① 大數據平台的軟體有哪些
現在肯定是大數據更吃香,但是後端也是不錯的,所以你根據個人的喜好來選擇吧!
② 常見的大數據分析工具有哪些
大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,。一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面小編就對大數據分析工具給大家好好介紹一下。
首先我們從數據存儲來講數據分析的工具。我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。
1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。
2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。
3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台;
接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。
1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表。
2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。
第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;
1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;
2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。
最後說表現層的軟體。一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。
1、PowerPoint軟體:大部分人都是用PPT寫報告。
2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;
3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash
③ 數據分析用什麼軟體
做數據分析,比較好用的軟體有哪些?
數據分析軟體有很多種,每一種都適合不同類型的人員。
簡單說:
Excel:普遍適用,既有基礎,又有中高級。中級一般用Excel透視表,高級的用Excel VBA。
hihidata:比較小眾的數據分析工具。三分鍾就可以學會直接上手。無需下載安裝,直接在線就可以使用。
SPSS:專業統計軟體,沒有統計功底很難用的。同時包含了數據挖掘等高大功能。
SAS:專業統計軟體,專業人士用的,不懂編程還是不要碰了。
MARLAB:建立統計與數學模型,但是比較難學,很難上手。
Eview:比較小眾,建立一些經濟類的模型還是很有用的。計量經濟學中經常用到。
各種BI與報表工具:FineBI,FineReport,tableau,QlikView等。
比較好的數據分析軟體有哪些?
SPSS是軟體里比較簡單的 ,學校里使用的比較多一些,可以採用菜單的模式 帶少量的命令編輯MATLAB常常在建立統計和數學模型的時候比較好用 但是很難學 反正我學了一個學期楞是就知道個皮毛Finereport 兼顧了基本的數據錄入與展現功能,一般的數據源都支持,學習成本比較低,比較適合企業級用戶使用,SAS我沒用過
網站數據分析工具哪個好用些阿?
推薦吆喝科技的ab測試,軟體分析的數據比較全面和精準
學數據分析需要熟悉哪些軟體基礎
軟體只是一個工具 看你要從事的數據分析的方向很深度而定
一般的用excel也可以進行常規簡單的數據分析
再深入一點的用spss、stata、sas
如果要搞數據挖掘的話,用spss modeler / sas
不過一般的常規數據分析用excel和spss基本上能夠應付
常用的數據分析工具有哪些
數據分析的概念太寬泛了,做需要的是側重於數據展示、數據挖掘、還是數據存儲的?是個人用還是企業、部門用呢?應用的場景是製作簡單的個人圖表,還是要做銷售、財務還是供應鏈的分析?
那就說說應用最廣的BI吧,企業級應用,其實功能上已經涵蓋了我上面所述的部分,主要用於數據整合,構建分析,展示數據供決策分析的,譬如FineBI,是能夠」智能」分析數據的工具了。
android數據分析工具用什麼軟體
1. 開源大數據生態圈
Hadoop HDFS、Hadoop MapRece, HBase、Hive 漸次誕生,早期Hadoop生態圈逐步形成。
開源生態圈活躍,並免費,但Hadoop對技術要求高,實時性稍差。
2. 商用大數據分析工具
一體機資料庫/數據倉庫(費用很高)
IBM PureData(Netezza), Oracle Exadata, SAP Hana等等。
數據倉庫(費用較高)
Teradata AsterData, EMC GreenPlum, HP Vertica 等等。
數據集市(費用一般)
QlikView、 Tableau 、國內永洪科技Yonghong Data Mart 等等。
前端展現
用於展現分析的前端開源工具有JasperSoft,Pentaho, Spagobi, Openi, Birt等等。
用於展現分析商用分析工具有Cognos,BO, Microsoft, Oracle,Microstrategy,QlikView、 Tableau 、國內永洪科技Yonghong Z-Suite等等。
數據分析軟體有哪些,他們分別的特點是什麼
除了EXCEL 數據分析用的多的有以下幾個軟體,你看看你們公司符合哪個
SPSS(StatisticalProct and Service Solutions),「統計產品與服務解決方案」軟體,是數據定量分析的工具,適用於社會科學(如經濟分析,市場調研分析)和自然科學等林林總總的統計分析,國內使用的最多,領域也多。
SPSS就如一個傻瓜相機,界面友好,使用簡單,但是功能強大,可以編程,能解決絕大部分統計學問題,適合初學者。它有一個可以點擊的交互界面,能夠使用下拉菜單來選擇所需要執行的命令。它也有一個通過拷貝和粘貼的方法來學習其「句法」語言,但是這些句法通常非常復雜而且不是很直觀。
SPSS致力於簡便易行(其口號是「真正統計,確實簡單」),並且取得了成功。但是如果你是高級用戶,隨著時間推移你會對它喪失興趣。SPSS是制圖方面的強手,由於缺少穩健和調查的方法,處理前沿的統計過程是其弱項。
SAS是全球最大的軟體公司之一,是全球商業智能和分析軟體與服務領袖。SAS由於其功能強大而且可以編程,很受高級用戶的歡迎,也正是基於此,它是最難掌握的軟體之一,多用於企業工作之中。
SAS就如一台單反相機,你需要編寫SAS程序來處理數據,進行分析。如果在一個程序中出現一個錯誤,找到並改正這個錯誤將是困難的。在所有的統計軟體中,SAS有最強大的繪圖工具,由SAS/Graph模塊提供。然而,SAS/Graph模塊的學習也是非常專業而復雜,圖形的製作主要使用程序語言。SAS適合高級用戶使用。它的學習過程是艱苦的,正所謂「五年入門,十年精通」,最初的階段會使人灰心喪氣。然而它還是以強大的數據管理和同時處理大批數據文件的功能,得到高級用戶的青睞。
R 是用於統計分析、繪圖的語言和操作環境,屬於GUN系統的一個自由、免費、源代碼開放的軟體,它是一個用於統計計算和統計制圖的優秀工具,多用於論文,科研領域。
R的思想是:它可以提供一些集成的統計工具,但更大量的是它提供各種數學計算、統計計算的函數,從而使使用者能靈活機動的進行數據分析,甚至創造出符合需要的新的統計計算方法。因此R有很多最新的模型和檢驗方法,但是非常難自學,對英語的要求很高。R與SAS的區別在於,R是開放免費的,處理更靈活,同時對編程要求較高。
大數據是什麼意思?哪些軟體適合大數據分析?
大數據定義什麼的網路很多。個人理解:現有的互聯網數據量越來越大,面對這么大的數據量,如何利用好這些數據是極具挑戰性的。一方面數據量提升,數據處理的方法必須改變,才能提高數據處理速度,比如大規模,高並發的網站訪問,12306,淘寶天貓什麼的;另一方面從這些海量數據中挖掘出有用的信息,比如根據淘寶根據用戶點擊訪問,反饋出用戶的喜好,給用戶推薦相關商品。
推薦Hadoop,適合大數據處理的。
網上學習資料很多,自己搜去!
當然你也可以自己使用資料庫MYSQL等去做大數據處理,這樣很多Hadoop做好的東西都需要你自己去做。要是熟悉某個資料庫,並且應用明確就用資料庫自己去做吧!
加油!
數據分析軟體哪個好
最常用的是spss,屬於非專業統計學的! sas是專業的統計分析軟體,需要編程用,都是專業人士用的 數據分析中的數據挖掘,可以使用spss公司的clementine
大數據分析一般用什麼工具分析
在大數據處理分析過程中常用的六大工具:
Hadoop
Hadoop 是一個能夠對大量數據進行分布式處理的軟體框架。但是 Hadoop 是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop 是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。Hadoop 是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop 還是可伸縮的,能夠處理 PB 級數據。此外,Hadoop 依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
HPCC
HPCC,High Performance puting and munications(高性能計算與通信)的縮寫。1993年,由美國科學、工程、技術聯邦協調理事會向國會提交了「重大挑戰項目:高性能計算與 通信」的報告,也就是被稱為HPCC計劃的報告,即美國總統科學戰略項目,其目的是通過加強研究與開發解決一批重要的科學與技術挑戰問題。HPCC是美國 實施信息高速公路而上實施的計劃,該計劃的實施將耗資百億美元,其主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆 比特網路技術,擴展研究和教育機構及網路連接能力。
Storm
Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm很簡單,支持許多種編程語言,使用起來非常有趣。
Apache Drill
為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。Apache Drill 實現了 Google's Dremel.
據Hadoop廠商MapR Technologies公司產品經理Tomer Shiran介紹,「Drill」已經作為Apache孵化器項目來運作,將面向全球軟體工程師持續推廣。
RapidMiner
RapidMiner是世界領先的數據挖掘解決方案,在一個非常大的程度上有著先進技術。它數據挖掘任務涉及范圍廣泛,包括各種數據藝術,能簡化數據挖掘過程的設計和評價。
Pentaho BI
Pentaho BI 平台不同於傳統的BI 產品,它是一個以流程為中心的,面向解決方案(Solution)的框架。其目的在於將一系列企業級BI產品、開源軟體、API等等組件集成起來,方便商務智能應用的開發。它的出現,使得一系列的面向商務智能的獨立產品如Jfree、Quartz等等,能夠集成在一起,構成一項項復雜的、完整的商務智能解決方案。
④ 數據分析軟體哪個最好用
數據分析軟體最好用的有:
一、大數據分析工具——Hadoop
Hadoop是一個能夠對大量數據進行分布式處理的軟體框架。但是Hadoop是以一種可靠、高效、可伸縮的方式進行處理的。Hadoop是可靠的,因為它假設計算元素和存儲會失敗,因此它維護多個工作數據副本,確保能夠針對失敗的節點重新分布處理。
Hadoop是高效的,因為它以並行的方式工作,通過並行處理加快處理速度。Hadoop還是可伸縮的,能夠處理PB級數據。此外,Hadoop依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。
⑤ 數據分析軟體工具有哪些 大數據分析可視化工具
數據分析」 可謂是當今社會一個超級火爆的崗位,不論是科班的,還是非科班的,都想從事這個行業,畢竟都覺得這個行業賺錢多嘛。
「數據分析」 大致可以分為業務和技術兩個方向,不管你是從事哪個方向,都對技能有一定的要求。業務方向,像數據運營、商業分析、產品經理等,對技術的要求相對來說低一點,編程工具你只要會用即可(肯定是越精通越好)。技術方向,像數據演算法工程師、數據挖掘工程師等,對技術的要求就很高了,必須要有很好的編程能力。
工欲善其事必先利其器,說起數據分析工具,大家都會感覺很迷茫,有這么多數據分析工具,我應該學習哪個工具,它們之間的區別到底是什麼?今天我們從 「工具」 層面帶大家盤點一下,作為一名數據分析師,應該學習哪些工具呢?
一、Excel工具
說起用什麼做數據分析,很多人的腦海中都會不約而同地想到Python、R、SQL、Hive等看似很難掌握的數據分析工具,它們就像數據分析路上的攔路虎一樣,讓人踟躕不前。
其實,在眾多的數據分析工具中,Excel屬於最常用、最基礎、最易上手的一款數據分析工具。Excel的功能十分強大,它不僅提供了眾多的數據處理功能,像Excel函數能夠幫助我們做數據整理,數據透視表幫助我們快速、高效的做各種維度分析,形形色色的圖表能幫我們形象地展示出數據背後隱藏的規律,同時Excel還有很專業的數據分析工具庫,包括描述性統計分析、相關系數分析等。
Excel對於轉行數據分析的小白來說,應該是最友好的。大家都知道「轉行」其實是一件很困難的事兒,但是你學會了Excel,是完全可以找到一份「數據」相關的工作的,只有踏進數據領域,你才有可能從事其它更多的數據崗位。
二、BI工具
BI工具是專門按照數據分析的流程進行設計的,也是專門用於數據分析的工具。仔細觀察這些工具後,它們的基本流程是:【數據處理】-【數據清洗】-【數據建模】-【數據可視化】。
關於BI工具,其實有很多你估計已經用到過,比如說Tableau、Power BI,還有帆軟FineBI等。今天我們就分別帶著大家來盤點一下,這三款工具。
1、Tableau
Tableau是一款互動式數據可視化軟體,它的本質其實也是Excel的數據透視表和數據透視圖。
Tableau也是很好的延續了Excel,只需要簡單地拖拽,就能很快地實現數據的分類匯總,然後拖拽實現各種圖形的繪制,並且可以實現不同圖表之間的聯合。
Tableau同時支持數百種數據連接器,包括在線分析處理(OLAP)和大數據(例如NoSQL,Hadoop)以及雲數據,至少現在你能學到的資料庫軟體,Tableau基本都能夠實現與其數據之間的互動。
2、Power BI
Power-BI是一款(BI)商業智能軟體,於2014年發布,旨在為用戶提供互動式的可視化和商業智能,簡單的數據共享,數據評估和可擴展的儀錶板等功能。。
大家可能慎梁都知道,Power BI以前是一款Excel插件,依附於Excel,比如Power Query,PowerPrivot, Power View和Power Map等,這些插件讓Excel如同裝上了翅膀,瞬間高大上,慢慢地就發展成為現在的Power BI數據可視化工具。
Power BI 簡單且快速,能夠從 Excel電子表格或本地資料庫創建圖表。同時Power BI也是可靠的、企業級的,可進行豐富的建模和實時分析,及自定義開發。因此它既是你的個人報表和可視化工具,還可用項目、部門或整個企業背後的分析和緩孝早決策引擎。
同時,無論你的數據是簡單的 Excel電子表格,還是基於雲和本地混合數據倉庫的集合擾雀, Power BI都可以讓你輕松地連接到數據源,直觀看到或發現數據的價值,與任何所希望的人進行共享。
3、FineReport
帆軟是業內做報表比較久的一家公司,使用類excel風格的界面,可添加圖表和數據源,也可實現大屏效果。
其實它的類Excel風格界面,應該是它區別於Tableau工具的一個很重要的點。FineReport 通過直接連接到各種資料庫,就能方便快捷地自定義各種樣式,從而製作周報、月報和季報、年報。
用過FineReport 的朋友,還會有另外一種體會,它的圖形效果比Tableau要酷炫的多,操作起來同樣也是那樣的方便。另外,FineReport 的個人版本是完全免費的,並且所有功能都是開放的,大家趕緊下去試試吧。
4、FineBI
關於FineBI,這是目前市面上應用最為廣泛的自助式BI工具之一,類似於國外的Tableau等BI分析工具,但FineBI在協同配合,數據許可權上,能更好的解決國內企業的情況。
但嚴格定義來講,它其實是一款自助式BI。支持Hadoop、GreenPlumn、Kylin、星環等大數據平台,支持SAP HANA、SAP BW、SSAS、EssBase等多維資料庫,支持MongoDB、SQLite、Cassandra等NOSQL資料庫,也支持傳統的關系型資料庫、程序數據源等。
5、Python & R
其實不管是Excel,還是介紹的三款BI工具,它們都是為了執行特定功能,而設計出來的。如果說某一天,既定功能不能很好,或者說不能滿足你的需求,那麼應該怎麼辦呢?
這就需要我們了解,並學習一點編程語言了,最大的優勢就在於:它非常強大和靈活。不管是R或者 Python,都有很多包供我們調用,同時也可以自定義函數,實現我們的某些需求。
⑥ 大數據常用的軟體工具有哪些
眾所周知,現如今,大數據越來越受到大家的重視,也逐漸成為各個行業研究的重點。正所謂「工欲善其事必先利其器」,大數據想要搞的好,使用的工具必須合格。而大數據行業因為數據量巨大的特點,傳統的工具已經難以應付,因此就需要我們使用更為先進的現代化工具,那麼大數據常用的軟體工具有哪些呢?
首先,對於傳統分析和商業統計來說,常用的軟體工具有Excel、SPSS和SAS。
Excel是一個電子表格軟體,相信很多人都在工作和學習的過程中,都使用過這款軟體。Excel方便好用,容易操作,並且功能多,為我們提供了很多的函數計算方法,因此被廣泛的使用,但它只適合做簡單的統計,一旦數據量過大,Excel將不能滿足要求。
SPSS和SAS都是商業統計才會用到的軟體,為我們提供了經典的統計分析處理,能讓我們更好的處理商業問題。同時,SPSS更簡單,但功能相對也較少,而SAS的功能就會更加豐富一點。
第二,對於數據挖掘來說,由於數據挖掘在大數據行業中的重要地位,所以使用的軟體工具更加強調機器學習,常用的軟體工具就是SPSS Modeler。
SPSS Modeler主要為商業挖掘提供機器學習的演算法,同時,其數據預處理和結果輔助分析方面也相當方便,這一點尤其適合商業環境下的快速挖掘,但是它的處理能力並不是很強,一旦面對過大的數據規模,它就很難使用。
第三,大數據可視化。在這個領域,最常用目前也是最優秀的軟體莫過於TableAU了。
TableAU的主要優勢就是它支持多種的大數據源,還擁有較多的可視化圖表類型,並且操作簡單,容易上手,非常適合研究員使用。不過它並不提供機器學習演算法的支持,因此不難替代數據挖掘的軟體工具。
第四,關系分析。關系分析是大數據環境下的一個新的分析熱點,其最常用的是一款可視化的輕量工具——Gephi。
Gephi能夠解決網路分析的許多需求,功能強大,並且容易學習,因此很受大家的歡迎。但由於它是由Java編寫的,導致處理性能並不是那麼優秀,在處理大規模數據的時候顯得力不從心,所以也是有著自己的局限性。
上面四種軟體,就是筆者為大家盤點的在大數據行業中常用到的軟體工具了,這些工具的功能都是比較強大的,雖然有著不少的局限性,但由於大數據行業分工比較明確,所以也能使用。希望大家能從筆者的文章中,獲取一些幫助。
⑦ 大數據分析軟體有哪些
hadoop作為一款開源分布式集群常常被用於大數據分析後台數據存儲,但是並不能單獨作為分析工回具答。國內永洪科技bi工具Yonghong
Z-Suite
可以看作是大數據分析軟體,包含專業數據集市Yonghong
Z-Data
Mart
,是他們基於自己技術研發的,類似於hadoop
,然而查詢和計算速度更快,適合用於大數據實時分析。
⑧ 大數據分析工具有哪些
大數據分析工具有:
1、Hadoop:它是最流行的數據倉庫,可以輕松存儲大量數據。
2、MongoDB:它是領先的資料庫軟體,可以快速有效地分析數據。
3、Spark: 最可靠的實時數據處理軟體,可以有效地實時處理大量數據。
4、Cassandra:最強大的資料庫,可以完美地處理數據塊
5、Python:一流的編程語言,可輕松執行幾乎所有大數據分析操作。
不同類型的大數據分析是:
1、描述性分析:它將過去的數據匯總成人們易於閱讀和理解的形式。使用此分析創建與公司收入、銷售額、利潤等相關的報告非常容易。除此之外,它在社交媒體指標方面也非常有益。
2、診斷分析:它首先處理確定發生問題的原因。它使用了各種技術,例如數據挖掘、機器學習等。診斷分析提供對特定問題的深入洞察。
3、預測分析:這種分析用於對未來進行預測。它通過使用數據挖掘、機器學習、數據分析等各種大數據技術來使用歷史數據和當前數據。這些分析產生的數據用於不同行業的不同目的。
4、規范分析:當想要針對特定問題制定規定的解決方案時,會使用這些分析。它適用於描述性和預測性分析,以獲得最准確的結果。除此之外,它還使用人工智慧和機器學習來獲得最佳結果。