『壹』 大數據在交通領域的應用
大數據在交通領域的應用可以改善城市交通擁堵情況、提高道路通行能力、降低交通事故發生率等,具體應用如下:
1. 交通流量預測:通過分析歷史車流量數據和實時車輛位置等信息,可以預測未來的交通流量,進而實現交通信號燈控制優化或者路況導航提示。
總之,大數據在交通領域的應用為城市交通運輸管理提供了更加准確、高效和科學的手段,從而有效解決了城市交通問題。
『貳』 交通大數據分析會對智慧交通產生那些影響
隨著這些年我國城市化發展的加速,城市交通擁堵、交通污染日益嚴重,交通事故頻繁發生。眾所周知,智能交通成為改善城市交通的關鍵策略。因此,及時、准確獲取交通大數據並構建交通數據處理模型是建設智能交通的前提,而這一難題可以通過大數據技術得到解決。
交通行業現狀
我國智能交通發展始於上世紀90年代,在「十二五」規劃中,我國交通部進一步明確未來智能交通運輸的發展目標,例如,感知識別、網路傳輸、智能處理和數據挖掘等。在改善結構調整和城際溝通的支撐、引領雙重作用,成為城市交通最重要的發展領城。包括大數據等現代先進技術的應用,提高整個交通運輸系統的發展水平、質量和管理及服務水平,實現能力供給增加、安全保障性以及經濟、環保等的提高。而且,大數據的應用在地鐵網路化、大客流運營常態下愈發凸現其對地鐵安全、高效運行和乘客服務方面的重要價值。
我國新型城鎮化將需要形成城市群內部城市之間、城市內部的軌道交通系統,交通運輸環境進一步改善。包括大數據等現代先進技術的應用,目的在於提高整個交通運輸系統的發展水平、質量和管理及服務水平,實現能力供給增加、安全保障性以及經濟、環保等的提高。而且,大數據的應用在地鐵網路化、大客流運營常態下愈發凸現其對地鐵安全、高效運行和乘客服務方面的重要價值。
目前遇到的問題
1、海量數據
軌道交通系統每時每刻都在產生大量數據,來自故障維修系統、實時監控系統、項目實施進度系統、物資物料統計系統等,且數據增長速度越來越快,這些數據的價值在哪?該如何利用提升地鐵運營效率,確保項目交付的及時監控。
2.數據認知
大多數傳統系統,故障維修系統,實時監控系統,物資物料統計系統中,已有簡單的分析統計圖表,但數據格式比較單一,靈活性差,交互性低,管理者難以對數據有很好的認知。
3、管理決策
大數據運營在地鐵網路化、大客流運營常態下愈發凸現其對軌道交通安全、高效運行和乘客服務方面的重要作用,能迅速從底層數據中提取關鍵數據,以數據驅動運營方向,對決策提供科學支撐。
現在很多地方的交通大數據系統都用的BI平台,比如永洪科技,一般的大數據分析系統分為3個層次:
1、數據層以及建模層:整合交通行業各信息系統,打破信息孤島,實現數據共享。數據決策方面、銷售方面、運營方面關心的指標,建立不同分析主題集市。
2、業務層:梳理交通行業指標,將分析結果推送至展現層。
3、展現層:以豐富美觀的圖表展現方式,靈活多變的交互方式,將分析結果呈現給各角色管理人員。
基本上現在的大數據分析平台都可以做到以下幾個方面:
1、基於交通數據分析平台,決策層、管理層可能洞察軌交運行狀況。
2、應對軌交各系統數據量的迅速增長,基於明細數據,任意業務的計算及展現,可達到秒級響應。
3、運營和分析部門都能做部分自服務分析,以滿足實時探索分析需求。
4、能夠快速響應新的分析需求和變化,提高工作效率 。
『叄』 什麼是交通大數據
跟交通信息有關的所有數據整合到一起(比如車輛信息、地圖信息、人員信息、違規違章記錄信息等等),形成一個數據鏈,這樣的就是交通大數據。
『肆』 大數據對交通行業有什麼影響
第一,為用戶提供服務內容越來越精準。有賴於基於大數據的交通路網動態分析,為用戶提供了出行的實時方案選擇。
第二,交通通行效率越來越高。這也有賴於各種各樣的互聯網感知器,對復雜天氣、事故、各種突發事件的實時分析,使得交通管理部門掌握了更多的交通狀況,及時做出反應。
第三,現場人工執法越來越少。有賴於基於大數據的行為分析,交通執法的事情都變成一個事後的非現場的執法。
第四,交通服務自動化程度越來越高。移動支付和各種自動化設備的應用,自助服務和無感服務普遍應用。
第五,交通主管部門的決策越來越科學。政府對重大政策的制定和推出越來越依賴於對交通行為的分析,最典型的就是廣州限外地牌照這件事情,專業機構通過數據分析發現廣州道路擁堵的症結。