A. 大數據是什麼意思
大數據指的是族培游數據量非常大且無法通過傳統的數據處理方式進行處理、存儲、分析和管理的數據集合。這些數據可以來自各種不同的來源,如社交媒體、互聯網、感測器、移動設備等。由於數據量非常大,兆銷需要使用高級的技術和工具來處理這些數據,並從中提取有價值的信息和見解。大數據具中猛有很高的復雜性和多樣性,可以用於許多不同的領域,如金融、醫療、交通、教育等。B. 什麼是大數據,通俗的講
有人說大數據技術是第四次技術革命,這個說法其實不為過。
很多人只是聽過大數據這個詞或者是簡單知道它是什麼,那麼它是什麼呢,在這里就通俗點來說一下個人對大數據的理解。
大數據,很明顯從字面上理解就是大量的數據,海量的數據。大,意思就是數據的量級很大,不上TB都不好意思說是大數據。數據,狹義上理解就是12345那麼些數據,畢竟計算機底層是二進制來存的,那麼在大數據領域,數據就不僅僅包括數字這些,它可以是所有格式的東西,比如日誌,音頻視頻,文件等等。
所以,大數據從字面上理解就是海量的數據,技術上它包括這些海量數據的採集,過濾,清洗,存儲,處理,查看等等部分,每一個部分包括一些大數據的相關技術框架來支持。
舉個例子,淘寶雙十一的總交易額的顯示,後面就是大數據技術的支持,全國那麼多淘寶用戶的交易記錄匯聚到一起,數據量很大,而且要做到實時的展現,就需要強有力的大數據技術來處理了。
數據量一大,那麼得找地方來存,一個伺服器硬碟可以掛多少,肯定滿足不了這么大的數據量存儲啊,所以,分布式的存儲系統應運而生,那就是HDFS分布式文件系統。簡單的說,就是把這么大的數據分開存在甚至幾百甚至幾千台伺服器上,那麼管理他們的系統就是HDFS文件系統,也是大數據技術的最基本的組件。
有地方存了,需要一些分布式的資料庫來管理查詢啊,那就有了Hbase等,還需要一些組件來計算分析這些數據啊,maprece是最基本的計算框架,其他的計算框架Spark和Storm可以完成實時的處理,其中HDFS和MapRece組成了Hadoop1.
總之,一切都是數據。我們的歷史,是不是都是大量的數據保存下來的,現在我們也是大數據的生活,天天有沒有接到騷擾電話還知道你姓什麼,你查話費什麼的從幾億人的數據中查到你的信息,大數據生活。未來,大數據將更深刻的滲透到生活中。
C. 什麼是大數據
大數據,指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
這里介紹一下大數據要學習和掌握的知識與技能:
①java:一門面向對象的計算機編程語言,具有功能強大和簡單易用兩個特徵。
②spark:專為大規模數據處理而設計的快速通用的計算引擎。
③SSM:常作為數據源較簡單的web項目的框架。
④Hadoop:分布式計算和存儲的框架,需要有java語言基礎。
⑤spring cloud:一系列框架的有序集合,他巧妙地簡化了分布式系統基礎設施的開發。
⑤python:一個高層次的結合了解釋性、編譯性、互動性和面向對象的腳本語言。
互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。
想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,建議實地考察對比一下。
祝你學有所成,望採納。
北大青鳥學生課堂實錄
D. 大數據是什麼意思 是怎麼解釋的
1、大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
2、在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)
E. 大數據是什麼意思
大數據的解釋
大數據(big data),指需要新處理模式才能具有更強的決策力、洞察發現力和流程 優化 能力 來適應 海量 、高 增長率 和 多樣化 的信息資產。 具有數量 巨大 (無統一 標准 ,一般認為在T級或P級以上,即10 12 或10 15 以上)、類型多樣(既包括數值型數據,也包括文字、圖形、圖像、音頻、視頻等非數值型數據)、處理時效緊、數據源可靠性保證度低等綜合屬性的數據集合。
詞語分解
大的解釋 大 à 指面積、體積、容量、數量、強度、力量超過一般或超過所比較的 對象 ,與「小」 相對 :大廳。迅叢大政。大氣候。夜郎 自大 。 大腹便便 。 指大小的岩昌者對比:這間房有那間兩個大。 規模廣, 程度 深, 性質 重要 :大局。大眾 數據的解釋 科學實驗、粗薯檢驗、統計等所獲得的和 用於 科學 研究 、技術 設計 、查證、決策等的數值 提供 各項數據詳細解釋進行各種統計、 計算 、科學研究或技術設計等所 依據 的數值。 柯岩 《奇異的 書簡 ·船長》:「 貝漢廷 分析著各
F. 什麼是大數據,看完這篇就明白了
什麼是大數據
如果從字面上解釋的話,大家很容易想到的可能就是大量的數據,海量的數據。這樣的解釋確實通俗易懂,但如果用專業知識來描述的話,就是指數據集的大小遠遠超過了現有普通資料庫軟體和工具的處理能力的數據。
大數據的特點
海量化
這里指的數據量是從TB到PB級別。在這里順帶給大家科普一下這是什麼概念。
MB,全稱MByte,計算機中的一種儲存單位,含義是「兆位元組」。
1MB可儲存1024×1024=1048576位元組(Byte)。
位元組(Byte)是存儲容量基本單位,1位元組(1Byte)由8個二進制位組成。
位(bit)是計算機存儲信息的最小單位,二進制的一個「0」或一個「1」叫一位。
通俗來講,1MB約等於一張網路通用圖片(非高清)的大小。
1GB=1024MB,約等於下載一部電影(非高清)的大小。
1TB=1024GB,約等於一個固態硬碟的容量大小,能存放一個不間斷的監控攝像頭錄像(200MB/個)長達半年左右。
1PB=1024TB,容量相當大,應用於大數據存儲設備,如伺服器等。
1EB=1024PB,目前還沒有單個存儲器達到這個容量。
多樣化
大數據含有的數據類型復雜,超過80%的數據是非結構化的。而數據類型又分成結構化數據,非結構化數據,半結構化數據。這里再對三種數據類型做一個分類科普。
①結構化數據
結構化的數據是指可以使用關系型資料庫(例如:MySQL,Oracle,DB2)表示和存儲,表現為二維形式的數據。一般特點是:數據以行為單位,一行數據表示一個實體的信息,每一行數據的屬性是相同的。所以,結構化的數據的存儲和排列是很有規律的,這對查詢和修改等操作很有幫助。
但是,它的擴展性不好。比如,如果欄位不固定,利用關系型資料庫也是比較困難的,有人會說,需要的時候加個欄位就可以了,這樣的方法也不是不可以,但在實際運用中每次都進行反復的表結構變更是非常痛苦的,這也容易導致後台介面從資料庫取數據出錯。你也可以預先設定大量的預備欄位,但這樣的話,時間一長很容易弄不清除欄位和數據的對應狀態,即哪個欄位保存有哪些數據。
②半結構化數據
半結構化數據是結構化數據的一種形式,它並不符合關系型資料庫或其他數據表的形式關聯起來的數據模型結構,但包含相關標記,用來分隔語義元素以及對記錄和欄位進行分層。因此,它也被稱為自描述的結構。半結構化數據,屬於同一類實體可以有不同的屬性,即使他們被組合在一起,這些屬性的順序並不重要。常見的半結構數據有XML和JSON。
③非結構化數據
非結構化數據是數據結構不規則或不完整,沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。包括所有格式的辦公文檔、文本、圖片、各類報表、圖像和音頻/視頻信息等等。非結構化數據其格式非常多樣,標准也是多樣性的,而且在技術上非結構化信息比結構化信息更難標准化和理解。所以存儲、檢索、發布以及利用需要更加智能化的IT技術,比如海量存儲、智能檢索、知識挖掘、內容保護、信息的增值開發利用等。
快速化
隨著物聯網、電子商務、社會化網路的快速發展,全球大數據儲量迅猛增長,成為大數據產業發展的基礎。根據國際數據公司(IDC)的監測數據顯示,2013年全球大數據儲量為4.3ZB(相當於47.24億個1TB容量的移動硬碟),2014年和2015年全球大數據儲量分別為6.6ZB和8.6ZB。近幾年全球大數據儲量的增速每年都保持在40%,2016年甚至達到了87.21%的增長率。2016年和2017年全球大數據儲量分別為16.1ZB和21.6ZB,2018年全球大數據儲量達到33.0ZB。預測未來幾年,全球大數據儲量規模也都會保持40%左右的增長率。在數據儲量不斷增長和應用驅動創新的推動下,大數據產業將會不斷豐富商業模式,構建出多層多樣的市場格局,具有廣闊的發展空間。
核心價值
大數據的核心價值,從業務角度出發,主要有如下的3點:
a.數據輔助決策:為企業提供基礎的數據統計報表分析服務。分析師能夠輕易獲取數據產出分析報告指導產品和運營,產品經理能夠通過統計數據完善產品功能和改善用戶體驗,運營人員可以通過數據發現運營問題並確定運營的策略和方向,管理層可以通過數據掌握公司業務運營狀況,從而進行一些戰略決策;
b.數據驅動業務:通過數據產品、數據挖掘模型實現企業產品和運營的智能化,從而極大的提高企業的整體效能產出。最常見的應用領域有基於個性化推薦技術的精準營銷服務、廣告服務、基於模型演算法的風控反欺詐服務徵信服務,等等。
c.數據對外變現:通過對數據進行精心的包裝,對外提供數據服務,從而獲得現金收入。市面上比較常見有各大數據公司利用自己掌握的大數據,提供風控查詢、驗證、反欺詐服務,提供導客、導流、精準營銷服務,提供數據開放平台服務,等等。
大數據能做什麼?
1、海量數據快速查詢(離線)
能夠在海量數據的基礎上進行快速計算,這里的「快速」是與傳統計算方案對比。海量數據背景下,使用傳統方案計算可能需要一星期時間。使用大數據 技術計算只需要30分鍾。
2.海量數據實時計算(實時)
在海量數據的背景下,對於實時生成的最新數據,需要立刻、馬上傳遞到大數據環境,並立刻、馬上進行相關業務指標的分析,並把分析完的結果立刻、馬上展示給用戶或者領導。
3.海量數據的存儲(數據量大,單個大文件)
大數據能夠存儲海量數據,大數據時代數據量巨大,1TB=1024*1G 約26萬首歌(一首歌4M),1PB=1024 * 1024 * 1G約2.68億首歌(一首歌4M)
大數據能夠存儲單個大文件。目前市面上最大的單個硬碟大小約為10T左右。若有一個文件20T,將 無法存儲。大數據可以存儲單個20T文件,甚至更大。
4.數據挖掘(挖掘以前沒有發現的有價值的數據)
挖掘前所未有的新的價值點。原始企業內數據無法計算出的結果,使用大數據能夠計算出。
挖掘(演算法)有價值的數據。在海量數據背景下,使用數據挖掘演算法,挖掘有價值的指標(不使用這些演算法無法算出)
大數據行業的應用?
1.常見領域
2.智慧城市
3.電信大數據
4.電商大數據
大數據行業前景(國家政策)?
2014年7月23日,國務院常務會議審議通過《企業信息公示暫行條例(草案)》
2015年6月19日,國家主席、總理同時就「大數據」發表意見:《國務院辦公廳關於運用大數據加強對市場主體服務和監管的若干意見》
2015年8月31日,國務院印發《促進大數據發展行動綱要》。國發〔2015〕50號
2016年12月18日,工業和信息化部關於印發《大數據產業發展規劃》
2018年1月23日。中央全面深化改革領導小組會議審議通過了《科學數據管理辦法》
2018年7月1日,國務院辦公廳印發《關於運用大數據加強對市場主體服務和監管的若干意見》
2019年政府工作報告中總理指出「深化大數據、人工智慧等研發應用,培育新一代信息技術、高端裝備、生物醫葯、新能源汽車、新材料等新興產業集群,壯大數字經濟。」
總結
我國著名的電商之父,阿里巴巴創始人馬雲先生曾說過,未來10年,乃至20年,將是人工智慧的時代,大數據的時代。對於現在正在學習大數據的我們來說,未來對於我們更是充滿了各種機遇與挑戰。
python學習網,大量的免費python視頻教程,歡迎在線學習!
G. 大數據到底是啥在哪裡(通俗解釋)
大數據(Big
data)
是一個抽象的概念,是一個體量特別大,數據類別特別大的數據集版,並且這權樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。簡單說就是,難以用常規的資料庫工具獲取、存儲、管理、分析的數據集合。
大數據來源:人類社會的所有行為,比如交易、教育、出行、娛樂、吃住......
大數據包含的元素:文字、圖片、視頻、音頻、生物信息、生產資料......
H. 大數據是指什麼如何解釋
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中,大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法)大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、veracity(真實性)。大數據需要特殊的技術,包括大規模並行處理(MPP)資料庫、數據挖掘電網、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
大數據的4個「V」,或者說特點有四個層面:第一,數據體量巨大。從TB級別,躍升到PB級別;第二,數據類型繁多。前文提到的網路日誌、視頻、圖片、地理位置信息等等。第三,數據的來源,直接導致分析結果的准確性和真實性。若數據來源是完整的並且真實,最終的分析結果以及決定將更加准確。第四,處理速度快,1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。業界將其歸納為4個「V」
從某種程度上說,大數據是數據分析的前沿技術。簡言之,從各種各樣類型的數據中,快速獲得有價值信息的能力,就是大數據技術。明白這一點至關重要,也正是這一點促使該技術具備走向眾多企業的潛力。
搜索下各種網路,上面都有。說白了,就是數據量非常龐大。這確實是近幾年的熱點問題。