❶ 大數據主要學習什麼呢
大數據技術與應用專業旨在培養學生系統掌握數據管理及數據挖掘方法,成為具備大數據分析處理、數據倉庫管理、大數據平台綜合部署、大數據平台應用軟體開發和數據產品的可視化展現與分析能力的高級專業大數據技術人才。
大數據技術與應用專業的學生需要學習的內容有面向對象程序設計、Hadoop實用技術、數據挖掘、機器學習、數據統計分析、高等數學、Python編程、java編程、資料庫技術、Web開發、Linux操作系統、大數據平台搭建及運維、大數據應用開發、可視化設計與開發等。
2大數據技術專業的就業方向
1、互聯網電商方向
作為當前最熱門的風口,互聯網電商是互聯網領域應用於實踐最多的地方,也是積累技術資源最豐富、資金最雄厚、人才需求量最大的部分。大數據技術與應用專業畢業生可以從事互聯網電商運營維護、日常管理、消費大數據分析、金融數據風控管理等相關技術工作。目前大到已經上市的頭部電商平台小到社區電商,這些技術人才的缺口都比較大。
2、零售金融方向
零售金融與互聯網電商雖然同屬於消費大范疇領域,但是具體而言,零售電商的范圍要小於互聯網電商,比互聯網電商更需要精準對接消費群體和消費群體的愛好、收入等特徵。大數據技術與應用專業畢業生可以從事基於計算機、移動互聯網、電子信息、電子商務技術、電子金融等領域的數據分布式程序開發、大數據集成平台的應用、開發等方面的工作。適合在零售金融企業承擔相關技術服務工作,也可在IT領域從事計算機應用工作。
❷ 大數據專業主要學什麼
「大復數據」簡單來說,就是一些制把我們需要觀察的對象數據化,然後把數據輸入計算機,讓計算機對這些大量的數據進行分析之後,給出我們一些結論。
①JavaSE核心技術
②Hadoop平台核心技術、Hive開發、HBase開發
③Spark相關技術、Scala基本編程
④掌握Python基本使用、核心庫的使用、Python爬蟲、簡單數據分析;理解Python機器學習
⑤大數據項目開發實戰,大數據系統管理優化
⑥雲平台開發技術
整體來說,大數據課程知識點多,課程難度較大。雖然是0基礎入門,但企業對大數據人才招聘要求高,至少需要本科學歷,建議本科及以上學歷同學報名。
南京北大青鳥祝你學有所成!
北大青鳥中博軟體學院小班教學實拍
❸ 大數據主要學什麼
靜態網頁基礎(HTML+CSS)
主要技術包括:html常用標簽、CSS常見布局、樣式、定位等、靜態頁面的設計製作方式等。
JavaSE+JavaWeb
主要技術包括:java基礎語法、java面向對象(類、對象、封裝、繼承、多態、抽象類、介面、常見類、內部類、常見修飾符等)、異常、集合、文件、IO、MYSQL(基本SQL語句操作、多表查詢、子查詢、存儲過程、事務、分布式事務)、JDBC、線程、反射、Socket編程、枚舉、泛型、設計模式。
前端框架
主要技術包括:Java、Jquery、註解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui。
企業級開發框架
主要技術包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬蟲技術nutch,lucene,webService CXF、Tomcat集群和熱備 、MySQL讀寫分離
初識大數據
主要技術包括:大數據前篇(什麼是大數據,應用場景,如何學習大資料庫,虛擬機概念和安裝等)、Linux常見命令(文件管理、系統管理、磁碟管理)、Linux Shell編程(SHELL變數、循環控制、應用)、Hadoop入門(Hadoop組成、單機版環境、目錄結構、HDFS界面、MR界面、簡單的SHELL、java訪問hadoop)、HDFS(簡介、SHELL、IDEA開發工具使用、全分布式集群搭建)、MapRece應用(中間計算過程、Java操作MapRece、程序運行、日誌監控)、Hadoop高級應用(YARN框架介紹、配置項與優化、CDH簡介、環境搭建)、擴展(MAP 端優化,COMBINER 使用方法見,TOP K,SQOOP導出,其它虛擬機VM的快照,許可權管理命令,AWK 與 SED命令)
大數據資料庫
主要技術包括:Hive入門(Hive簡介、Hive使用場景、環境搭建、架構說明、工作機制)、Hive Shell編程(建表、查詢語句、分區與分桶、索引管理和視圖)、Hive高級應用(DISTINCT實現、groupby、join、sql轉化原理、java編程、配置和優化)、hbase入門、Hbase SHELL編程(DDL、DML、Java操作建表、查詢、壓縮、過濾器)、細說Hbase模塊(REGION、HREGION SERVER、HMASTER、ZOOKEEPER簡介、ZOOKEEPER配置、Hbase與Zookeeper集成)、HBASE高級特性(讀寫流程、數據模型、模式設計讀寫熱點、優化與配置)
實時數據採集
主要技術包括:Flume日誌採集,KAFKA入門(消息隊列、應用場景、集群搭建)、KAFKA詳解(分區、主題、接受者、發送者、與ZOOKEEPER集成、Shell開發、Shell調試)、KAFKA高級使用(java開發、主要配置、優化項目)、數據可視化(圖形與圖表介紹、CHARTS工具分類、柱狀圖與餅圖、3D圖與地圖)、STORM入門(設計思想、應用場景、處理過程、集群安裝)、STROM開發(STROM MVN開發、編寫STORM本地程序)、STORM進階(java開發、主要配置、優化項目)、KAFKA非同步發送與批量發送時效,KAFKA全局消息有序,STORM多並發優化
SPARK數據分析
主要技術包括:SCALA入門(數據類型、運算符、控制語句、基礎函數)、SCALA進階(數據結構、類、對象、特質、模式匹配、正則表達式)、SCALA高級使用(高階函數、科里函數、偏函數、尾迭代、自帶高階函數等)、SPARK入門(環境搭建、基礎結構、運行模式)、Spark數據集與編程模型、SPARK SQL、SPARK 進階(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA與SOCKET、編程模型)、SPARK高級編程(Spark-GraphX、Spark-Mllib機器學習)、SPARK高級應用(系統架構、主要配置和性能優化、故障與階段恢復)、SPARK ML KMEANS演算法,SCALA 隱式轉化高級特性
❹ 大數據技術主要學什麼
大數據技術專業以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。此外還需學習數據採集、分析、處理軟體,學習數學建模軟體及計算機編程語言等。
3、大數據技術與應用研究方向是將大數據分析挖掘與處理、移動開發與架構、軟體開發、雲計算的前沿技術相結合的「互聯網+"前沿科技專業。該專業畢業生可從事大數據項目實施工程師、大數據平台運維工程師、大數據平台開發工程師之類的工作。
4、本專業旨在培養學生系統掌握數據管理及數據挖掘方法,成為具備大數據分析處理、數據倉庫管理、大數據平台綜合部署、大數據平台應用軟體開發和數據產品的可視化展現與分析能力的高級專業大數據技術人才。
❺ 大數據主要學什麼
大數據主要學數學分析、高等代數、普通物理數學與信息科學概論等。
大數據結構:
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成鍵斗為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
❻ 大數據專業主要學什麼
大數據專業一般指大數據採集與管理專業。 大數據採集與管理專業是從大數據應用的數據管理、系統開發、海量數據分析與挖掘等層面系統地幫助企業掌握大數據應用中的各種典型問題的解決辦法的專業。
❼ 大數據技術專業學什麼
大數據技術專業主要包括以下方面的學習內容:
資料庫亂並絕技術: 資料庫是存儲和管理數據的關鍵技術。大數據技術專業需要學習SQL和NoSQL等不同類型的資料庫技術,以及如何優蔽梁化資料庫性能和處理海量數據的技術。
數據挖掘和機器學習: 數據挖掘和機器學習是大數據處理的核心技術。學習數據挖掘和機器學習技術可以幫助專業人員處理和分析大規模的數據集,發現數據中的模式和規律。
大數據存儲和管理: 大數據需要用分布式存儲和管理系統來存儲和管理數據。需要學習Hadoop、Spark、Hive、HBase、Cassandra等分布式存儲和管理系統的使用和優化技術。.
數據可視化和分析: 數據可視化和分析可以幫助專業人員將大數據轉化為易於理解的信息。需要學習數據可視化和分析工具,例如Tableau、Power BI等。
大數據安全: 大數據安全是大數據技術中的一個重要問題。需要學習數據安全策略、數據加密技術、身份認證和訪問控制等安全技術。
雲計算和容器化技術: 雲計算和容器化技術可以幫助專業人員管理和部署大規模的應用程序和服務。需要學習雲計算和容器化技術,例如Docker、Kubernetes、AWS、Azure等雲計算平台和服務。
綜上所述,大數據技術專業需要學習的知識涵蓋資料庫技術、數據挖掘和機器學習、大數據存儲和管理、數據可視化和分析、大數據安全、雲計算和容器化技術等方面。通過掌握這些技術,可以更好地處嘩姿理和分析大規模的數據集,為企業提供更好的數據決策和業務價值。
想要系統學習,你可以考察對比一下開設有相關專業的熱門學校免費獲取資料好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。
祝你學有所成,望採納。
北大青鳥中博學生課堂實錄
❽ 大數據專業主要學什麼
首先,大數據是一個比較典型的交叉學科,選擇大數據專業需要學習三大塊內容,包括數學、統計學和計算機,所以整體的知識量還是比較大的,而且也有一定的學習難度,如果數學基礎比較薄弱,選擇大數據專業還是要慎重一些。
大數據專業在專業課的設置上會涉及到很多計算機課程,包括程序設計、數據結構、演算法設計、機器學習等內容,不同高校還會結合自身的實際情況,增加一些與大數據相關的課程,比如財經類大學往往還會設置一些經濟、金融類與大數據相結合的課程。
對於本科階段選擇大數據專業的同學來說,要想提升自身的就業競爭力,可以從以下幾個方面入手:
第一:選擇一個主攻方向。大數據專業雖然學習的內容比較多,但是本科階段的專業性並不算太強,如果學生沒有一個主攻方向,很容易導致知識面廣但是卻不精的情況,這對於就業會產生較大的影響。對於本科生來說,在選擇主攻方向的時候,可以結合自身的能力特點和興趣愛好,同時也要重點考慮一下學校的優勢領域。
第二:重視程序開發能力的提升。當前大數據領域正在陸續釋放出很多開發崗位,相信隨著工業互聯網的發展,未來大數據開發崗位的人才需求量依然有較大的提升空間,所以重視程序開發能力會在一定程度上提升自身的就業競爭力。
第三:考研。當前大數據技術正處在落地應用的初期,所以行業領域更關注以研究生為代表的高端人才,而且未來產業領域也會需要大量的高端應用型人才(專碩),所以大數據專業的本科生,如果想有更大的發展空間,可以考慮讀一下研究生。
❾ 大數據具體學什麼
大數據分析挖掘與處理、移動開發與架構、軟體開發、雲計算等前沿技術等。
主修課程:面向對象程序設計、Hadoop實用技術、數據挖掘、機器學習、數據統計分析、高等數學、Python編程、JAVA編程、資料庫技術、Web開發、Linux操作系統、大數據平台搭建及運維、大數據應用開發、可視化設計與開發等。
大數據旨在培養學生系統掌握數據管理及數據挖掘方法,成為具備大數據分析處理、數據倉庫管理、大數據平台綜合部署、大數據平台應用軟體開發和數據產品的可視化展現與分析能力的高級專業大數據技術人才。
大數據崗位:
1、大數據系統架構師
大數據平台搭建、系統設計、基礎設施。
技能:計算機體系結構、網路架構、編程範式、文件系統、分布並行處理等。
2、大數據系統分析師
面向實際行業領域,利用大數據技術進行數據安全生命周期管理、分析和應用。
技能:人工智慧、機器學習、數理統計、矩陣計算、優化方法。
3、hadoop開發工程師
解決大數據存儲問題。
4、數據分析師
不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員,在工作中通過運用工具,提取、分析、呈現數據,實現數據的商業意義。
5、數據挖掘工程師
做數據挖掘要從海量數據中發現規律,這就需要一定的數學知識,最基本的比如線性代數、高等代數、凸優化、概率論等,經常會用到的語言包括Python、Java、C或者C++。