瀏覽:825
視頻文件夾怎麼起名 瀏覽:505
mac顯示文件夾 瀏覽:651
mac傳文件到linux 瀏覽:661
數據結構看不懂演算法怎麼辦 瀏覽:55
js給div 瀏覽:785
linuxmd5校驗文件 瀏覽:770
文件名兩行命名規則 瀏覽:347
win7看不見刻錄的光碟文件夾 瀏覽:244
觀影清單app 瀏覽:50
谷歌地球搜索時候連接網路失敗 瀏覽:938
n是什麼網站 瀏覽:149
win10提示卸載更新補丁 瀏覽:783
windowsxp幫助文件下載 瀏覽:546
linuxapache並發 瀏覽:455
怎麼建立網路映射 瀏覽:635
大數據除了運營商還會有哪些領域 瀏覽:509
idea配置文件中文變成了十六進制 瀏覽:704
買圖書上什麼網站便宜 瀏覽:644
犀牛保存的文件名 瀏覽:768

友情鏈接