⑴ 大數據正在改變汽車行業的5種方式
大數據正在改變汽車行業的5種方式
大數據在十年前是一個有趣的概念,而現在卻成為現代企業的一個普遍特徵。數據從根本上講是有價值的,這取決於所收集的內容以及如何使用,數據可以給企業帶來更好的商業洞察力,幫助企業改變經營方向,並指導學習以及為什麼企業的業務如此運作。當這些數據被大規模收集時,其收益會進一步增長。
每個行業都在利用大數據的利益,而這些新的能力、理念和流程正以令人興奮的全新方式重塑各個行業。汽車行業就是一個很好的例子,從理念到持續的客戶服務,大數據正在從根本上改變汽車行業。
汽車行業離不開大數據
汽車行業的規模可能比人們想像的要大。有許多知名的汽車製造商,他們為大眾設計和裝配車輛,但人們還需要考慮他們依賴的廣泛的供應商網路來製造和運送這些車輛所需的各個部件。也有經銷商負責運輸和銷售這些車輛,另外,不要忘記安全和客戶服務等部門。大數據的應用對汽車行業影響深遠,因為幾乎每個層面都將使用大數據。
巨大的變化
大數據將讓汽車行業的多個不同層面提到改善:
(1)價值分析。首先,大數據幫助企業了解汽車的真正價值。這在設計新車時非常有用,但在評估舊車時更加有用。Kelley BlueBook公司所提供的估值服務比以前更加精確和高效,像Clunker Junker公司這樣的車輛回收商可以為車主提供更為精確的車款。
(2)供應鏈管理。大數據最重要的應用之一是解析跨多個組織的特定流程的價值和流程;在汽車行業中,這一分析被應用於供應鏈管理。組織需要知道他們從哪裡獲得的零件,成本是多少,提供的效率如何,以及這些行為如何影響整個公司的整體盈利能力。復雜的數據處理功能可以洞察這些維度,而企業正在相應地優化其策略。
(3)降低成本。汽車行業的大數據正在推動整體成本下降。大數據分析允許公司理解一種材料實質上有益於另一種材料,並幫助他們發現能提高效率或最大化生產率的新工藝變化。最終,這就意味著企業能夠以更低廉的價格整合車輛,而消費者也看到了收益。消費者最終為車輛支付更少的費用,汽車製造商仍然能夠獲得最大的利潤。
(4)安全改進。企業也在使用大數據深入分析車輛安全。在從測試崩潰和模擬情景中收集數百萬個數據點之後,企業可以對其車輛進行數百項額外的改進,以提高其能力,以在緊急事件和長期磨損的情況下生存下來。這又對企業和消費者都有利;消費者可以擁有更安全的汽車,企業的客戶更快樂,保險成本更低。這也逐漸讓交通更安全。
(5)消費者的理解。最後,汽車製造商正在使用大數據來更好地了解客戶的需求。這使得他們可以為大眾設計更具吸引力,更實用的車輛(這可以使消費者更多地了解他們正在尋找的東西,並增加製造商的銷售量)。它還為汽車製造商提供了重要的見解,然後他們可以用它來創建更具體的廣告和營銷活動,通過提高效率和最大限度地宣傳其最重要品牌來節省資金。
如果某人擁有一輛汽車或者計劃在不久的將來購買一輛汽車,大數據已經使其受益。得益於大數據和預測分析,人們的車輛的價格將變得越來越便宜和安全,並可以根據個人需求量身定製。如果有機會完成客戶調查,並為這些汽車廠商需要不斷改進的大量數據做出貢獻。
⑵ 裝配式結構目前存在的問題以及對策
裝配式建築定義及分類
裝配式建築是指建築的結構系統、外圍護系統、設備與管線系統、內裝系統的主要部分採用預制部品部件集成的建築。通俗來講,在裝配式建築的建造中,把梁、板、柱、牆等事先做好的的構建想像成一塊塊樂高積木,在施工現場只需把它們拼合在一起。和搭樂高一樣,裝配式建築將部分或所有構建在工程預制完成,然後運到施工現場進行組裝。
根據裝配式和預制構件的不通組合,可以將裝配式建築分為五類:砌塊結構、板材架構、盒式結構、滑升模板結構。
裝配式建築市場規模分析及預測
據前瞻產業研究院發布的《中國裝配式建築行業市場前瞻與投資規劃深度分析報告》最新統計數據顯示,2017年我國以裝配式建築685億美元左右的市場規模佔比35.1%。預計到2018年我國裝配式建築市場規模將達到904億美元,未來五年(2018-2022)年均復合增長率約為30.25%,2022年將達到2602億美元。
2017-2022年中國裝配式建築市場規模分析情況及預測
數據來源:前瞻產業研究院整理
我國裝配式建築還處於起步階段,裝配式建築前期投資成本高;規模化生產未成形,成本優勢沒有;市場的接受程度讓人生疑,畢竟很多國人的思想理念,還是依賴經驗與以傳統為導向。與國外差距大,與國外幾十年的技術發展相比,國內的標准制定稍顯滯後,審核與監督也不完善。
裝配式建築發展前景分析
優勢明顯
裝配式建築相對於傳統的建築方式,首先是建造的速度快,工廠流水化的作業效率遠遠高於工人現場施工的速度;標准化的生產,更能提高裝配構建的安全等級;受氣候條件的影響比較小,工時少且減少現場的澆築等作業,環保不擾民。
大數據
在大數據的概念下,利用BIM建立數據模型,從設計方案、建設需求、工程運營等方面進行管理和優化,裝配式建築的標准化與數據化,更便於管理與操作。而在工程設計上,它也更加貼合現在比較火熱的VR裝修概念。
鋼結構建築的應用日益普及,作為最環保、最成熟的裝配式建築將得到更廣泛的應用
建築工業化和裝配化的發展就是綠色建築行動方案實施的重要方式,鋼結構建築的工廠化生產和裝配式施工的特點使其成為了最環保、最成熟的綠色建築之一,這幾年來得到了大力的推廣和應用,未來的市場前景也將越來越廣闊。鋼結構建築相比較傳統建築方式具有明顯的優點:一是鋼結構建築可實現鋼構件及配套圍護結構的構件工廠標准化生產,品質容易保證,自重輕現場可裝配化施工節省人工且安全環保;
二是大幅降低染塵、噪音污染以及資源消耗,鋼材可回收與再生,減少建築垃圾,並可作為國家戰略資源儲備;
三是鋼結構「高大輕強」的特點,易於建造高層建築、大跨度建築等結構復雜的工程,提高土地使用率及戶內得房率;四是抗震性能好,結構更安全,借鑒日本、美國等發達國家的經驗,抗震性能卓越的鋼結構、輕質材料等各種最先進的防震手段將在未來住宅及公共建築中被廣泛應用。
成本高企仍靠政策獎勵
與傳統的房地產建造方式相比,裝配式建築的成本要高出300~500元/平方米左右,這是部分房企難以接受裝配式建築的原因之一。裝配式建築較現澆結構成本有所增加,預制率越高成本增加越多,預制率10%~60%將增加直接成本280~420元/平方米,另外還有其他間接成本。
現行的政策獎勵可以抵消裝配式建築的增量成本,上海、武漢等地都有容積率獎勵措施,外牆裝配式部分建築面積可以不計容,不計容面積不超過規劃總建面的3%。
隨著裝配式建築量的提升,產品按照工業化的方式來進行生產,成本會逐漸下降,房企需搶占規模化和工業化的先機。
目前參與到裝配式建築的主體仍是規模較大的開發商和建築企業,如萬科、碧桂園以及武漢的中建三局、美好置業等,可以整合全產業鏈資源,解決工程總承包、技術、部品生產等各環節相互銜接的問題。
⑶ 2017五大新技術助陣「互聯網+建築」的變革
在相應國家政策的情況下植根於新科技、新理念與各產業的結合,從而推動產業升級,建工行業也是如此,目前正是互聯網+建築百家爭鳴的時期,那麼如今互聯網已成紅海,還有什麼高新技術行業能夠獨領風騷嗎?
縱觀去年的建築行業和建工電商行業,大家都在正想做平台,四川建工,南通三建,鷹購網路科技等具有一定實力的公司都在花重金打造自己的建築電商平台,那麼到底對整個建築行業有多大的改觀呢?可以很遺憾的說,目前還沒有出現什麼大的改觀,盡管像佰采網這種規模很大的平台存在,也並沒有給去年的建工行業帶來多大的浪花。
大多數時候,都在思考如何打破信息不對稱和去中心化。在建築產業發展的下一個階段,需要思考的是,提高效率、成本優化、去人工化。尤其是每年居高不下的成本讓建設和施工單位非常頭疼,上面提到,裝配式技術會在一定程度上減少人員的參與,其中一部分工種會被淘汰。
隨著人工智慧融合機器人技術的應用,新一代的工業機器人開始逐步取代部分勞動力,從而降低施工成本。目前市場上已經有刷牆噴塗機器人,碼垛機械手等等,未來可以預見,高效率的施工方式還將有可能代替更多工種。
然而理想是很豐滿的,工業智能機器人在研發施工機器人需要克服很多困難,比如:環境的感知及高精度定位,施工路徑的規劃設置,輕量化設計,如何實現既能滿足施工需求又能滿足拆裝方便,機器人的行走以及結構控制,解決施工多樣化等困難。
上面提到5項可能融入到建築行業的技術,利用科技創新為行業注入新鮮血液和力量,讓建築行業更具有「科技感」。從更加長遠的考慮由新技術引發的革命才剛剛開始,我們任重而道遠,希望我們的互聯網+建築更加快速文件的發展,2017年,誰將成為互聯網+建築的佼佼者,未來由誰來領袖,誰將被淘汰,我們拭目以待。
⑷ 工業大數據的應用有哪些
大數據在工業中的應用有哪些?從需求角度來看,目前國內製造企業對大數據的需求較為明顯,但很多用戶仍處於觀望和試驗階段,不知道如何進行。因此,對於大數據服務提供商來說,有必要結合行業業務,尋找合適的應用場景。
工業大數據的應用有哪些?互聯網給傳統製造業帶來了挑戰,而互聯網大數據可以為企業管理者和參與者提供一個新的視角,通過技術創新和開發,以及對數據的全面感知、收集、分析和共享,來審視製造業價值鏈。it所帶來的巨大價值正在被傳統企業所認可。
然而,不同於目前互聯網大數據的火熱,工業大數據的應用對於企業來說有著很高的門檻。與互聯網不同,行業大數據與行業業務密切相關。因此,對企業的行業積累和對行業業務的深入了解都有很高的要求。此外,行業內的大數據分析比較准確,邏輯關系非常清晰。
工業大數據的應用有哪些?大數據在工業中的應用有哪些?通過大數據分析,企業可以使部門之間的數據更加協調,從而准確預測市場需求缺口。同時,通過更加靈活的工藝管理和更加自動化的生產設備裝配調度,實現智能化生產。然而,據我們所知,在中國從事大數據應用的公司並不多。然而,擁有自主知識產權和核心技術的企業並不多。要做好工業大數據的應用,需要有一套嚴謹的數據推理邏輯,以及平台和工具。目前,國內大數據應用企業還沒有足夠的能力滿足這一需求。
然而,仍有一些大型工業企業處於應用的前沿。以唐山鋼鐵集團為例,通過引進國際最先進的生產線,實現實時數據採集,與涵宇等企業合作,深入挖掘行業大數據價值,實時生產監控、生產調度、產品質量管理、能源控制等。此外,先進製造企業基於大數據在行業中的應用,將產品、機器、資源、人有機結合,推動基於大數據分析和應用的製造業智能化轉型。
綜上所述,在“互聯網+”時代,用戶需求具有實時性、小批量、碎片化、更新快等特點,對傳統製造業提出了挑戰。工業大數據有其鮮明的特點。隨著信息化和工業化的融合,產業大數據的應用為製造業轉型升級開辟了一條新途徑。深入探討工業大數據在製造過程中的應用場景和應用,將有利於更好地發揮其支撐作用。
工業大數據的應用有什麼?原來大數據工程師可以干這些,工業大數據的應用有什麼?從需求角度來看,目前國內製造企業對大數據的需求較為明顯,但很多用戶仍處於觀望和嘗試階段,你能處理好嗎?如果您還擔心自己入門不順利,可以點擊本站其他文章進行學習。
⑸ 大數據時代帶來更理性、更可靠的決策
大數據時代帶來更理性、更可靠的決策_數據分析師考試
究竟是什麼魔力,讓「大數據」這一概念得到全球各國的普遍關注?到底什麼是「大數據」?它能夠在多大程度上改變我們的生活?在我們尋求對這些重要問題的解答時,牛津大學網路學院互聯網研究所教授維克托·邁爾-舍恩伯格出現在我們的視野中;希望我們對他的采訪,可以幫助讀者們找到這些疑問的答案。
最近一段時間,「大數據」的熱潮席捲全球,正如美國《福布斯》雜志所說的那樣,如今,在瀏覽新聞網站或者參加行業會議時,想看不見或聽不到「大數據」這個詞幾乎不可能。去年,美國6個聯邦政府部門宣布將啟動「大數據研發計劃」,投資超過2億美元以改進從海量和復雜的數據中獲取知識的能力。同時,我國科技部發布的「『十二五』國家科技計劃信息技術領域2013年度備選項目徵集指南」也把大數據研究列在首位。眼下召開的全國「兩會」上,有全國人大代表提出要把發展「大數據」上升為國家戰略。
究竟是什麼魔力,讓「大數據」這一概念得到全球各國的普遍關注?到底什麼是「大數據」?它能夠在多大程度上改變我們的生活?眼前對「大數據」的關注度是否已經過高了呢?在我們尋求對這些重要問題的解答時,英國牛津大學網路學院互連網研究所教授維克托·邁爾-舍恩伯格(Viktor Mayer-Schonberger)出現在我們的視野中,討論「大數據」,他如果不是最合適的人選,也起碼是合適人選之一。
20多年來,維克托一直致力於網路經濟、信息與創新、信息監管、網路規范與戰略管理的研究。還在「大數據」這一概念眾說紛紜時,維克托就已進行了系統深入的研究,2010年,他在英國《經濟學人》雜志上和數據編輯肯尼思·庫克耶一起,發表了長達14頁的大數據專題文章。稱他為最早洞見大數據時代發展趨勢的數據科學家之一,並不為過。
《經濟學人》說,在大數據領域,維克托是最受人尊敬的全方位發言人之一;美國《科學》雜志說,若要發起一場關於這個問題的深入討論,沒有比他更好的發起者了。
除了理論研究以外,維克托還非常接近實戰世界,早在上大學期間,他就先後成立了兩家數據安全和製作反病毒軟體的公司,而在他寫就的《大數據時代》一書中,那些最前沿、最嶄新的大數據應用案例,都得益於他多年來緊跟企業與商業應用的步伐。他的咨詢客戶中,不乏微軟、惠普、IBM、亞馬遜、臉書、推特、VISA等大數據先鋒們。
目前,維克托還是歐盟互聯網官方政策背後的重要制定者與參與者,尤為重要的是,他還任職過新加坡商務部、汶萊國防部、科威特商務部等部門,特別熟悉亞洲信息產業的發展與戰略布局。
希望我們通過電子郵件對維克托的采訪,可以幫助讀者們找到這些疑問的答案。
失去微觀層面上的精確度,為的是獲取宏觀層面上的洞察力
文匯報:今天,「大數據」已經成為全球炙手可熱的詞彙,您是從何時開始關注它的?
邁爾-舍恩伯格:多年來,我一直致力於研究數據在信息經濟的發展中所扮演的重要角色,我與肯尼思·庫克耶(Kenneth Cukier,我的合著者)一起發布了一系列相關研究報告。大約三年前,在我自己組織的一次會議上,我倆都意識到「大數據」的存在已經不僅僅是一種炒作或者什麼宏大的宣言了,而將實實在在地改變我們的工作、生活以及整個社會,於是,我們決定就此專題寫一本書。
文匯報:那麼在您看來,究竟什麼是大數據時代?它和傳統數據時代到底有什麼差別?我們知道,像沃爾瑪這樣的公司早在多年前,就已經將大數據運用到了商業實踐中。
邁爾-舍恩伯格:事實上,過去幾個世紀以來,數據已經在科學家們制定決策的過程中扮演了一定的角色,而過去幾十年間,這一做法又延伸到了一些公司的決策制定過程。但在大數據時代之前,數據是非常匱乏的,我們擁有的數據非常少。因此,我們的決策、我們構建的制度都是建立在這樣一種數據匱乏的基礎上。今天,一切變得非常不同,它體現在三個不同的方面,我們稱之為「更多」、「更亂」和「相關性」。
文匯報:這三個特徵也是您在《大數據時代》一書中非常強調的,它們甚至會顛覆我們過去的整個思維方式。您能否具體描述一下這到底是怎樣的過程?
邁爾-舍恩伯格:好的。我所說的「更多」,是指圍繞任何一個我們想要調查的特定問題,或者是需要我們回答的疑問,我們都可以比過去任何時候獲取更多的數據。在大數據時代,我們可以利用海量的數據得到非常詳盡的見解,這是傳統方法所不能做到的。
可以這么說,大數據時代和傳統數據時代的區別,就像解析度在200萬像素的舊數碼照片,一下子提高到2400萬像素那樣。後者是一個非常非常大的文件,它可以提供更多細節。它可以讓我們不斷放大,看清楚小到顆粒狀的細部,而具有較低解析度的圖像在這些細節方面就會非常模糊。
基因信息就是一個很好的例子。美國有一家叫23andMe的新公司提供個人的DNA測試分析,以發現一些疾病徵兆。它的成本只有兩三百美元,並提醒客戶關注會發展成嚴重疾病的個人癖好。但是公司並不對每個客戶的全基因組進行測序,而是針對已知特徵的位點(經研究得知因某種疾病存在,而可能會出問題的DNA片段)進行比對。這意味著,當一個新的特徵被研究發現時,23andMe公司就不得不再次對客戶的DNA進行測序並建立更完整的檔案。
蘋果公司的史蒂夫·喬布斯嘗試了非常不同的方法。他得了癌症後,就有了自己全部的基因密碼,數十億的鹼基對測序。這花費了他超過10萬美元的成本,但這可以讓醫生完整地洞察他的基因密碼。每當葯物由於喬布斯的癌症病變而失去有效性,他們就可以根據喬布斯特定的基因信息,尋找到有效的替代葯物。遺憾的是,這也沒有保住喬布斯的命,但是在這一過程中獲得的數據,已經延長了他的生命。
由於技術創新,現在收集大量信息的成本變得越來越低。數年前,史蒂夫·喬布斯花費了六位數的金額才做到的事情,今天,不到1000美元就可以獲得同樣的服務了。
而「更亂」指的是,在小數據時代,因為數據是如此稀少,我們可以確保自己收集的每一個數據點都是非常准確的。相比較而言,大數據往往是凌亂和質量參差不齊的。但是,相比以高額代價來保證測量和收集少量數據的精確性,在大數據時代,我們將接受這種雜亂,因為我們通常需要的只是一個大方向,而不是努力了解一種現象的細枝末節。我們並不是要完全放棄精確性,我們只是放棄對精確性的熱衷。我們失去微觀層面上的精確度,為的是獲取在宏觀層面上的洞察力。
電腦翻譯就是其中一個例子。1990年代,IBM的研究人員使用了一套非常精確的文件(加拿大議會記錄的法語和英語版)來訓練計算機。盡管計算機完全按照規則行事,但基於此的翻譯質量卻非常低。然後,谷歌在2006年開始介入這一領域,他們沒有使用來自加拿大政府的幾百萬句標准翻譯,而是使用隨手可得的任何語言。他們在整個互聯網上,利用數十億頁質量參差不齊的翻譯,這些翻譯不怎麼標准——但是,這是一個小的權衡——他們能夠使用的數據大大增加了,結果翻譯質量反而提高了。與更少、更標準的數據相比,更多凌亂的資料完勝了。
「更多」和「更亂」組合到一起,產生了第三個特點,「相關性」,這也是大數據帶給我們的最根本性的轉變。我們的思維將從因果關系轉向相關關系。至今為止的整個人類歷史里,全世界的人們都在尋找事件發生的原因,探尋「為什麼」。但我們對原因的執著探索往往帶領我們走向錯誤的方向。所以,我們建議,在大數據時代,在許多情況下,我們可以僅僅尋找「是什麼」,而不必完全理解「為什麼」。例如,對於大數據的分析中,我們可以發現機器震動中一些非常微小的變化,這些變化表明機器將很快損壞。這使我們能夠在部分機器零件報廢前更換它們,這被稱為「預測性維護」,它可以節省不少錢。但除了提高消費效率,「相關性」還可以做更多的事情。
比如對早產兒而言,即使他們長大成人,這些小寶寶仍舊是非常脆弱的,哪怕是遇上很小的感染。醫生卡羅琳·麥格雷戈研究如何給這些嬰兒最好的生存機會。使用大數據分析,每分鍾可以搜集這些嬰兒超過一千個數據點,麥格雷戈發現一個令人震驚的事實:每當這些早產兒出現非常穩定的標志時,他們的身體其實並不穩定,正在准備發病。有了這方面的知識,她就能在一個非常早期的階段,確定嬰兒是否需要葯物治療,從而挽救更多孩子的生命。
這是典型的大數據應用:醫生麥格雷戈通過更全面的感測器,可以比以往搜集到更多的數據。她也接受,在這種情況下,並不是所有的數據都是准確的,從而也會導致她分析中存在不精確的可能。她把「為什麼」這個問題放在一邊,而用一種更務實的方式來提供幫助,她尋找「是什麼」,這才是一個更好的預見感染的辦法。
我們應該記住:大數據也可以挽救生命。
正確使用大數據,可以改善醫療、教育水平,促進人類發展
文匯報:大數據時代的到來,是否將會引領新一輪的產業革命?我們應該怎樣客觀地看待它的價值?
邁爾-舍恩伯格:大數據將會極大地改變社會生活的方方面面,但是它的價值能否等同於工業革命,這個問題目前還不好說。我個人猜想可能不能,原因是在19世紀初工業革命剛剛開始的時候,經濟發展還處於非常低的水平上,所以相對來說,當時的人們從工業化過程中所能獲得的生活水平的提升是非常巨大的,今天則非常不一樣了。
我們真正想強調的是,大數據時代將推動我們從根本上改變企業的運作方式,以及我們在社會中的生活方式。大數據可以提高人類制定決策的能力,這種提高將是大幅度的。有了大數據,我們不是簡單地提高經濟效率,而是將挽救人類生命,延長我們自己的壽命。我們還將改善教育,促進發展。同樣的道理,我們必須要小心。大數據同樣也有「陰暗面」,正如我們在書中討論的那樣。如果應用錯誤,大數據也可能會化為一個強有力的武器。因此,我們必須確保正確使用大數據。
文匯報:您提到了大數據時代的「陰暗面」,它的到來會加深數字化鴻溝嗎?
邁爾-舍恩伯格:大數據是一個強大的工具。因此,如果我們使用了錯誤的方式,它就可能會加深數字鴻溝。但是,如果我們用得好,相信大數據就可能會改善我們的生活,尤其是對那些不那麼幸運的人而言。在這一點上,你可以把它想像成火、電或是抗生素等等。
文匯報:也就是說,您對大數據的價值認知,是基於一個更長時段的歷史發展。
邁爾-舍恩伯格:如果以非常廣闊的視角來看人類歷史,我認為,人類一直想要理解世界。起初,許多人的「知識」是基於迷信和預感。知識的發展非常慢,人們需要非常深層次的思考,再通過實踐進行檢驗,以確保知識是可用的。
但即使如此,我們的知識仍舊不是百分之百可靠的。例如,19世紀,路易·巴斯德一直在研究狂犬病疫苗,當時有一個被狗嚴重咬傷而染上狂犬病的小孩,父母擔心孩子會死去,懇求巴斯德試試他的試驗性疫苗。巴斯德照做了,孩子活了下來。隨後的慶祝活動上,巴斯德以一個英雄的身份出現,他挽救了年輕孩子的性命。但是事實的確如此嗎?今天,通過更深入的研究,我們知道,在被類似病狗咬到的兒童中,只有25%會感染狂犬病。所以75%的兒童哪怕使用了無效的疫苗,仍舊可以存活下來。這個故事告訴我們,我們以為自己生活在非常科學的世界中,但其實,我們擁有的數據非常少。一種新的治療方法在被證明安全之前,需要做幾十個甚至幾百個醫學實驗來進行測試。但這仍舊太少,人們還是會受到傷害,因為我們依靠的數據太少。在大數據時代,我們可以告別數據匱乏,做出的決策將更理性,更基於事實,當然也更可靠。這是大數據時代帶給我們的希望——更好的決策將會代替我們過往那些可疑的迷信和不可靠的人類預感。
文匯報:我們看到,麥肯錫公司2011年就發布報告推測,如果把大數據用於美國的醫療保健,一年可產生潛在價值3000億美元,用於歐洲的公共管理可獲得年度潛在價值2500億歐元;服務提供商利用個人位置數據可獲得潛在的消費者年度盈餘6000億美元;利用大數據分析,零售商可增加運營利潤60%,製造業設備裝配成本會減少50%。「數據創造價值」的預測已經非常振奮人心。在您看來,大數據是否只是一門價值不菲的生意?
邁爾-舍恩伯格:不,大數據可以做更多。醫療方面,我們前面已經提過,只是分析一些重要的徵兆,早產嬰兒的感染出現明顯症狀的數小時前,醫生就可以預見其生病。
同樣,通過大數據分析,我們也可以找出學校教科書中的哪一部分對學生而言效果最好,也可以找出效果不好的部分。到現在為止,我們只能按照人類的預感,即教師自己判斷學生在理解特定課程時是否會有疑問;但在大數據時代,我們有實際的數據可以參考,例如數據顯示,電子書籍的某些頁面被看過許多遍,因為它讓學生感覺費解,據此可以調整我們的教材。這將從根本上改變教育。
或者舉公共政策為例:Inrix是為智能手機提供導航軟體的公司,它還提供實時的交通數據。之所以能做到這一點,是因為每個用戶本身都成為了交通流量狀況的感測器,把位置和速度信息都發回Inrix公司。這樣一來,就可以給行進在交通堵塞路段周圍的客戶提供良好服務。Inrix公司有一大堆人們的活動數據,這還將有助於城市規劃者了解大家的通勤模式,人們從哪裡出發去工作,然後返回,並建設基礎設施,如道路和鐵路。這是最有效的應用。節省錢的同時,也有利於整個社會的管理。
文匯報:大數據對於商業決策、學術研究乃至國家治理的作用是顯而易見的;但是對日常生活中的普通人而言,他們一定會從中受益嗎?為什麼在大數據時代,還是有不少人主張遠離過載的信息和數據、返璞歸真回到傳統的社群生活之中呢?個人生活空間一定得從「簡單平面」轉變到「多維存在」才有意義嗎?
邁爾-舍恩伯格:千百年來,人類已經經歷的世界,都是在少量數據的基礎上產生很多想法的世界。海員們結束長途航行後回來,地圖才會在這一次經驗的基礎上進行重新繪制。這顯然不會很精確。經過試驗和犯錯的周而復始,人類發展得非常緩慢。但是,當我們只有非常少的數據時,這是理所當然的結果。今天,我們有這么多的數據,難怪人類會不堪重負。但是,現在大數據可以提供幫助。如果人類不太善於消化這些過多的信息,大數據分析可以幫助我們將信息進行過濾,並進一步可視化,使我們能夠輕松地加以使用。
人們尚未普遍具備與大數據時代相匹配的思維和技能
文匯報:有專家認為,大數據的未來是數據的APP(加速並行處理)而非基礎構架;也就是說,僅僅有數據平台和基礎構架是無法創造長期價值的。對此您怎麼看?
邁爾-舍恩伯格:我們認為,大數據時代將至少需要和過去時代一樣多的人的獨創性。同時,巨大的資源才是未來時代的金礦,那些擁有這些數據資源的人將獲得的回報是不可想像的。
文匯報:大數據時代,數據都是透明的,我們如何在保護個人隱私、商業機密和國家安全之間取得平衡?您所謂的「互聯網遺忘運動」會是最佳葯方嗎?
邁爾-舍恩伯格:大數據時代所面臨的挑戰是,我們發現了隱藏在數據背後的價值,所以,保留這些數據,然後一遍遍地重復使用數據,往往成為一種明智的選擇。同時,現行的保護個人隱私的法律,特別在西方,針對的是一個傳統數據的世界,而不是一個大數據世界。這就需要我們在保護隱私的規則方面作出調整。我們建議,可以通過調整相關保護規則來實現這一目標,正像你所提到的,我們可以在一定時間以後,選擇遺忘這些數據。
文匯報:大數據時代是一個海量數據有待處理的時代,同時又是一個海量無用信息需要刪除的時代。這是否就是您在《刪除》一書中強調我們要有所取捨的原因所在?
邁爾-舍恩伯格:是。在某種程度上,大數據本身也可以加強隱私的保護。因為如果有一百萬個數據點,一個單獨的數據點就不再那麼重要了,這和傳統數據時代非常不一樣。隨著時間的推移,忘記其中一些數據,並不會破壞整個大數據的運行和使用。
文匯報:大數據現在在全球究竟發展到了什麼階段?處理大數據的技術是否已經在全世界范圍內普及?
邁爾-舍恩伯格:管理和處理大數據的技術都已經存在了,而且並不是非常昂貴。但是,有一樣東西目前仍舊非常缺乏,那就是我們的思維——以理解數據背後所隱藏的巨大價值,以及提取這種價值的專門技能。今天,全球范圍內,人們還沒有普遍具備這種思維和技能,但是我相信,在未來,這種情況會發生改變。我們預計,世界各地的許多大學將提供針對大數據分析的課程,來培訓大數據時代所需要的技能。
文匯報:歷次產業技術革命,中國似乎都是學習者和模仿者;和上幾輪產業技術革命不同的是,大數據時代,中國幾乎和歐美發達國家同時開始技術研發,中國人口又居世界首位,將會成為產生數據量最多的國家。您看好中國在新時代的發展前景嗎?中國在大數據時代是否有創新和領先的可能?
邁爾-舍恩伯格:是的,我們對此非常樂觀。中國很可能成為大數據這一領域的先驅。在大數據時代,中國有很多優勢:中國人都受過良好的教育,特別是在數學和統計方面(這是非常重要的)。中國是一個巨大的多元化社會,這會創造大量機會來創造大數據這一資源,並建立大數據應用。同樣的道理,對於大數據的蓬勃發展,我們還需要相匹配的思維方式,有嘗試新事物和持續創新的願望,以實證事實來作為我們決策的依據。因此,和許多其他社會一樣,大數據時代的確也會給中國帶來非常大的變化。
以上是小編為大家分享的關於大數據時代帶來更理性、更可靠的決策的相關內容,更多信息可以關注環球青藤分享更多干貨
⑹ 如何應對大數據時代的變革機遇挑戰
大數據搭著信息時代的快車來到了我們的面前,數據的價值逐漸為人們所重視,同時也讓數據分析師的身價倍增。而隨著大數據分析工具等大數據應用技術的出現,未來的數據分析師又將遇到怎樣的挑戰和機遇呢?
工具搶了人的飯碗?
很多大數據分析工具的設計起點非常高,定位了數據分析過程中所需要的大部分功能。很多工具的功能涵蓋了從數據前期整合、收集到挖掘、分析乃至末端的數據可視化的整個數據分析過程,功能不可謂不強大。
但如果僅憑這些就認定大數據分析工具能取代數據分析師,未免有些杞人憂天了。恰恰相反,大數據分析工具不是數據分析師的競爭者,而是協助者。工具本來就是為人服務的,數據分析師的專業素養讓其能很好的發揮大數據分析工具的性能,二者相輔相成,是友非敵。
企業的支持
雖然大數據的概念已經普及,但是很多企業還是留存有一些傳統的觀念。很多企業雖然重金聘用了數據分析師甚至是組建了數據分析師團隊,但是卻並沒有建立完善的數據價值體系。對數據分析工作缺乏理解與支持。
相對於數據管理,數據分析工的工作重心還應該放在「挖掘數據價值」上。企業與數據分析師直接缺少職能的溝通,將直接影響企業對數據分析師工作性質的定位;同時,企業應該建立資料庫並部署大數據分析工具,為了能更好地對接用戶,也為企業和數據分析師留有足夠的空間。
從幕後到台前的轉變
以往的業務人員經常要磨破嘴皮才能得到別人的認同,而現在許多企業正在考慮讓數據分析師帶著數據分析結果去談業務。打算以「讓數據說話,以數據服人」去贏得客戶的信任。而主要的實施過程,是靠數據可視化技術來實現的。
數據可視化技術讓數據能以圖表和視頻的方式直觀地展示在人們面前,而數據分析師作為數據的管理者和挖掘者,是最適合不過的講解人了。這樣就要求數據分析師不僅要有扎實的數據分析能力,還要能提取數據精髓,並將之演講出來以獲得他人的認同。從幕後轉到台前,這裡面會需要許多技能,數據分析師的工作性質也將發生改變。
在大數據時代,數據分析師所扮演的角色不可能是一成不變的。而只有順應時代的潮流,響應時代的需要,數據分析師這個行業才能繼續生存並發展。其實,大數據分析工具,數據可視化這些技術的出現固然使行業受到了影響與挑戰,但對於數據分析師來說,未嘗不是一次擺脫傳統束縛的機遇!