Ⅰ 大數據精準營銷的策略
大數據營銷可以劃分為三個步驟:
首先,可以做數據信息的收集,主要通過各種互聯網工具實現,包括QQ、微博、微信以及其他互聯網軟體工具等,尤其是現代智能手機的普及,讓每個人與網路信息技術的鏈接更為廣泛與緊密,各種的軟體平台自身都有一定的用戶數據分析採集功能,由此導致每個用戶在使用各種軟體時,個人的有關信息就已經被軟體平台採集。平台可以將收集到的數據生成專業的數據信息庫,而後便於後續的精準使用。
其次,是對收集來的數據做匯總分析。信息智能工具會對收集的信息做模型建構與嘻嘻挖掘,對用戶情況做特定的細致分析與分類,讓每個消費者都可以劃歸到一定的特徵標簽中,同時附帶對應的多樣信息內容。
最後就是將數據運用到營銷策略的設計與實施中。這個環節主要依據營銷單位所需要的目標群體對象為精準投放依據,找到用戶特質,然後在數據信息中去做精準的用戶投放,滿足相關投放標準的用戶就會接受到企業的營銷宣傳內容。
甚至企業會針對不同的用戶對象做不同類型的營銷宣傳內容,而後保證更廣泛用戶對營銷內容的認可,最終轉化為企業產品與服務的消費者。這種投放方式的營銷更為精準,效率更高,同時可以減少大范圍廣泛撒網導致的成本高昂與效率低下問題。
Ⅱ 如何利用大數據做到對客戶的精準營銷
大數據營銷等同於精準營銷,或是精準營銷是大數據營銷的一個核心方向和價值體現。然而,數據本身不會產生價值。為此,我們要把數據組織成數據資源體系,再對數據進行層次、類別等方面的劃分。在此基礎上,通過分析數據資源和相關部門的業務對接程度,以此發揮數據資源體系在管理、決策、監測及評價等方面的作用,從而產生大數據的大價值,真正實現了從數據到知識的轉變,為領導決策提供服務依據本例根據工作實踐。
本例以三個工作實例,展示如何通過對數據分析進行對客戶的精準營銷。
工具/原料
大數據營銷
大數據營銷三個案例分析
案例一:筆者在銀行工作,通過對儲戶身份證信息進行海量剖析,發現一個有趣的現象,即購買理財產品的客戶以40-50歲的女性居多。
根據這一信息,有經驗的理財經理通過身份證信息即能准確的分析出支行有哪些符合條件的客戶,迅速的對新推出的理財產品進行電話營銷,做到不出門即可實現銷售,較快的完成了銷售任務。
而另一些更具創新性的理財經理,通過身份證信息,在情人節期間組織了網點沙龍客戶邀約活動,對符合18-30歲、30-45歲這兩個年齡段的男性客戶進行了電話營銷,通過贈送愛人鮮花、化妝品以及高價值的禮品進行金融產品營銷,較好的引起男性客戶的興趣,有力的拉升了業績增長。
這些數據分析手段就能夠做到個性化營銷和定位,加強對客戶的認知,為客戶找到價值,從而帶動銷量。
案例二:在與供電部門合作期間,供電部門提供了一條信息,市裡每一天上網高峰期主要集中在中午12點之後和晚上的12點之前。供電部門認為,出現這種「怪現象」的原因是因為現在的人們普遍睡覺前都會有上網的習慣。
這條信息當時很多人沒有注意,似乎與銀行搭不上關系,但我們市場經營部門的一個年輕的大學生針對人們這種「強迫症」,通過手機銀行與商家合作,在晚上12點進行促銷秒殺活動,即推動了手機銀行業務量的提升,同時也帶動商家銷量的倍增,實現了雙贏。
案例三:在為企業代發工資數據中,我們曾發現一個現象,即一般企業員工代發帳戶每月都會沉澱一定的余額,金額不大,1000元也有,幾千的也有,長期不動的也有,活期利率很低,但是這些客戶的帳戶金額又達不到理財產品的起售金額,這些客戶工資用了也就用了,成了「月光族」,沒有理財理念。
如何通過分析這些數據信息直接進行客源組織,為這些具有相同需求的人群量身定做金融服務,並享受」一客(群)一策「的定製服務,我們進行專題研究。
最終,我們在零存整取、基金定投和適時到帳理財產品上進行了產品打包宣傳,同步利用信用卡宣傳,幾場現場專題沙龍下來,引起了不少企業員工的注意和興趣,著實為這些收入不高的人群提供了一條實實在在的理財渠道。
這三個小故事就是對歷史數據進行挖掘的結果,反映的是數據層面的規律,它通過對大量的數據系統中提取、整合有價值的數據,從而實現從數據到知識、從信息到知識、從知識到利潤的轉化。
簡單來說就是:5個合適,在合適的時間、合適的地點、將合適的產品以合適的方式提供給合適的人。
5
具體來講,當我們通過對完成數據分析之後,找出相同的規律,當然還有一些個性化數據體現,為此具體的應用場景需要根據企業、業務的具體情況進行精準營銷策劃、設計。
概括來講,我們需要以下三個步驟:
第一步:數據採集,了解用戶,通過收集用戶所有的數據,主要包括靜態信息數據、動態信息數據兩大類,靜態數據就是用戶相對穩定的信息,如性別、地域、職業、消費等級等,動態數據就是用戶不停變化的行為信息,如消費習慣、購買行為等;
第二步:分析這些數據,給客戶畫像,畫像代表客戶對營銷內容有興趣、偏好、需求等,分析推算客戶的興趣程度、需求程度、購買概率等;
第三步,也就是最後一步,將這些畫面綜合起來,拼成一張較為完整的圖,這樣我們對客戶就有了一個大概的了解。
Ⅲ 企業怎樣利用大數據分析做精細化運營
knowlesys輿情認為:
企業怎樣利用大數據做精細化運營?這里從企業決策、成本控制、服務體系、產品研發四個方面加以簡要討論。
企業決策大數據化。現代企業大都具備決策支持系統,以輔助決策。但現行的決策支持系統僅搜集部分重點數據,數據量小、數據面窄。企業決策大數據化的基礎是企業信息數字化,重點是數據的整理分析。首先,企業需要進行信息數字化採集系統的更新升級。按各決策層級的功能建立數據採集系統,以橫向、縱向、實時三維模式廣泛採集數據。其次,企業需要推進決策權力分散化、前端化、自動化。對多維度的數據進行提煉整合,在人為影響起主要作用的頂層,提高決策指標信息含量和科學性;在人為影響起次要作用的底層,推進決策指標量化,完善決策支持系統和決策機制。大數據決策機制讓數據說話,可以減少人為干擾因素,提高決策精準度。
成本控制大數據化。目前,很多企業在采購、物流、儲存、生產、銷售等環節引入了成本控制系統,但系統間融合度較低。企業可對現有成本控制系統進行改造升級,打造大數據綜合成本控制系統。其一,在成本控制的全過程採集數據,以求最大限度地描述事物,實現信息數字化、數據大量化。其二,推進成本控制標准、控制機理系統化。量化指標,實現成本控制自動化,減少人為因素干擾;細化指標,以獲取更精確的數據。其三,構建綜合成本控制系統,將成本控制所涉及的從原材料采購到產品生產、運輸、儲存、銷售等環節有機結合起來,形成一個綜合評價體系,為成本控制提供可靠依據。成本控制大數據化以預先控制為主、過程式控制制為中、產後控制為輔的方式,可以最大限度降低企業運營成本。
服務體系大數據化。品牌和服務是企業的核心競爭力,服務體系直接影響企業的生存發展。優化服務體系的重點是健全溝通機制、聯絡機制和反饋機制,利用大數據優化服務體系的關鍵是找到服務體系中存在的問題。首先,加強數據收集,對消費者反饋的信息進行分類分析,找到服務體系的問題,然後對症下葯,建立高效服務機制,提高服務效率。其次,將服務方案移到線上,打造自動化服務系統。快速分析、比對消費者服務需求信息,比對成功則自動進入服務程序,實現快速處理;比對失敗則轉入人工服務系統,對新服務需求進行研究處理,並快速將新服務機制添加至系統,優化服務系統。服務體系大數據化,可以實現服務體系的高度自動化,最大程度提高服務質量和效率。
產品研發大數據化。產品研發存在較高風險。大數據能精確分析客戶需求,降低風險,提高研發成功率。產品研發的主要環節是消費需求分析,產品研發大數據化的關鍵環節是數據收集、分類整理和分析利用。企業官網的消費者反饋系統、貼吧、論壇、新聞評價體系等是消費者需求信息的主要來源,應注重從中收集數據。同時,可與論壇、貼吧、新聞評價體系合作構建消費者綜合服務系統,完善消費者信息反饋機制,實現信息收集大量化、全面化、自動化,為產品研發提供信息源。然後,對收集的非結構化數據進行分類整理,以達到精確分析消費需求、縮短產品研發周期、提高研發效率的目的。產品研發大數據化,可以精準分析消費者需求,提高產品研發質量和效率,使企業在競爭中占據優勢。
Ⅳ 企業如何利用大數據做好自己的精準營銷
一、認清趨勢,了解行情,接受大數據理念。目前很多企業主對大數專據營銷還是處於迷茫期屬,觀望狀態,這是很艱難的階段,但必須要深入了解,越深入越會明白大數據發展趨勢,越會明白運用大數據的必要性,之前我們也有過介紹,大數據的發展趨勢,大家可以爬樓學習。小編想說的是,如果再不下手,可能就晚了!
二、找對合作商,看準實力。到底誰能幫助你解決經營的難題?他會不會幫你製作一整套的營銷方案,會不會設身處地的想你所想,知你所難,會不會隨時關注你的方案有沒有效果,隨時調整以達到最佳,這真的很重要!
三、運用大數據,解決你的經營難點,甩掉傳統的經營模式,告別老,慢,貴的節奏,讓你的營銷團隊智能化;先一步建立屬於自己的資料庫,抓取屬於自己的客戶數據,運用前沿產品,把你的廣告用眨眼間的光景投放出去,做到新,快,省。
Ⅳ 利用大數據分析法,企業如何做到精準化營銷
答復:做市場營銷提出這幾個問題怎麼解答?
(1)、如何挖掘潛在客戶資源?
(2)、如何維穩客戶關系,並開發新客戶?
(3)、如何提升銷售業績?
(4)、如何進行產品市場推廣?
做市場營銷解決這幾個問題分析如下?
(1)、作為客戶資源,能夠進一步挖掘客戶潛力的優勢,以進行營銷資源整合,以規劃市場營銷目標,以優化營銷資源合理配置,以深度謀合市場機遇,以創造市場潛力為有利契機,以進一步深化客戶的信任與合作關系。
(2)、作為客戶關系,以產品與客戶之間建立信任的關系,以提升品質服務的保障,以提高產品的優質服務,以銷售的原則為:「對客戶立信於人,並做到立信於心,對客戶感興趣的是,對方的為人之心」。
(3)、作為銷售業績,以銷售團隊為中心思想,以培養銷售團隊的凝聚力和號召力,以增強團隊的集體榮譽感和使命感,以加強銷售人才的梯隊建設,在共同協作與共同努力的指導下,以共同創造最佳的銷售業績,而做出堅持不懈的努力奮斗為目標。
(4)、作為市場推廣,以進一步加強市場公關的推廣力度,以做到高端產品的優化升級平台,以產品信息平台做好產品的終端服務,以推廣上市平台,以做好客戶的反饋與回饋的工作,以共同實現客戶的市場價值為承諾。
謝謝!
Ⅵ 如何利用大數據技術手段提升信息服務水平
大數據技術可以幫助企業、機構或個人更好地理解客戶需求、分析市場趨勢和探索未來發展方向。以下是一些利用大數據技術啟槐提升信息服務水平的方法:
1. 數據收集與存儲:建立可靠的數據收集平台,收集各種形式的數據並建立相應的存儲和管理系統,包括海量的結構化和非結構化數據。
2. 數據清洗與整合:使用專業工具對數據進行清洗、去重、去噪、轉換和規范化等操作,並將各種來源的數據整合為一個實體罩旁念。
3. 數據挖掘與分析:通過特定的演算法和工具,對數據進行深入分析和挖掘,識別潛在關物困系、規律和趨勢,並預測未來發展趨勢。
4. 數據呈現與共享:以清晰的方式展示挖掘出的數據,如圖表、報告、可視化效果等形式,以便更好地理解數據並支持決策。
5. 持續優化與更新:隨著數據不斷增長,需要對數據收集、分析和呈現進行不斷優化和更新,以便獲取更准確的信息並滿足不斷變化的需求。
總之,利用大數據技術來提升信息服務水平,需要嚴格遵循數據保密、隱私保護和合規運營等原則,注重數據質量和有效性,確保數據的准確性和客觀性,從而為客戶提供更優質的信息服務。