導航:首頁 > 網路數據 > 應用大數據策略

應用大數據策略

發布時間:2023-05-28 05:30:21

『壹』 大數據精準營銷的策略

利用大數據實現精準營銷的策裂攔略有以下幾個方面:明確消費目標群體、重視產品售後服務、准確傳遞商品信息、做數據信息的收集、對收集來的數據做匯總分析。

1、明確消費目標群體

想要實現精準營銷,必須首先明確產品的目標群體。只有明確產品和服務所面向的消費群體,才能夠准確地分析消費者的行為習慣,確定消費者的購買傾向。

『貳』 商業銀行應用大數據之策

商業銀行應用大數據之策

隨著以社交網路為代表的web2.0 的興起、智能手機的普及、各種監控系統及感測器的大量分布,人類正在進入一個數據大爆炸的時代,「大數據」的概念應運而生。大數據被譽為繼雲計算、物聯網之後IT產業又一次顛覆性的技術變革,已經引起各方面的高度關注。大數據的意義在於從海量數據中及時識別和獲取信息價值,金融業在IT基礎設施、數據掌控力和人才富集度方面較之其他產業更具優勢,具備了深度「掘金」的潛力。但是,大數據也給金融業帶來劇烈的挑戰與沖擊,我國商業銀行需要樹立「數據治行」理念,明確大數據戰略的頂層設計,加強大數據基礎設施建設,實施穩妥的大數據安全策略,方能從容迎接大數據時代。

大數據帶來的沖擊與挑戰

(一)傳統發展戰略面臨沖擊。傳統銀行發展戰略,是在預計未來金融政策、經濟環境的前提下,根據現有銀行人員、網點、客戶、資本、存貸款規模等資源佔有狀況,以及競爭對手、客戶需求狀況,來確定其戰略目標及發展路徑和方式的。步入大數據時代後, 對數據資源的佔有及其整合應用能力是決定一家銀行成功與否的關鍵因素,而傳統的網點、人員、資本等因素則趨於淡化,未來商業銀行的客戶營銷,將主要依靠對不同類型客戶需求數據的掌握,並開發設計出安全、便捷、個性化的金融產品。因此,這就要求各商業銀行在評判競爭對手實力與自身優勢時,要注重考量IT能力與大數據實力;在制定戰略目標時,必須兼顧財務承受能力來決定對大數據的投入,從而確保戰略規劃與大數據支撐相適應;在確定戰略目標的實施路徑時,必須將互聯網金融、電子渠道、數據的收集與挖掘作為向客戶提供服務的重要方式和手段。

(二)傳統經營方式面臨重大轉變。在大數據時代, 金融業務與互聯網深度融合, 商業銀行的經營方式將會發生徹底改變。在產品開發、營銷方面,通過對海量交易、行為數據的收集、分析和挖掘,科學構建數據模型, 分層客戶的不同金融需求可以得到充分展示,進而針對客戶需要、市場需求研發產品、開展營銷,真正做到以客戶為中心開發設計產品,並實現精準營銷,而不是以銀行為中心製造、推銷產品。在風險防控方面,許多商業銀行在風險分析和評估中,雖然已經引入了數量分析方式,但是因歷史數據的積累不足,經驗判斷依然在風險管理、決策中起主導作用。依託大數據,對客戶實施多維度評價,其風險模型將會更加貼近市場實際,對客戶違約率的取值變得更加精準,長期以來銀行憑經驗辦業務的經營範式將會得到根本改善。在績效管理方面,可以通過對大數據的有效利用,並藉助通訊、視頻、移動終端等技術手段,對商業銀行員工的工作方式、頻率、業績等做出更加准確的評價,有助於充分發揮績效考核的正向激勵作用。

(三)數據基礎設施建設面臨嚴峻考驗。進入大數據時代,數據來源的多元化主要體現在兩個層面:一是在金融業務鏈條之外。移動網路設備和網路社交媒體產生了極其豐富的實時化的客戶行為數據,在這種環境下,客戶行為偏好數據往往隱藏在社交網路之中。如果要實施「大數據工程」,商業銀行必須搜集開放的網路數據,但現有的銀行IT系統、技術手段還無力搜集、分析、利用大數據。二是在金融業務鏈條內部。隨著專業細分與金融外包的趨勢愈加明朗,由一家或少數幾家銀行掌控關鍵業務數據的時代已經走向終結,業務數據產生、流轉於金融業務鏈條的各個結點,業務數據、客戶行為數據不可能自動集成至某個機構,這對「大數據工程」的實施提出了嚴峻挑戰。

商業銀行的應對與謀變

(一)優先搞好大數據戰略的頂層設計。大數據戰略必須超越電子銀行部或IT部門的狹隘視角,面向全局、面向未來,以客戶需求、市場需求為導向,建立自身的大數據架構。完整的客戶數據必須是多維度的,至少包含以下幾個方面:一是客戶的基本信息,譬如信用信息、社交關系信息等;二是客戶的偏好信息,譬如金融產品偏好、金融服務偏好等;三是客戶的行為信息,譬如銀行范圍內的行為數據、外部行為數據等;四是客戶的分析數據,譬如客戶風險度、客戶價值度等。要想使這些不同維度的數據信息具有分析價值,首先必須具有合理的數據結構。但現實情況卻不盡如人意,各銀行的數據結構基本上是條塊分割的。為此,各銀行必須優先搞好頂層機制的設計與改革,逐步打破業務界限,重組業務流程,確保數據靈活性。

在總行層面上,需要抓緊制定大數據工作規劃,建立大數據工作推進機制。主管數據部門負責組織協調,對大數據工作進行統籌規劃、集中管理;業務部門負責大數據的搜集、整理、存儲、分析和應用,全面採集、多方式整合商業銀行內外部各類數據,形成數據管理、數據使用、數據推廣的有效工作機制。

(二)科學謀劃和打造大數據平台。一方面各銀行要積極與社交網路、電商、電信等大數據平台開展戰略合作,建立數據信息交流、共享機制,全面梳理、整合客戶各類信息,將金融服務與社交網路、電子商務、移動網路等深度融合。另一方面各銀行也可考慮自行打造大數據平台,以便牢牢掌握核心話語權。

(三)積極建設大數據倉庫。著眼於大數據挖掘和分析,對海量數據的持續實時處理,建設數據倉庫項目,為服務質量改善、經營效率提升、服務模式創新提供支撐,全面提升運營管理水平。在項目建設中,通過梳理整合經營管理關鍵數據,建立數據管控體系,搭建基礎數據平台。通過數據倉庫建設,運用數據挖掘和分析,全方位調整管理模式、產品結構、營銷模式、信息戰略,從根本上提高風險管理、成本績效管理、資產負債管理和客戶關系管理水平,實現多系統數據的業務邏輯整合,形成全行級客戶、產品等主題數據。

(四)以大數據思維推進金融互聯網化戰略。進入大數據時代,金融產業與信息技術將實現深度融合, 金融電子化的深度、廣度將日漸強化。各銀行必須順勢而為, 緊緊追隨迅猛發展的互聯網、移動互聯網浪潮, 積極實施金融互聯化戰略, 嘗試構建電子化金融商業模式, 著力發展直銷銀行、社區智能銀行、互聯網金融、電子商務等業務。這就要求各銀行應當從發展戰略的高度,將金融互聯網作為未來提供金融服務、提升核心競爭力的主渠道。

(五)依託大數據技術實現風險管理的精細化。大數據時代,商業銀行可以消除信息孤島,全面整合客戶的多渠道交易數據,通過經營者個人金融、消費、行為等信息進行授信,有效破解傳統信貸風險管理中的信息不對稱難題,降低信貸風險。為此,各銀行必須深化風險管理體制改革,運用大數據理念來構建以客戶為中心的全面風險管理體系,理順部門間的職責,淡化部門色彩,徹底打破以往小數據模式下形成的部門、機構、區域、產品間數據信息分隔管理以及由分支機構各自分散識別風險的做法,形成按客戶集中統一管理數據信息和高效協調機制。

要積極推行把現場調查與非現場數據信息挖掘分析相結合、模型篩查與經驗判斷相結合,以定性信息與定量財務、經營等多重數據信息的勾稽核驗等為重點內容的風險管理創新。總行要通過大量數據信息的挖掘分析,勾畫出客戶的全景視圖,更加全面地評估客戶風險狀況,有效提升貸前風險判斷和貸後風險預警能力。

要進一步完善基於大數據信息平台的集中式風險審查審批體制,採用大數據方式來驗證借款人的數據信息,校正申報機構或部門對借款人的風險判斷。運用合理的參數和模型,計量出可接受的最大風險敞口,精準識別和動態審查借款人的每一筆融資業務。再利用習慣性數據信息和常識性、邏輯性分析,作出更專業的判斷,使風險識別、防範、決策更加可靠、更加貼近實際。

以上是小編為大家分享的關於商業銀行應用大數據之策的相關內容,更多信息可以關注環球青藤分享更多干貨

『叄』 如何運用好大數據

1、獲取全網用戶數據


僅有企業數據,即使規模再大,也只是孤島數據。還要互聯網數據統合,才能准確掌握用戶站內站外的全方位的行為,使得數據在營銷中體現應有的價值。


2、讓數據看的懂


採集來的原始數據難以讀懂,因此還需要進行集中化、結構化、標准化處理,讓“天書”轉變為看得懂的信息。


3、分析用戶特徵及偏好


將第方標簽與第三方那個標簽相結合,按不同的評估唯獨和模型演算法,通過聚類方式將具有相同特徵的用戶化成不同屬性的用戶族群,對用戶的靜態信息、動態信心、實時信息分別描述,形成網站用戶分群畫像系統。


4、制定渠道和創意策略


根據目標群體的特徵和分析結果,在計劃實施前,對投放策略進行評估和優化。如宣和更適合的用戶群體,匹配適當的媒體,制定性價比及效率更好的渠道組合,根據用戶特徵制定內容策略,從而提升用戶人群的轉化率。

『肆』 大數據應用安全策略包括哪些內容

大數據應用安全策略包括整合工具和流程、防止APT攻擊、用戶訪問控制、數據實時引擎分析掘橘則。

大數據(bigdata)是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據有五大特點,即大量(Volume)、高速(Velocity)、多樣(Variety)、低價值密度(Value)、真實性(Veracity)。它並沒有統計學的抽樣方法,只是觀察和追蹤發生的事情。大數據的用法傾向於預測分析、用戶行為分析或某些其他高級數據分析方法的使用。伍盯

對於「大數據」(Bigdata)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。[麥肯錫全球研究所給出的定義是:一種規模大到在獲判棚取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

『伍』 國家大數據戰略是什麼

國家實施大數據戰略,推進數據基礎設施建設,鼓勵和支持數據在各行業、各領域的創新應用。

大數據發展日新月異,我們應該審時度勢、精心謀劃、超前布局、力爭主動,深入了解大數據發展現狀和趨勢及其對經濟社會發展的影響,分析我國大數據發展取得的成績和存在的問題,推動實施國家大數據戰略,加快完善數字基礎設施,推進數據資源整合和開放共享,保障數據安全,加快建設數字中國,更好服務我國經濟社會發展和人民生活改善。

要求:

建設現代化經濟體系離不開大數據發展和應用。我們要堅持以供給側結構性改革為主線,加快發展數字經濟,推動實體經濟和數字經濟融合發展,推動互聯網、大數據、人工智慧同實體經濟深度融合,繼續做好信息化和工業化深度融合這篇大文章,推動製造業加速向數字化、網路化、智能化發展。

要深入實施工業互聯網創新發展戰略,系統推進工業互聯網基礎設施和數據資源管理體系建設,發揮數據的基礎資源作用和創新引擎作用,加快形成以創新為主要引領和支撐的數字經濟。

『陸』 企業如何運用大數據戰略快速發展

運用大數據戰略實踐的關鍵問題不是數據規模或高精尖技術,而是如何利用數據迅速產生價值,如何用數據改變企業的經營管理方式。企業越早從數據中洞察事實,並據此快速做出行動越早受益。這其中關鍵問題的確不是數據的大小,而是如何利用數據迅速產生價值。
一、用數據為經營管理提供幫助
信息化時代市場競爭進一步加劇,企業的運作越來越復雜,充滿了各種風險和不確定性,企業核心能力的主要差異越來越體現在各個細節之中。若仍依靠定性和數據統計簡單分析,憑經驗大致判斷問題形成改進方案的做法,難以在現代市場競爭中取得優勢地位。用數據建模的方式自動識別問題並採取行動,可以更好地為企業經營管理服務。未來的金融競爭一定會比拼數據建模能力,若不盡快在精準營銷、風險識別、產品個性化定價等方面開展數據建模實踐,就很難形成相應的核心競爭力。
二、數據應用要面向解決企業問題
企業為迎接數據時代的到來,需要建立一支數據分析隊伍,並設置獨立的部門。他們的職責任務就是用數據幫助尋找和解決企業經營管理中存在的問題,提升企業的核心競爭能力。
數據專業人員由於專業特點的局限,對業務知識掌握和理解存在缺陷。數據人員要主動學習業務知識,嘗試在某一局部用數據發現和解決業務問題,然後與業務人員交流討論,看是否能夠對業務有些幫助。數據應用先不要涉及解決復雜的問題,避免起步階段遲遲無法打開局面。最好從解決簡單問題做起,可以考慮直接引入其他外部公司的成功實踐,迅速產生實際成果,讓大家快速看到數據應用帶來的成效。
三、面向問題收集和管理數據
傳統金融行業因為過去IT資源相對昂貴,本著節省開銷的考慮,只記錄與金融交易相關的數據,這造成其數據所覆蓋的范圍較窄,難以支撐大規模的數據應用。
現代IT技術降低了IT成本,同時隨著數據應用帶來價值的提升,各金融企業擴大數據收集范圍和粒度的意識普遍提高,為更大規模和更加深入的數據應用創造了條件。
四、確定數據的擁有者
企業會產生大量數據,不同業務單元和部門所產生的數據不同,數據使用的情況也不同,很可能會形成企業內的數據交叉使用。為避免內部的數據使用沖突造成數據的混亂,就需要明確各數據的主人,賦予其管理數據的責任和權利。數據擁有者要管理保護好自己的數據,同時要考慮如何讓這些數據產生更大的價值。
五、共享數據平台支持服務
數據應用需要配套的軟硬體環境支持,需要在企業內建設一套共享的數據應用平台環境,並安排專業團隊提供服務支持。
大數據工作的重點不是數據規模或高精尖技術,而在於用數據改變企業的經營管理方式。企業越早從數據中洞察事實,並據此快速做出行動越早受益。不要將資源投放在建設豪華的設備環境和隊伍上面,不用先准備大規模數據,只要開始實踐就會有收獲。

『柒』 大數據應用安全策略包括哪些

大數據應用安全策略包括防止APT攻擊、用戶訪問控制、整合工仿鄭桐具和流程、數據實時分析引擎。大數據,IT行業術語,是指無法在一定時間范圍內用常規軟體工具進備坦行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
更多關於大數據應用安全策略包括哪些,進入:https://m.abcgonglue.com/ask/8301811615008021.html?zd查看更叢緩多內容

『捌』 大數據精準營銷的策略

大數據營銷可以劃分為三個步驟:

首先,可以做數據信息的收集,主要通過各種互聯網工具實現,包括QQ、微博、微信以及其他互聯網軟體工具等,尤其是現代智能手機的普及,讓每個人與網路信息技術的鏈接更為廣泛與緊密,各種的軟體平台自身都有一定的用戶數據分析採集功能,由此導致每個用戶在使用各種軟體時,個人的有關信息就已經被軟體平台採集。平台可以將收集到的數據生成專業的數據信息庫,而後便於後續的精準使用。

其次,是對收集來的數據做匯總分析。信息智能工具會對收集的信息做模型建構與嘻嘻挖掘,對用戶情況做特定的細致分析與分類,讓每個消費者都可以劃歸到一定的特徵標簽中,同時附帶對應的多樣信息內容。

最後就是將數據運用到營銷策略的設計與實施中。這個環節主要依據營銷單位所需要的目標群體對象為精準投放依據,找到用戶特質,然後在數據信息中去做精準的用戶投放,滿足相關投放標準的用戶就會接受到企業的營銷宣傳內容。

甚至企業會針對不同的用戶對象做不同類型的營銷宣傳內容,而後保證更廣泛用戶對營銷內容的認可,最終轉化為企業產品與服務的消費者。這種投放方式的營銷更為精準,效率更高,同時可以減少大范圍廣泛撒網導致的成本高昂與效率低下問題。

『玖』 如何應用大數據

毫無疑問,各行各業因為大幅爆發的數據而正變得蒸蒸日上。在這10年中,幾乎所有行業都或多或少的受到這一巨變的影響。科技滲透到各個領域,並且已經成為每個處理單元的必要元素。談到IT行業,具體來說,軟體和自動化是最基本的術語,並且用於處理循環的每個階段。
相較於穩定性而言,企業更關心的是敏捷性和創新性,通過大數據技術,可以幫助公司及時實現這一願望。大數據分析不僅使企業能夠跟隨瞬息萬變的潮流而不斷更新,而且還具有預測未來發展趨勢的能力,使企業占據有競爭力的優勢。
讓我們找到行業廣泛採用大數據的原因:
1.大數據是企業核心競爭力,也是公司的軟實力
大數據席捲了全球,並帶來了驚人的利益,這一力量無需多說。大數據使IBM、亞馬遜等全球頂尖公司受益,這些公司通過利用大數據開發一些前沿的技術,為客戶提供高端服務。
「採用大數據,雲計算和移動戰略的企業發展狀況超過沒有採用這些技術的同行53%。」——《福布斯》
在戴爾開展的一項調查中顯示,採用大數據、雲計算以及移動戰略的企業中,優勢更加明顯,也就是,這些企業中有53%採用大數據起步較晚或者尚未採用,在這一結果令人驚訝不已。
雖然大數據尚處於初級階段,但通過在處理過程中,融合這一理念,將為企業贏得50%的利潤。顯然,在如今的商業中,大數據顯現的驚人優勢並不亞於石油或煤炭帶來的利益。
2.掌握數據能力,開采「暗數據」
全球著名的咨詢公司Gartner公司對黑暗數據的定義是「組織在正常業務活動過程中收集、處理和存儲的信息資產,通常不能用於其他目的」。
然而,大數據系統的出現使得這些公司能夠將尚未開拓的數據投入使用,並從中提取有意義的信息。過去沒有被認可或認為毫無用處的數據突然成為公司的財富,這一點令人驚訝不已。通過大數據分析,這些公司可以加快流程,從而降低運營成本。
3.軟體正在吞噬整個世界數據爭奪戰正在打響
我們目前處於數據驅動型經濟中,如果無法分析當前或未來的趨勢,任何組織都無法生存下去。搶奪數據已經成為決定下一步行動方案的關鍵。
客戶逐漸成為所有組織的焦點,對於及時滿足客戶的需求這一任務非常迫切。只有在強大的軟體支持下,業務戰略才有可能會支撐和加速業務運營。這最終促成了強大的大數據技術的需求,可以以許多方式使組織受益。
4.決策指導更智能更快速更精準
在這個激烈的競爭時代,人人都想脫穎而出。但問題是如何實現這一期望?雖然公司與競爭對手持有相同的運營模式,但公司應當如何展現其獨一無二?答案在於公司採用的策略。為了表現優於競爭對手,做出良好和智慧決策的能力在每一步中發揮關鍵作用。這些決定不僅應該是好的決定,而且應該盡可能做出又快又明智的決定,使公司能夠在積極的主動出擊。
將大數據分析納入流程的做法揭示了非結構化數據,從而有助於管理者以系統的方式分析其決策,並在需要時採取替代方法。
5.以用戶為中心用戶行為數據是營銷關鍵
現在客戶有機會隨時隨地購物,在相關信息幫助下,對於公司需要做出比之前更敏捷的反應這一要求而言具有更大的挑戰。但是公司將如何不斷地實現這一點呢?答案是藉助「大數據」。客戶動向是不斷變化的,因此營銷人員的策略也應該做出相應調整。通過整合過去和實時數據來評估客戶的品味和喜好,這樣可以使公司採取更快捷的應對措施。
例如,亞馬遜通過利用強大的大數據引擎的能力,從一個以產品為基礎的公司發展成為囊括1.52億客戶在內的大型市場參與者。亞馬遜旨在通過跟蹤客戶的購買趨勢,並為營銷人員提供他們即時需要的所有相關信息,從而來為客戶服務。此外,亞馬遜通過實時監控全球15億種產品,成功滿足了客戶的需求。
6.通過利用數據倉庫使數據資產變現
這些公司越來越大,因此不同的流程產生不同的數據。資料倉儲中的許多重要信息仍然無法訪問。然而,公司已經能夠使用大數據分析這一武器來挖掘這座大山,讓分析師和工程師深入研究,並提供新穎而又有意義的見解。
經過這番分析,有一件事值得肯定的是,這是一個高度數字化和技術驅動時代的開端,並伴隨著強大的實時大數據分析能力。

閱讀全文

與應用大數據策略相關的資料

熱點內容
如何修改5g手機的5g網路 瀏覽:486
為什麼網站查不到流量 瀏覽:215
微信錄音怎麼錄音文件 瀏覽:450
iphone6顯示無法滿屏 瀏覽:747
2602i升級胖ap 瀏覽:642
macbookair怎麼關閉程序 瀏覽:485
有道機器人編程課怎麼樣 瀏覽:791
商業銀行app如何查看銀行卡號 瀏覽:522
貴港市直播app開發怎麼樣 瀏覽:674
iphone6畫面同步電腦 瀏覽:801
adf上傳文件 瀏覽:772
微信撩妹表情包 瀏覽:935
作息app 瀏覽:24
29星卡哪些app免流 瀏覽:842
如何查找歷史地震數據 瀏覽:315
iphone6港版和國行哪個好 瀏覽:760
word錄制新宏 瀏覽:939
官方航班app有哪些 瀏覽:836
jssubstring中文 瀏覽:463
讀取小米路由器文件 瀏覽:739

友情鏈接