A. 大數據特點包括哪些
大數據技術是指從各種各樣海量類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據具備以下4個特點:
一是數據量巨大。例如,人類生產的所有印刷材料的數據量僅為200PB。典型個人計算機硬碟的容量為TB量級,而一些大企業的數據量已經接近EB量級。
二是數據類型多樣。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。
三是處理速度快。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。
四是價值密度低。以視頻為例,一小時的視頻,在不間斷的測試過程中,可能有用的數據僅僅只有一兩秒。
更多關於大數據特點包括哪些,進入:https://m.abcgonglue.com/ask/51ec1e1615833767.html?zd查看更多內容
B. 大數據的特點有哪些
根據《大數據時代》大數據的特點主要分為以下四點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)
一、Volume(大量)
大數據的特徵其實是我們現在理解的海量數據。「大數據」在互聯網行業是必備項:互聯網公司在日常運營中生成、累積的用戶網路行為的數據。比如社交電商平台每天的產生訂單, 各個短視頻、論壇、社區發布的帖子、評論及小視頻, 每天發送的電子郵件, 以及上傳的圖片、視頻與音樂,等等, 這些無數個體產生的數據規模很龐大,數據體量早已達到了PB級別以上,大數據的大量就是我們說的海量數據。
二、Velocity(高速)
隨著網路傳輸速率不斷攀升,從傳統的百兆到千兆萬兆網路,移動網路也已經逐步升級到了5G時代,數據的產生和傳輸都越來越高速。所以客戶越來越強調實時反饋,就是無論是在線看電影還是在線直播、刷視頻都要求低延時,對於傳輸、存儲、播放都要求高度,人們和企業都越來越依賴互聯網,網上的實時交易、在線培訓、社交等都與每個人息息相關,雲計算平台大數據平台擔負著高質量的服務功能,運營方還是服務商對於海量數據,誰能提供更快的速度,誰就能獲得更多的用戶和訂單!
三、Variety(多樣)
數據多樣性其種類包括文字、圖片、視頻、語音、地圖定位信息、網路日誌信息等等,正是多樣化的數據形式決定了大數據的更高價值。對於數據挖掘和數據資產越來越受到企業的重視,多類型的數據對數據的存儲和處理能斗做力都提出了更高的要求。目前應用最廣泛的就是智能推薦系統,如今日頭條,網路、抖音等,這些平台都會通過對用戶的行為進行分析,從而智能地推薦用戶喜歡的內容頁面。
四、Value(低價值密度)
隨著物聯網的廣泛應用,往往人們需要從仿銷脊海量的數據中提取相關聯的有用的信息,所以對於大數據的機器學習深度學習演算法可以發揮巨大作用。大數據最大的價值備滲在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識。
C. 大數據的四個基本特徵
大數據的四個基本特徵如下:
1、數據量大(Volume)
大數據的顯而易見的特徵就是其龐大的數據規模。隨著信息技術的發展,互聯網規模的不斷擴大,每個人的生活都被記錄在了大數據之中,由此數據本身也呈爆發性增長。其中大數據的計量單位也逐漸發展,現如今對大數據的計量已達到EB了。
2、類型多樣(Variety)
在數量龐大的互聯網用戶等因素的影響下,大數據的來源十分廣泛,因此大數據的類型也具有多樣性。大數據由因果關系的強弱可以分為三種,即結構化數據、非結構化數據、半結構化數據,它們統稱為大數據。資料表明,結構化數據在整個大數據中佔比較大,高達百分之七十五,但能夠產生高價值的大數據卻是非結構化數據。
3、價值密度(Value)
大數據所有的價值在大數據的特徵中占核心地位,大數據的數據總量與其價值密度的高低關系是成反比的。同時對於任何有價值的信息,都是在處理海量的基礎數據後提取的。在大數據蓬勃發展的今天,人們一直探索著如何提高計算機演算法處理海量大數據,提取有價值信息的的速度這一難題。
4、高速(Velocity)
大數據的高速特徵主要體現在數據數量的迅速增長和處理上。與傳統媒體相比,在如今大數據時代,信息的生產和傳播方式都發生了巨大改變,在互聯網和雲計算等方式的作用下,大數據得以迅速生產和傳播,此外由於信息的時效性,還要求在處理大數據的過程中要快速響應,無延遲輸入、提取數據。
大數據的重要性
(一)大數據是推動數字經濟發展的關鍵生產要素
發展數字經濟是實現經濟高質量發展、構建現代化經濟體系的必由之路。推進經濟社會數字化轉型實際上就是從工業經濟時代向數字經濟時代的轉變。在這一轉變過程中,數據發揮著至關重要的作用。
黨的十九屆四中全會首次將數據作為生產要素參與收益分配,是一次重大理論創新,標志著數據從技術要素中獨立出來成為單獨的生產要素。數據在提高生產效率、實現智能生產、提升要素配置效率、激發新動能、培育新業態方面具有巨大應用潛力,成為推動數字經濟發展的創新動力源。
(二)大數據是重塑國家競爭優勢的重大發展機遇
世界各國都已充分認識到大數據對於國家的戰略意義,並早早開始布局。國家間的競爭將從資本、土地、資源的爭奪轉變為技術、數據、創新的競爭。
我國是數據資源大國,2010年我國數據佔全球比例為10%,2013年佔比為13%,2020年佔比將達20%。大力發展大數據有利於將我國數據資源優勢轉化為國家競爭優勢,實現數據規模、質量和應用水平同步提升,發掘和釋放數據資源的潛在價值,有效提升國家競爭力。
D. 互聯網大數據的五個特徵是什麼
規模大、速度快、多樣性、價值性、融合性
E. 大數據有什麼特點
1、 大量
隨著信息技術的飛速發展,數據開始爆發式增長。社交網路、移動網路和各種智能工具已經成為數據的來源。近4億淘寶會員每天產生約20tb的商品交易數據。因此,迫切需要智能演算法、強大的數據處理平台和新的數據處理技術來實時統計、分析、預測和處理此類大規模數據。
2、 高速
是通過演算法對數據進行邏輯處理的速度非常快。1秒法則能夠快速地從各種類型的數據中獲取高價值的信息,這與傳統的數據挖掘技術有著本質的區別。而這些數據需要及時處理,因為花費大量資金來存儲影響較小的歷史數據並不劃算。
3、 多樣性
如果只有一個數據,那麼這些數據就沒有價值。廣泛的數據源決定了大數據形式的多樣性。任何形式的數據都可以發揮作用。目前應用最廣泛的推薦系統是淘寶、網易雲音樂、今日頭條等,這些平台會分析用戶的日誌數據,進一步推薦用戶喜歡的內容。
4、 價值
這也是大數據的核心特徵。在現實世界中產生的數據中,有價值的數據只佔很小的比例。如果你擁有中國所有20-35個年輕人的1PB以上的在線數據,自然會有商業價值。例如,通過分析這些數據,我們可以了解他們的愛好,並指導產品的發展方向。如果我們有中國數百萬患者的數據,我們可以通過分析這些數據來預測疾病的發生。這些就是大數據的價值。
關於大數據有什麼特點,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
F. 大數據的特點 大數據的特點有什麼
1、大數據有4個特點,為別為:Volume(大量)、Variety(多樣)、Velocity(高速)、Value(價值),一般我們稱之為4V。
2、大量。大數據的特徵首先就體現為「大」,從先Map3時代,一個小小的MB級別的Map3就可以滿足很多人的需求,然而隨著時間的推移,存儲單位從過去的GB到TB,乃至現在的PB、EB級別。隨著信息技術的高速發展,數據開始爆發性增長。社交網路(微博、推特、臉書)、移動網路、各種智能工具,服務工具等,都成為數據的來源。淘寶網近4億的會員每天產生的商品交易數據約20TB;臉書約10億的用戶每天產生的日誌數據超過300TB。迫切需要智能的演算法、強大的數據處理平台和新的數據處理技術,來統計、分析、預測和實時處理如此大規模的數據。
3、多樣。廣泛的數據來源,決定了大數據形式的多樣性。任何形式的數據都可以產生作用,目前應用最廣泛的就是推薦系統,如淘寶,網易雲音樂、今日頭條等,這些平台都會通過對用戶的日誌數據進行分析,從而進一步推薦用戶喜歡的東西。日誌數據是結構化明顯的數據,還有一些數據結構化不明顯,例如音頻、視頻等,這些數據因果關系弱,就需要人工對其進行標注。
4、高速。大數據的產生非常迅速,主要通過互聯網傳輸。生活中每個人都離不開互聯網,也就是說每天個人每天都在向大數據提供大量的資料。並且這些數據是需要及時處理的,因為花費大量資本去存儲作用較小的歷史數據是非常不劃算的,對於一個平台而言,也許保存的數據只有過去幾天或者一個月之內,再遠的數據就要及時清理,不然代價太大。基於這種情況,大數據對處理速度有非常嚴格的要求,伺服器中大量的資源都用於處理和計算數據,很多平台都需要做到實時分析。數據無時無刻不在產生,誰的速度更快,誰就有優勢。
5、價值。這也是大數據的核心特徵。現實世界所產生的數據中,有價值的數據所佔比例很小。相比於傳統的小數據,大數據最大的價值在於通過從大量不相關的各種類型的數據中,挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,發現新規律和新知識,並運用於農業、金融、醫療等各個領域,從而最終達到改善社會治理、提高生產效率、推進科學研究的效果。
G. 大數據的五大特點是什麼
IBM提出了大數據」5V」特點:
一、Volume:數據量大,包括採集、存儲和計算的量都非常大。大數據的枯迅中起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
二、Variety:種類和來源多樣化。包括結構化、半結構化和非結構化數昌寬據,具體表現為網路日誌、音頻、視頻、圖片、沒山地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
三、Value:數據價值密度相對較低,或者說是浪里淘沙卻又彌足珍貴。隨著互聯網以及物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何結合業務邏輯並通過強大的機器演算法來挖掘數據價值,是大數據時代最需要解決的問題。
四、Velocity:數據增長速度快,處理速度也快,時效性要求高。比如搜索引擎要求幾分鍾前的新聞能夠被用戶查詢到,個性化推薦演算法盡可能要求實時完成推薦。這是大數據區別於傳統數據挖掘的顯著特徵。
五、Veracity:數據的准確性和可信賴度,即數據的質量。
————————————————
版權聲明:本文為CSDN博主「arsaycode」的原創文章.........