㈠ 企業大數據之大數據徵信及風控應用
企業大數據之大數據徵信及風控應用
互聯網人口紅利區已經過去,獲客成本增大,用戶對產品的要求也越發提高,高價值和低成本服務是當前的一種趨勢。其中,企業服務致力於為企業在生產,銷售和溝通等環節提高效率,降低成本,受到越來越多的資本青睞。
隨著人工智慧對行業的滲透,以及數據量的劇增,越來越多的企業服務產品正利用人工智慧,大數據等相關技術提供更智能服務,大數據作為人工智慧模型中的訓練"糧食",占據重要位置,如何挖掘和利用企業數據,是做好企業服務的一個重要途徑,企業大數據來源主要有以下幾個方面:
a.企業內部數據化檔案,例如人事資料,紙質化資料等;
b.企業自產數據,例如企業內部OA,ERP和CRM系統所沉澱下來的客戶數據,辦公數據,生產經營數據,社交數據,電商數據,支付數據,供應鏈數據等;
c.企業信用數據
政府公開數據-比如工商的企業信用信息公示數據,失信被執行,被執行數據,裁判文書,開庭公告,法院公告,稅務數據,動產融資數據,招投標,司法拍賣數據等,專利商標,行政處罰等數據。互聯網公開數據-比如新聞數據,招聘網站數據,上市披露數據。
徵信概述
1.徵信定義
徵信一詞源於《左傳·昭公八年》中的「君子之言,信而有徵,故怨遠於其身」。其中,「信而有徵」即為可驗證其言為信實,或徵求、驗證信用。現代徵信是依法收集、整理、保存、加工自然人、法人及其他組織的信用信息,並對外提供信用報告、信用評估、信用信息咨詢等服務,幫助客戶判斷、控制信用風險,進行信用管理的活動。
2.政策/技術/市場環境分析
政策
中國社會由熟人社會慢慢轉變為陌生人社會,信用風險和信用危機也隨之產生,加快信用體系建設迫在眉睫,然而,行政過程中尚未全面建立起「守信激勵、失信懲戒」的機制,《政府信息公開條例》雖然已對政務信息公開作出了具體規定,但執行過程中,政務信息的公開尚不全面,部分信用信息的缺失,削弱了信用信息的完整性,不利於形成准確的信用狀況判斷.
技術
其次,互聯網時代早已成為大家共識,企業和個人在網路上留下的大量數據,為徵信帶來了數據基礎,且隨著大數據,雲計算,人工智慧的發展,為智能化徵信提供了技術支撐。
市場
另外,我國市場經濟體制建立的時間不長,全社會信用意識和社會信用環境還比較薄弱。為爭取經濟利益而失信的行為時有發生。這既有信用意識淡薄的原因,也有失信成本過低的原因。徵信作為金融的一個重要組成部分,是風險控制的核心,隨著互聯網金融的快速發展,適應互聯網,大數據徵信模式也營運而生,也亟需建立完善的徵信制度來為徵信發展保駕護航。
3.國內外徵信模式
我國的徵信出於初級階段,目前國際上的徵信模式主要有以下幾種
a.市場主導型,美國,Equifa、Experian和TransUnion三大管理局按照市場經濟的法則和運作機制,並對外提供服務給貸款授信企業,英國是P2P的發源地,以Zopa為代表網路貸款平台根據風險和利率水平促成借貸雙方完成交易、使借貸雙方都共同獲益,在某種程度上發揮了信用中介職能。
b.政府主導型,德國,中國。以中國為例,主要是以政府主導,授權中國人民銀行徵信系統創建,收集,維護和整合全國部分企業和個人徵信,目前已經覆蓋了銀行機構,法院,電信,社保,小額貸款等機構數據,目前覆蓋個人和企業的數量上一直維持著增長勢頭,從2015年4月的8.64億自然人、2068萬戶企業及其他組織增加到2017年5月的9.26億自然人、2371萬戶企業及其他組織,中國大陸將近14億人,企業及其他組織數量也在不斷增加,徵信系統覆蓋范圍還有很大的增長空間,總體上來講,對企業的數據覆蓋度不夠,難以滿足當前各種創新的金融模式對企業徵信的需求。
c.行業協會共享,行業會員制,分享數據,並以行業協會為核心建立信用共享中心,加入協會的組織可以共享數據,並提供一定的數據支撐,以此擴大協會的數據源。
d.混合型,韓國、印度為例,以政府和市場混合,協同發展。
4.徵信產品模式
徵信行業的產品模式主要有按業務模式劃分的企業和個人徵信,按服務對象劃分為信貸徵信、商業徵信、僱傭徵信以及其他徵信,各類不同服務對象的徵信業務,有的是由一個機構來完成,有的是在圍繞具有資料庫徵信機構上下游的獨立企業內來完成。按徵信范圍可分為區域徵信、國內徵信和跨國徵信等。
5.徵信行業產業鏈
徵信產業鏈包括上游的數據生產者、中游的徵信機構及下游的徵信信息的使用者,其中中游的徵信機構運行模式主要有採集數據、加工數據及銷售產品。數據供應商主要包括銀行等金融機構、政府部門、工商企業和個人,幾乎涉及人們生活的方方面面。徵信機構從數據供應商處獲得數據通過一定的模型進行加工處理得到信用評級結果,然後進行服務輸出。徵信報告使用方主要有房地產商、招聘企業、P2P平台、金融機構等,多數發生在個人購房和購車、個人小額信貸、企業信貸、債券買賣等場景。
6.面臨問題
1.徵信監管和法律健全亟需提高,政府信息公開有待加強,徵信法律法規不夠完善;
2.數據處理演算法計算能力有待提高,隨著大數據與徵信的結合,對數據的處理,分析和建模能力提出了更高的要求,才能更好的挖掘出企業信息價值。
3.信用信息安全問題嚴峻,雖然國家一直在出台政策保護徵信數據,但個人,企業的隱私數據安全面臨十分嚴峻的挑戰,催生了巨大的黑色產業發展,由此帶來了金融詐騙,電信詐騙,網路詐騙,木馬病毒竊取隱私數據進行交易獲利等違法犯罪活動。
7.大數據徵信與傳統徵信的區別
1.覆蓋群體更豐富,隨著網路的普及和互聯網金融的大力發展,更多的人或企業將會留下數據到相關平台,擴大了徵信覆蓋的群體。
2.數據來源更廣泛,傳統徵信的數據來源比較單一,但大數據徵信會整合互聯網公開半公開數據,第三方機構合作數據以及自由數據,數據來源變得更加廣泛。
3.數據價值的深入挖掘,隨著大數據和人工智慧在徵信行業的運用,機器學習,NLP,文本抽取等技術對企業數據的挖掘更加深入。
企業信用數據的行業運用
1.信貸風控,金融的核心是風險管理,目前主要由政府信用公示機構,比如國家企業信用查詢網,中國失信被執行網,中國被執行信息網,法院網,信用中國等公開查詢數據,為信貸金融機構提供貸前,貸中,貸後的信息查詢,信用報告和監控等服務。
2.融資租賃,為融資租賃公司提供融前盡調,融後監控服務,提高工作人員效率,並通過集團化賬號系統深入各個業務部門,提升工作質量和效率。
3.信用評級,根據企業的工商,法務,新聞,經營,債卷等多維度數據,對企業進行信用評級,常見的是債券評級.
4.供應鏈金融,圍繞核心企業,管理上下游中小企業的資金流和物流,並把單個企業的不可控風險轉變為供應鏈企業整體的可控風險,通過立體獲取各類信息,將風險控制在最低的金融服務。
5.其他,比如招聘,商業調研和律所。
企業徵信的未來展望
1.數據共享
數據作為徵信和風控行業的核心資產,也是構建信用社會的基石,過分孤立或過分共享都不利於行業發展。所以,如何在實現共贏,保護隱私的基礎上做到數據共享,打破數據孤島,打通各個平台的數據通道,讓不同的數據匯集在一起,共同打造徵信體系,是未來的發展趨勢。
2.挖掘數據價值
隨著大數據徵信技術的不斷發展,徵信產品將從信息的初次挖掘向深層次挖掘發展。初次挖掘是指圍繞企業相關數據,通過自身爬取入庫,第三方API介面或數據合作等方法整合並進行數據匯總分類,並以信息報告,圖片等方式簡單羅列呈現。深層次挖掘是將收集到的數據與徵信專業知識相結合,構建風險識別與量化,規則引擎,企業關聯圖譜,數據可視化等產品,對數據進深度挖掘,從而深化徵信產品與服務,提高徵信產品的專業性。例如利用企業工商信息,建立企業關聯網路,當網路上某一企業出現負面信息時,能夠迅速識別風險並預警其他企業,並根據風險情況量化預警等級。
3.提供垂直,細分領域服務
隨著徵信市場規模的不斷擴大,部分徵信機構基於自身特點及優勢,開始出現專注於某一細分領域或某一業務環節提供具有針對性、定製化的徵信產品服務的趨勢。例如提供爬蟲技術,一站式爬取,清洗,整合和入庫;針對新聞的輿情監控服務;提供企業獲客服務,為金融機構篩選優勢客戶,實現精準營銷;提供企業金融服務,比如理財,融資,支付和信貸;提供C2B,B2B的股權投資撮合平台等。
㈡ 大數據徵信與傳統徵信的區別
8、市場價值
隨著互聯網金融的高速發展,各家互金平台百花齊放,風控已成為各家平台的重中之重。具91徵信統計,借款人中有多頭負債行為的佔45%,在4家以上平台擁有壞賬的佔比29.96%,各互金平台需要數據進行有效風控時,卻得不到更多有效數據做支撐。
據中國人民銀行徵信中心2015年統計報告顯示,人行徵信中心資料庫錄入8.5億自然人,其中有信用記錄的3.5億,剩餘5億人信用空白。而民間金融機構並不會像傳統銀行一樣把數據上傳到人行徵信中心,民間金融機構的數據也互不相同,就造成「信息孤島」的困局。
91徵信通過分布式資料庫解決方案,秉承「不上傳,不保存、實時更新」的原則,將民間金融機構數據打通,打破各機構間的「信息孤島」問題,形成91徵信聯盟,實現民間金融機構的信息互通。
9、產品地址
91徵信同業徵信報告:http://www.91zhengxin.com/instryReportV.do
10、所屬企業
北京小崔時代信息服務有限公司
11、企業介紹
北京小崔時代信息服務有限公司運營始創於2012年1月,是一家致力於利用科技解決金融領域數據問題的技術公司。
2015年6月,公司以創新的不良資產處置方案獲得市場及資本認可,並獲得國際知名風險投資機構經緯中國的千萬級天使輪融資,同年10月,致力於深層解決金融風險問題與徵信數據共享問題的產品91徵信正式上線。
2016年2月,91徵信企業用戶量超過200家,同期完成A輪融資,經緯中國跟投,2016年底公司實現全面盈利。
2017年5月,公司完成由銀之傑投資的B輪數千萬融資。新的融資將加速91徵信願景的實現,致力於通過互聯網改變徵信,為金融服務機構提供共享技術,全面降低金融行業風險。
91徵信核心團隊由宜信、網路、京東金融人員組成,總部位於中國北京,同時在上海、深圳設有業務部,目前公司業務已經拓展至北京、上海、深圳、杭州、南京、廣州、成都、武漢、天津、青島、石家莊等地區。
作為整體活動的第二部分,2017年10月25日,數據猿還將在北京舉辦千人規模的「2017金融科技價值——數據驅動金融商業裂變」峰會【本次論壇詳情丨第一屆回顧丨第二屆回顧】並將在現場舉行文章、案例、產品的頒獎典禮。
㈢ 騰訊徵信的數據運用
騰訊的互聯網大數據徵信主要運用社交網路上海量信息,比如在線、財產、消費、社交等情況,為用戶建立基於互聯網信息的徵信報告。
具體說來,徵信體系將利用其大數據平台TDBANK,在不同數據源中,採集處理相關行為和基礎畫像等數據,並利用統計學、傳統機器學習的方法,得出用戶信用得分,形成個人徵信報告。騰訊徵信正在積極應用新技術進行研究和驗證,社交數據的信貸應用在全球范圍內都是很前沿的探索。我們模型研究團隊的初步成功已顯示,社交數據可以明顯提升個人徵信的准確性。
除了幫用戶建立個人信用,騰訊徵信也將為相關金融機構或金融業務的風險控制提供有意義的參考。已經有多家P2P、銀行和保險公司等表達了強烈的意向,希望接入騰訊的個人徵信服務。
㈣ 做不上徵信的車子抵押貸款,做房貸時查大數據能查到嗎
用車子辦理抵押貸款,做房貸的時候是可以查詢到的,只要你有貸款未還的情況,那麼在房貸的時候都能查詢到,建議你及時還款