導航:首頁 > 網路數據 > 大數據時代教師教學

大數據時代教師教學

發布時間:2023-05-23 09:28:31

大數據在教育方面的應用

大數據成為了這兩年非常重要的一項技術,使用的地方也越來越多,在教育方面現在也有了很多的應用,下面就一起來看看大數據在教育中的使用。

1、個性化教育。通過運用大數據技術,教師可以關注學生個體的多方位的表現,可以通過對學生及時性的行為進行記錄,使得數據有效整合,為教師提供真實個性的學生特點數據。

4、更新教育理念,創新教育思維。大數據時代下教育大數據扭轉傳統落後的教育理念與思維方式。在新時期教育領域到處充滿了信息與數據,師生的一言一行以及學校的各類事物都能夠轉化為信息或數據。

隨著智能化設備的廣泛普及每位學生都可以運用計算機進行終端學習,有助於提高學生的學習積極性。

㈡ 大數據如何影響課堂教學

「大數據」(BIG DATA)這個詞,是2008年在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》這本書中首次提出的。「大數據」指不用隨機分析法(抽樣調查)這樣的捷徑,而是對所有的數據(近似於全樣本)進行分析處理的一種方法。

1.什麼是我們身邊的大數據?

「大數據」已經滲透到我們生活中的方方面面。比如我們打開手機淘寶,呈現在我們面前的界面是不一樣的。它推送給我們的商品是不同的,而且這些商品往往真的能夠抓住我們的需求和心理,這是為什麼呢?

其實這就是大數據分析出的結論。

淘寶這個平台,對每一個瀏覽過商品的人,購買過商品的人,都進行了全數據分析,可以輕松獲取我們的很多信息。

例如我們的性別、年齡、家庭成員、喜好、是否結婚、是否有孩子、孩子的性別,甚至可以細致到你是愛穿休閑類的服飾,還是喜歡小清新類的服飾,或者是職業裝類的服飾等等。通過你的每一次操作,收集到了這些數據之後,它經過分析和處理,進一步推測出了你可能會訂購的商品,從而推送給你,讓你花更少的時間檢索而要花更多的錢進行消費。

例如你購買了一些孕婦類產品,可能在不久之後,它就會推送相關聯的一些嬰兒用品給你。

而我們消費後的評價與反饋,又使得他們不斷改進自己,例如不同賣家的鑽石星級,或者清退一些不合格的賣家等等這些行為,就是淘寶對自身的調整。

這種互利互惠的雙迴路的運轉模式,可以看作是賣家與買家間的一種良性的互動方式,而這種互動方式在傳統的賣場裡面是不可想像,也難以實現的。

2.什麼是課堂教學互動方式?

課堂教學互動方式,則是指在課堂上,教師與學生之間的一種信息交流方式。

在傳統的課堂中,師生之間的互動交流方式比較單一,上課就是教師在講,學生在聽,一種單方向的傳導過程。

有人說,教師就是知識的搬運工,課堂上很少有師生之間的交流。

還有一種觀念是,教師對學生提問,學生回答,就是師生互動。

顯然,這種認識是膚淺的,這將使師生互動流於形式。師生互動的根本目的是要引導和培養學生的高階思維。

因此,真正的師生互動應該定義為思維的碰撞、智慧火花的生發之源。

近些年來一直被提及的可汗學院的教學與學習方式,之所以受到關注的原因,恰恰就是它基於大數據分析,解決了課堂教學互動這個難題。

大數據之所以能實現課堂教學互動,是因為它具有三個主要特徵:反饋、個性化和概率預測。

我們傳統的課堂教學是一種單迴路的學習,即教師給予,學生接受。我們對學生進行考核,然後對他們進行評價。

我們不會或者沒有條件來通過學生的成績來反思自己的教學內容或者方式是否是恰當的。

我們不能從學生身上獲得真正有用的反饋信息來改變自己的教學內容和行為。

所以說,傳統的課堂教學是一種單迴路的方式,根本沒有實現師生間的良性互動。

此外我們的教學內容在編排上,考慮的是處於平均水平的學生,而這種水平的學生其實在現實中可能根本是不存在的。

換句話說,我們的教學沒有照顧到「好」學生,也忽略掉了那些「差」學生,甚至連我們認為的中等水平的學生,也是不存在的,因為他們是平均後虛構出來的群體。

所以,我們的教學根本沒有針對學生做出個性化的設計,這是教育普及大眾化不得不做出的取捨。

傳統的教學是沒有反饋或反饋較少(沒有時間或實在照顧不到,分身乏術),沒有個性化,從而更談不上有概率預測的一種教學。

而大數據下的新的課堂教學互動方式,卻可以改變這種狀況。

1.參考案例

維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《與大數據同行——學習和教育的未來》一書,舉了可汗學院的例子。

2004年,可汗是一個剛從哈佛商學院畢業一年的基金分析師,給自己的表妹輔導數學。

由於他們生活在不同的城市,因此,他在互聯網上為她進行輔導,從此永遠地改變了教育的世界。

他編寫了若干程序來協助教學,這些程序能生成數學習題,並顯示孩子們提交的答案是否正確。

同時,也收集數據,程序可以追蹤每個學生的答對和答錯的習題數量,以及他們每天用於作業的時間等等。

後來在此基礎上創建的可汗學院,之所以可以聞名於世,就是因為它收集有關學生行為的數據,從中獲取有用的信息來改變教學內容的設計,為每個學生定製個性化的學習方案。

可以說數據就是可汗學院運作的核心所在,大數據的支撐,互聯網技術的飛速發展,使得相隔千里的師生之間形成了有效的課堂教學互動。

它改變了我們對面對面才能達成互動的傳統認識。

此外,還有一個關於斯坦福大學吳恩達與他的機器學習課程的例子。

吳教授將課程放到了網上,他追蹤學生與視頻互動的行為。

在什麼地方按了暫停鍵,什麼地位按了重復鍵,在什麼地方放棄了繼續聽課,他的目的不是督促學生學習,而是反思學生卡在了什麼問題上,哪些教學內容難以理解,從而對課程進行調整。

例如,他發現學生本來都是正常的按順序進行網上學習,但是很多學生在學習第7課時,都會去回看第3課的一個關於數學知識的復習課。

於是他發現,原來是因為第7課解決某個問題時,需要用到第3課復習到的一個數學公式,而很多學生並沒有記住,因此他就對第7課時的教學視頻做了改變,會自動彈出一個彈窗幫助學生來復習數學公式。

還有一次,他發現學生在學習第75課到第80課時,正常的學習秩序被打亂了,學生以各種各樣的順序反復觀看這幾節課。

他通過反復分析,發現學生的行為是在反復理解概念,於是他將這部分的教學內容製作的更加精細,更有助於幫助學生理解概念。

【 評價】

這是一個典型的大數據分析下,課堂教學互動變革實現了教學反饋的例子。

覺得我們傳統的教學,只是通過每天判一判學生的作業,看一看他們的考試成績,是無法得到這些動態的數據的,更無法得到改變我們教學內容與方式的有價值的信息。

於是我們的教學可能幾年甚至幾十年都在重復相同的內容和動作。因為我們不知道學生究竟是如何進行學習的。

2.參考案例

還有一個例子是關於「半島大學」的暑期班項目,他們使用可汗學院的數學課程教授來自舊金山灣區貧困社區的中學生。

在課程一開始,一個七年級的女生的成績在班裡一直墊底,在整個暑期的大部分時間中,她一直是學得最慢的一個學生,但是在課程結束後,她的成績是班上的第二名。

可汗對此感到好奇,於是調取了她完整的學習記錄,查看她每一道習題和解題的時間,系統創建的圖表對她學習進行的描繪,發現他很長時間都徘徊在班級的底部,直到在某個事件點上突然直線上升,超過了幾乎所有的學生。

這充分說明,當學生以自己最適合的步調和順序進行學習時,即使一個被看似沒有能力的「差生」也是可以變為優等生的。

【 評價】

這是一個典型的大數據分析下,課堂教學互動變革實現了個性化教學的例子。

如果這個女孩放在我們傳統的基於小數據的教學課堂上,幾次考試的成績都不理想,可能她就會被我們歸類為「差生」,於是各種補習加各種輔導,完全打擊了她的自信心,成績的陰影甚至會影響到她的一生。

而可汗學院的課程,利用數據監控了她的所有的學習過程,時間是一個連續的變數,針對她的特點設計了適合她的習題,循序漸進,激發出了她最大的能量。

她完全根據這種個性化的定製,按照自己的學習節奏進行學習,不用去關注到其他人的學習進度與成績。細思極恐,我在想我們的教育究竟扼殺掉了多少這樣的人才?

我們真的應該好好認清大數據帶給我們的課堂教學互動的變革,這種變革很多時候甚至不是技術上的,而是理念上的。

在反饋與個性化的基礎上,大數據的更大的優勢就體現在了概率預測這方面了。

例如我們可以對學生個體為提高其學業成績需要實施的行為作出預測。比如選擇最有效的教材、教學風格、反饋機制等等。

其實,在小數據時代,我們跟學生家長所說的某些建議,比如您的孩子應該加強數學這方面的學習,您的孩子適合去學文科等等這些建議,其實也不是肯定的事實,也只是概率性的干預。

因為可能根據老師所謂的經驗,這個學生選擇學習文科,將來考上一本的可能性更高。而大數據與過去最大的區別是,我們是通過對事物加以測量和量化,以更高的精確度說話。它的預測准確率更高。

比如,大學的選課方面,可以根據你以往的學習基礎以及學習行為,預測出你選哪門課的通過率會更高,你未來的職業規劃怎樣進行會更加順利等等。

大數據所實現的這種概率預測,似乎與課堂教學互動方式的變革沒有直接的關系。

但是仔細分析不難發現,這種預測其實是師生間互動的一種延續,我們對學生的影響不只局限於課堂上,而是延續到了未來選擇的層面上,使得互動交流更上了一個台階。

1.利用數據反饋信息調整課堂教學策略

以高考備考為例:

上圖是追蹤某高中四年所有學生高考數學各知識點得分率的情況,我們可以看出對其中一部分知識點的得分率維持在高位。

這就說明學校一貫的培養策略與日常教學方法是正確的,只需要保持即可,無論教師還是學生不需要過於焦慮,因為大數據反饋的結果對未來教學效果有一定的預測功能。

2.關注學生的個性化發展

大數據不僅對規模龐大的數據進行全樣本分析,得到一般規律,更重要的是很能體現出個性,它可以記錄下每一個學生的變化,方便教師針對每一個學生調整課堂教學方式。

上圖是大數據分析系統給出的某一個學生在一次考試中的情況,從圖中可以看出,數學與物理是這個學生的優勢學科,英語是這個學生最薄弱的學科,那麼在進行改進策略制定時,要多聽取英語老師的建議。

大數據可以幫助教師的課堂教學行為不像傳統課堂那樣,針對的是所謂的「平均水平」的學生授課,而是能照顧到每一名學生。

例如,利用信息技術監控學生的課堂測試與課堂練習情況,隨時調取任意學生的過程進行點評,統計每一名學生過程中出現的問題,這樣教師對課堂進程的判斷不是根據經驗,而是根據實際情況隨時調整。

總之,課堂教學互動方式的變革,不應該只是技術層面上的變革,媒體技術,網路平台的建設已經非常的成熟了,我們需要的變革是組織變革,是思想的變革。

現在流行的微課、慕課(MOOCs)其實就是大數據滲透到教學互動領域冰山的一角,形式並不重要,重要的是隱藏在這些形式下的數據所反映出來的學生行為,以及反饋給教師的教學信息,從而引起他們的思考和改變,形成雙向的迴路,實現真正的「互動」,這才是大數據真正的價值。

大數據下的教師要成為「數據脫盲者」,我們需要通過讀取數據來追蹤學生的進步,通過概率預測解釋什麼是對學生最有效的學習。

我想這應該意味著我們需要建立一套完善的系統,在這個系統中,有數據處理的專家,有解讀數據分析數據的分析師,有利用數據改善教學的教師。

只有在這個良性循環的系統中,才能真正實現課堂教學互動,呈現個性化的教學,讓教育針對每一個孩子。

希望我們的教育和教學可以因為大數據而發生真正的變革。

㈢ 大數據時代對教師提出哪些新要求

大數據時代對教師提出的新要求具體如下:

一、大數據時代,教師要做終身學習的引導者

在資訊發達的今天,我們理所應當成為學習理念的引導者,要在我們的引導下讓學生明白:游戲,也是學習,關鍵是我們如何學習。上學不止是為了升學,上學的目的是為了增長知識,使得我們未來有更好的生活。

如果一個學生只把升學當做他的唯一目標。如果我們學校教師也只把升學當做唯一的目標,那是要出問題的,為什麼有那麼多的孩子上吊,為什麼最近有父親因為孩子作業沒完成就痛下毒手?這些問題都需要我們去思考,去剖析,去引導學生思考和剖析。

四、大數據時代,教師應成為課程資源的開發者和組織者

如何把學校的課程資源跟教材的內容,跟學校所在的社區以及當下的社會事件組織起來?在這點上我是比較擅長的。我每到一個地方講課,我都會很自覺地把這個地方的風土人情和最近發生的事件跟主題內容有機地結合起來。

一個好教師需要有一種教學敏感,所謂教學敏感,就是遇到某個社會問題,你就思考是否有教育教學價值。實際上,並不是所有的資源都有教學價值的,更不能所有的資源都有教育的價值,尤其是今天這個知識大爆炸的時代,就更需要我們教師的教學敏感。

我們應該牢記,在當今社會,我們應該是課程資源的開發者,但是我們剛才已經講了,我們不要奢談課程資源的開發了,很多人恐怕連命題的能力都已經弱化了,這是個相當可怕的情況。所以在今天我們要想成為一個合格的老師,的確是一件相當不容易的事情。

五、大數據時代,教師更要能夠潛心閱讀,濾過無關

對於那些碎片化的信息、微博微信上的只言片語,我們要有意虛鉛告識地將它們積攢起來,所謂的「積土成山,風雨興焉。積水成淵,蛟龍生焉」,說的就是積累的作用和價值。我們要克服的就是一經而過、熊瞎子掰玉米式的閱讀,或者用我的表述來說,叫「博客式閱讀」。我差明們要慢慢地養成把自己的經驗知識積累起來習慣。

㈣ 如何通過抓取教育大數據來深化課堂教學改革

現代信息技術的發展為大數據的收集和分析提供了無限的可能,大數據時代的這一趨勢也對教育產生了巨大的影響:一方面,在科技理性的指導下,通過多維度收集學生行為的數據並進行模型建構,可以對學生的學習行為進行預測;另一方面,大數據時代的人文主義轉向使人們更關注教學活動的適應性,教育大數據的挖掘和利用可以更好地實現適應個人需求的定製化教學。

國際數據公司(IDC)認為大數據時代數據有4大特點——數據的規模大、價值大、數據流轉速度快以及數據類型多。大數據的挖掘和利用對教育——特別是課堂教學——產生著深遠的影響。學習科學家索耶認為:越來越多的學習將經過計算機中介發生, 並產生越來越多的數據,我們有必要運用這些數據分析什麼時候有效的學習正在發生。所以數據挖掘可以用於探究行為與學習之間的關系,如學習者的個體差異與學習行為之間有何關系,不同行為又會導致何種不同的學習結果等。2012年美國發布《通過教育數據挖掘和學習分析促進教與學》(Enhancing Teaching and Learning through Ecational Data Miningand Learning Analytics)提出大數據時代教育數據的特點:具有層級性、時序性和情境性,其中數據的層級性指,既收集教師層面的數據也收集學生層面的數據,既收集課堂數據也收集活動數據,為後期模型的建立提供了多維度的資源;數據的時序性是指,數據是實時的、連續的,為材料的前沿性提供了保障;而數據的情境性是指,數據是基於真實情境脈的,保證了模型的信度。

大數據技術能夠促進以學生為本的學習,數據不僅僅是科技理性指導下收集數據和擬合成模型,並針對學生的群體行為做出預測判斷,還可能在固有模型的基礎上,通過診斷學生在課堂中的行為表現,對固有模型進行修改,使課程內容更加適合學生的長尾需求,實現個性化教學。大數據的利用可以支持對教育活動行為的建模預測,還可能支持教育實踐中的適應性教學。前者是後者的基礎,後者是前者的深化。

建模與預測導向的大數據應用

大數據時代數據促進教育變革的方法之一是收集和分析處理數據,並進行預測。現如今,由於數據記錄、存儲與運算的便捷性,海量的、多層次的數據可以便捷地加以收集,由隨機抽樣帶來的誤差因此減小,建模和預測可以基於全數據和真實數據,因而就更為精確。大數據時代通過探求海量數據的相關關系獲得盈利的最成功的案例是亞馬遜的市場營銷,亞馬遜收集讀者網上查閱行為和購買行為數據,建立讀者偏愛閱讀模型,預測讀者購買的群體行為,實現書籍的推薦。近幾年,教育研究的對象逐漸關注學生的學習行為,其背後是一種學習觀的轉變,學習被視為一種識知的過程(knowing about),識知是一個活動,而不是將知識作為一個物品加以傳遞。識知總是境脈化的,而不是抽象的和脫離於具體情境的。識知是在個體與環境的互動中交互建構的,而不是客觀准確的,也不是主觀創造的。所以,學生的行為活動數據被認為是可以反映學生在學習過程這一情境化的動態變化進程中的情況。海量、多層次、連續的行為數據在收集後被擬合成模型,實現預測,如學習管理系統(LMS)的運用。然而,由於建模和預測依賴的基本原理為數理統計,其預判對象主要是學生的群體行為。

1.案例分析

學習管理系統(Learning Manage System)簡稱LMS,是基於網路的管理系統平台,用於監控學生學習活動行為,識別和預測學困生(student at-risk),並為其提供相應的幫助。大多數LMS包括5個部分:有和課程相關的學習資料、用於確保學生提交作業與完成測試的評價工具、用於溝通的交流工具(如郵件、聊天室等)、用於確保教師記錄和存儲學生的學習活動並發布活動截止日期的課程管理工具、用於幫助學生學習回顧和跟蹤學習進程的學習管理工具。在高校大量使用的BB(Blackboard)平台就是一個常見的學習管理系統。系統記錄了學生參與選修的網上課程的種類、在線時長、閱讀和瀏覽的文章數量,反映學習者的學習行為。2008年,Leah P.Macfadyen和Shane Dawson教授在加拿大不列顛哥倫比亞大學通過分析5個本科班級使用BB平台選修生物課的數據,建立了預測模型。平台記錄了學生課程材料的使用情況、參與學業交流情況和完成作業提交和考試情況。大數據時代教育數據記錄的層級性在這裏充分顯現,課程材料的使用包括記錄在線時長、郵件的閱讀時間、郵件的發送時間、討論信息的閱讀時間等。參與學業交流記錄了發布新討論的時間、回復討論的時間、使用搜索工具所花的時間、訪問個人信息的時間、文件的瀏覽時間、瀏覽誰同時在線的時間、瀏覽網頁連結的時間等等。評價模塊記錄了評價的閱讀時長和提交評價的時間等。通過應用統計工具描述散點圖,發現了在LMS記錄下學生在線時長和學業表現呈相關關系。在進行多元回歸時,研究者發現,學業成就處在後四分之一的學生在線時間略長於平均時間,而學業成就處於前四分之一的學生的在線學習時間低於平均水平。緊接著,研究人員為了作出預測,利用邏輯斯特回歸生成了一個預測模型,通過收集學生的新的行為數據,預測學生是否處於真正參與了學習活動,並得出如下結論:討論舉行的次數、郵件信息發送量和測評的完成情況這三個維度構成的模型可以預測學生的學業水平情況。

大數據時代,通過探求學生行為與學業水平之間的相關關系,建立模型,實現預測,能夠對課堂教學產生重要影響。然而,數據建模過程中,為了保證模型的效度與信度,極端個別數據被處理,使模型只能實現群體行為的預測,不能針對學習者個體實現定製化和個性化。

2.建模與預測的不足

數據建模與預測的背後充分體現了實證主義的思想和方法。19世紀上半葉,以孔德為代表的社會學家提出了實證主義的基本信條:利用觀察、分類,探求彼此的關系,得到科學定律。實證主義的哲學思潮到20世紀60年代,演變成一種科技理性,實踐知識逐漸染上了工具性的色彩,專業活動存在於工具性的解決問題之中,所有的專業活動都被視為釐定目標、套用已知的方法解決問題的過程。這一期間,大量的學科被系統地整合發展,甚至包括教育學和社會學這樣的「軟科學」。用證據解決未知的問題,用數據預測未來一時成為潮流。

學生活動行為數據的建模尤其側重體驗實證主義的思想,模型注重成功教學行為的共性,忽視教師與學生群體的獨特性需求時,科技理性的主導有可能使課堂教學被視為獨立於真實境脈的模塊,只要教學行為取得成功,就會被數據抽象化,形成模型,對學生群體行為產生預測。科技理性有賴於人們認同的共有目標,教學實踐目標的釐定極其復雜,包含巨大的不確定性和獨特性,甚至,由於社會角色的不同,還會帶來價值沖突。一個穩定的、為所有人所認同的目標不復存在,依據科技理性精神和方法推理預測的行為模式並不可能滿足每一個人的需求,教育變革在大數據時代下出現新的取向。

從數據模型到支持適應性學習

在數據建模的基礎上實現教學的適應性是大數據時代促進教育變革的另一成果。數據建模及行為預測依舊屬於科技理性指導下的行為模式,可能會造成忽視學生個性需求的現象,而個性化需求正是知識社會的重要特徵,個性化的教育也受到教育研究者、政策制定者和教育實踐者越來越多的關注。教育系統設計專家賴格盧斯認為,教育投入沒有達到效果的一個很重要的原因是忽視了社會的轉型。「社會已經從工業社會步入了資訊時代,勞動力市場對人才的要求不再是工業時代在流水線上操作的工人,而是具有創新性思維、決斷力強的知識性人才。」教學面臨從產生清一色的勞工轉向產生有判斷力和適應性能力的人群。2010年,OECD的報告《The Nature Of Learning》中指出,適應性能力(adaptive competence)是21世紀核心競爭力,包括在真實的境脈中靈活並有創造力地使用有意義的知識和技能。吳剛在《大數據時代的個性化教育:策略與實踐》中提出了個性化教育的必要性和必然性,指出「只有利用信息技術所提供的強大支持,才有可能真正實現個性化學習」。大數據時代的來臨,正是個性化教育發展的一個良好契機。2012年,美國頒布了《通過教育數據挖掘和學習分析促進教與學》,提出大數據時代,通過收集在線學習數據,對數據進行分類和探尋數據之間關聯的方式挖掘數據,形成數據模型。通過學生行為和模型的互動,形成適應性學習系統。概言之,我們可以以對行為數據的充分利用為基礎,改變教學的內容和進度,構建適應性評價和教學系統,充分實現教育的定製化,滿足學生的長尾需求。

1.案例分析:
適應性教學系統又稱適應性學習系統,(Adaptive Learning Support System),簡稱ALSS系統,強調基於資源的主動學習,認為學習不是知識的傳遞,而是學習者的自我建構。自上世紀90年代以來,研究者開發了不少適應性學習系統,如1998年De Bra開發的AHA系統,2003年,Brandsford和Smith開發的針對任務型學習的MLtutor系統,以及近幾年頗受關注的翻轉課堂(Flipped Classroom Model)簡稱FCM系統。

學習者學習相關學科內容時,學習行為被記錄跟蹤下來,學生的學習行為數據被傳送到後台,記錄在學習者資料庫內,作用於預測模塊。預測模塊通過改變內容傳遞模塊,再次作用於學習者。在整個過程中,教師、教學管理者起干涉作用。

適應性學習系統是一個交互的動態系統,系統往往會提供給學生一些學習行為建議。奧地利針對學生的問題解決的過程設計了一個適應性學習系統。適應性學習系統的第一步是教育數據挖掘(ecational data mining),簡稱EDM。數據挖掘的過程包括數據收集、數據預處理、應用數據的挖掘和詮釋評價發展結果。Moodle提出了CMS數據挖掘系統(Course Management System)。研究者先使用原始數據進行建模,第一步是原始數據的收集,原始數據大約包含2007年73名用戶產生的28000活動例子,2008年97名用戶產生的265000份解決問題的案例和2009年45名用戶產生的115000個活動案例。除了記錄學生解答問題時產生的數據,原始數據還收集了學生的信息、問題的信息和解決問題的步驟;在對數據進行分類後,歸納出問題解決的類型,利用很擅長擬合連續數據的Markvo Models(MMs)的一個子模型DMMs擬合了如上的連續性數據,通過添加判斷學生學習行為的結果模型和一系列監控和調節模塊,構成了整個面向問題解決的適應性系統。當學生使用這個模型時,模型會根據學生的行為數據為學生提供他們所偏愛的解決問題的過程與方法。

除了適應性教學系統,還有適應性評測系統。LON-CAPA(Learning Online Network with Computer-Assisted Personalized Approach)是一個計算機輔助的個性化網路學習測評平台,平台不提供課程設計和課程目標,而是一個教學工具。CAPA通過後台記錄學生的基本資料,學生參與的互動交流、學業情況,針對學業課程中的疑難點,提供個性化的考試資源。

2.適應性轉向的意義

在大數據時代,科技理性指導下的模型預判在面對結構不良的問題時顯得應對能力不足。科技理性指導下的數據建模忽視學習的真實境脈,只能支持群體行為的預判,模型的推廣可能會使人們忽視其實踐成功背後的個體經驗與具體情境,從而導致科技理性與哲學思辨對抗。然而,完全依靠哲學思辨和經驗進行教學不僅不利於教育學科系統理論性的發展,也不利於課堂實踐的管理與教師的培訓。唐納德·A.舍恩提出了一種適應性思維模式。他指出:「如果科技理性的模式在面對『多樣』的情境時,是無法勝任、不完整的,甚至更遭的話,那麼,讓我們重新尋找替代的、較符合實踐的、富有藝術性及直覺性的實踐認識。」適應性學習是在系統理論知識的指導下,針對個體差異,使學習內容和活動高度個性化的學習方式。

適應性平衡了理性與經驗的兩難,英國學者Hargreaves(1996)首次提出基於證據的教育研究向醫療診斷學靠攏。臨床診斷學和教育的相似之處在於,他們都要面對變動不居、極其復雜的環境,在這樣一個結構不良的系統中,充分意識到客體(患者或者學生)的獨特性與共性,利用系統的專業知識解決問題。

Ralf St. Clair教授在參考醫學臨床實踐研究的三要素後提出基於證據的教育研究的三要素——研究的證據、教育工作者的經驗、學習者的環境與特點。其中,行為預測關注的是研究的證據,而適應性學習系統的建設則關注的是教育工作者的經驗和學習者的環境與特點。

從預測行為到支持適應性教學的轉向,是一種人文主義的轉向,教育研究的重點從關注研究的證據走向關注教育工作者的經驗與學習環境特點,關注以證據支持個性化學習的實踐變革。證據不再是其在科技理性時代所處的指導決策的角色,而是被視作一種資源,教育工作者在大量的基於證據的課堂教學決策中找尋最適合自己特點和學生特點的方式,推進課堂教學流程。也就是說,大數據的更重要價值在於支持適應性學習,滿足個性化學習和個性化發展的時代需要。數據的預測功能依賴於大數據收集數據的全面性與處理數據的便捷性,根據統計學原理對群體行為做出預測,一定程度上弱化了個體特徵和具體情境。其主要指向行為預判。而適應性是在模型與客體的交互作用上改變模型,如圖3所示,數據的適應性運轉模型比預測模型多了一個循環(loop until)系統,使其更加契合個人需求,其主要指向實踐改進。預測是支持個性化學習的基礎,而支持個性化學習是預測功能的深化和轉化——從整體人群到個體學習者、從理論模型到實踐策略的轉化。

分析與啟示

大數據時代由於數據量大,數據收集與攜帶便捷,使海量學生行為數據被挖掘、收集,通過數據建模對學習者行為的分析變得比前大數據時代更為全面和可靠。數據時代在數據的挖掘和預測上固然潛力十足,但是大數據時代更多的價值是滿足學習者的適應性長尾需求,在預測行為的基礎上,修改教學模式,使之個性化與定製化。從數據建模走向支持適應性教學,支持對象從群體轉向了個人,對教育活動的影響從對行為的認識轉向了教育活動的實踐,從科技理性指導下的去境脈轉向了基於真實情境的教學活動。

走向適應性,不僅改變人類行為方式,更重要的是改變了認知方式。前大數據時代人們在科技理性的指導下完全被數據證據左右(driven by the data),教師和學生、教育決策者和學校形成傳統社會契約關系,當事人把自己百分之百地交給專業工作人員,而專業工作人員遵守契約,對當事人全心全意地負責,從而使專業工作人員享受至高無上的壟斷性地位。大數據時代,教師不再是知識的控制者,他通過參與學生的學習活動,根據學生的先擁知識和認知特點、個性需求,不斷地調整教學步驟、教學進度和難度。學生不用完全將自己有如病人交付給醫生一般完全託付給教師。在學習的過程中,通過與教師的互動交流,在教師的協助下,成為自己學習的主體,控制並對自己的學習負責。由於教師精力有限,大數據時代下網路計算機輔助學習系統可以為教師和學生提供輔助指導的機會。

盡管如此,一方面,我們要擁抱大數據給我們帶來的便捷的生活和高質量的教育,另一方面,我們需要保持警惕和防止因果關系和相關關系的誤用,並且維護數據安全。

在推理方面,教育工作者需要警惕將相關關系和因果關系誤用,以Leah P.Macfadyen教授的前述案例為例,BB平台在線時間的長短和學生的學業成就有相關關系,而非因果關系,成績優異的學生在線時間低於平均在線時間,但不能說低於平均在線時間的學習導致學生成績優異而要求學生減少在線學習時間。

此外,在信息安全方面,學生和教師的大量信息被收集和使用,在使用的過程中,必須制定相關私隱保護法,保證信息的安全,警惕數據濫用。學生的行為數據也不可以作為教師教學評優的依據,讓大數據真正成為支持教學變革、提升教學效能、促進學生發展的手段,而不是控制教師和學生的工具。

㈤ .談談在大數據時代背景下教育的特點

在大數據時代背景下,教育的特點和發展趨勢主要體現在以下幾個方面:

大數據技術的應用為教育帶來了更多的機會和挑戰,未來教育的發展需要在大數據時代的背景下,不斷推進教學的數字化、智能化和個性化,同時加強跨界合作和資源共享,實現教育的高質量和可持續發展。

㈥ 什麼是大數據時代職業教師應該怎麼做

隨著大數據時代出現有人曾這樣預言,隨著MOOC、微課、PK學堂等基於網路的教學形式的出現,我們這些中小學教師弄不好是會下崗的。這是不是危言聳聽呢?

對此,我們不要急於給出答案。我想說的是,當下這個「大數據」環境,究竟會給我們中小學教師帶來怎樣的影響?在這樣的背景下,我們又將如何應對?一言以蔽之,也即是說:互聯網「大數據」背景下的教育,我們准備好了嗎?

在今天學生利用網路完成作業已經是一件很自然的事情了,因為他們本就是網路世界的原住民。50後、60後充其量只是網路世界的移民而已。問題是,原本也是原住民,至少是最初的移民的90後、80後、70後的中小學教師居然對網路背景下的學生知識的來源也缺乏清醒的認識,恐怕所謂「可能會下崗」的言論就不再是危言聳聽了。

我們要明白的是,大數據時代下,教師在知識層面將無任何優勢,當學生面對網路這個巨大的知識海洋,老師的半桶水完全失去了意義。老師存在的意義就是在知識和能力之間構造一座橋梁,這個橋梁叫做訓練。所以說,未來教師的有可能的體育教練型的,需要為學生制定一對一的訓練計劃。

大數據背景下,作為教師基本功的閱讀、命題的能力早已經慢慢地弱化了。梭羅如果再世,恐怕會發出人們不只是發明了工具,更讓自己成了工具的工具的感慨了。這是教師站在「人」的屬性意義上,面對大數據時代的尷尬。

荒蠻時代人們的知識主要來自生活,來自自然與社會;慢慢的,人們學會了書寫,有了書籍,於是書籍成了人們知識的來源;再往下,出現了老師,有了學堂,人們的知識,就從老師和課堂那裡來了。隨著時代和技術的發展,有了無線電、收音機、電視、電腦、網路之後,人們知識來源的渠道就越來越多了。於是幻燈機、收音機、錄音機、電視、電腦、網路、電子白板、微格教學技術一撥一撥地走進了教室,也一撥一撥地離開了教室。

隨著技術的發展,我們越來越重視信息技術與課程的整合,到今天,有了MOOC、微課、翻轉課堂、在線課堂,尤其是出現了智能手機後,學生的知識,再不必完全依賴書本、教師或課堂了。尤其是博客、微博、微信、APP等社交圈和自媒體的出現,使得人們獲得知識的途徑更便捷了。

學習方式的變化勢必帶來教學方式和管理方式的變化。可悲的是,在這個大數據時代,我們的教育管理思想、教育觀念、教學技術,還停留在農耕時代,甚至原始時期:一味地拼時間,游題海,上班簽到,下班簽走,上班期間還有沒完沒了的巡查、通報。管理者更多地將精力轉移到備課筆記檢查、推門聽課、教學質量分析(其實就是開會表揚和批評)上了。

「楚王好細腰,宮中多餓死」,老師們呢,也不得不將精力放在了應付這些檢查和考核上,很少有人還有精力用於研究學生、教材、課堂上,更不要說研究教育了。同時,作為教師基本功的閱讀、命題的能力早已經慢慢地弱化了,我們幾乎尷尬地陷入了一個離開了參考資料和電腦網路就無法進行教學的境地了。

在這個網路社會,一方面我們獲得的信息往往是碎片化的,支離破碎的。單就閱讀而言,我們的閱讀已經沒有了深度,我們的閱讀更多的是「淺閱讀」式的。微博不就是一句一句的嗎?而且,這一句一句還往往是沒有聯系的,就是那最長的一句也超不過七十字——試問:即便是這一句,我們又有多少人、多少時候能耐著性子慢慢推敲呢?寫的人一般不會,看的人更不會。我們關注的是搶人眼球的犀利的另類的詞語,於是標題黨出現了。

這樣的情形下,教師和學校還是知識的權威和殿堂嗎?在大數據時代,我們教師如何做教師?

大數據背景下的教師要走進網路

大數據背景下的教育,許多情況下是要藉助網路技術的。比如在線教育、PK學堂(國內首創競賽式學習平台,好玩刺激、激發興趣,高效快捷,成就名師,線上學習從PK學堂開始),作為一種教學形式,我們在設計製作的時候,重要的恐怕不只是技術,更重要的是要改變我們的教育教學理念,並藉此來影響學生的學習理念和生活觀念。

在這樣的背景下,我們必須走進網路,關注網路上與我們所教學科有關的甚至沒有關聯的新動態、新知識、新技術、新思想。否則,我們這些移民跟那些原住民的溝通是會發生阻滯的。即便是「屌絲」、「打醬油」、「油菜花」之類的網路詞語,看起來膚淺的東西,但如果我們不走進網路,我們在原住民面前就永遠只可能是一隻「菜鳥」,即便是這樣低層面的東西,我們如果一無所知,也是會影響我們的教育行為與學生的具體情況的匹配的。

另一個方面,我們必須盡可能從台前走到幕後,從屏前面走到屏後去。我們如果真想要學生的聰明才智得到充分的發揮展示,我們就得走進幕後,給他們以實實在在的幫助與支持,或是默默的支持。所謂「從台前走到幕後」,即盡量讓學生真正的成為課堂的主人,而你成為他的幫助者,影響者。而「從屏前面走到屏後」強調的則是課程的開發與設計。

在大數據背景下,我們早已經不是知識的控制者了,在許多知識面前我們甚至已經落在學生後面一步,幾步了。我們的優勢或許就只有閱歷和經驗了,然而,這正是學生身上所缺乏的,也是他們最需要的。或許我們能對學生產生影響的東西就在這里,僅此而已。

㈦ 互聯網時代教師角色的變化,教師應該如何應對

互聯網+時代 ,面對基礎教育跨越式發展時期的到來,教師應如何應對?應做好哪些准備?教育思想應有什麼轉變?我想做好以下幾方面:

一、互聯網+時代來臨轉變教師教學觀念

教師應盡快熟悉和適應信息時代的教學新環境,不斷提高信息化程度、水平和效益。目前在全國流行的計算機培訓模式不僅已經陳舊,而且不適合廣大教師的需要。因此,當前迫切需要從教育改革發展的實際需要出發,制定一套既先進又切實可行的現代教育技術培訓體系,並建立一種能夠自我更新的競爭機制。信息時代的教育對所有地區、所有學校和每一個人來說都是全新的挑戰,教師只有不斷努力學習,充實自己,才可能站在時代發展的前沿,把握時代脈膊,迎接新時代的挑戰,真正成為實現現代化教育跨越式發展的生力軍。人才的培養,關鍵在教師,教師教育教學觀念的改變,不僅是時代發展的象徵,而且對教育的發展起著至關重要的作用。教師通過正確、合理、高效的利用互聯網的資源,不僅可以培養自我獲取知識與更新知識的能力,而且可以通過計算機與網路的強大功能探索新的教育體制與教學模式,培養出適應信息時代需求的新型人才,從而確保有較高的教學質量與教學效率,從而最大限度地發揮網路資源的潛能,構建學習的良性循環,達到全面育人的目的。

二、教師將互聯網+融合進課堂

課堂教學是師生共同在一定的情境中,進行探索知識、發現規律的過程。可是在實際教帆枯學的過程中,受到時間、空間和各種現實情春轎鎮況的制約,僅扒粗憑教師空洞的說教,抽象的描述,很難達到期望的教學目標。將信息技術引入課堂,無疑給課堂注入了新的生機:教師可以利用信息技術的圖像、聲音、動畫、視頻等功能創設情景,渲染氣氛,通過情景再現,讓學生身臨其境的感受新事物、新問題,激發他們強烈的探索慾望,充分調動學生渴望新知的積極性,學生在互聯網的海洋中,可自由自在地去獲取他想要的東西,這一發展,擺脫了教師固定思維的束縛,學生真正體會到在知識天空中翱翔的感覺,網路提供了學生展現自我的空間,在學習過程中使學生由被動變為主動,學習能力不斷提高。互聯網提供的信息資源迫使教育教學內容與教法將發生一場深刻的改革,它鼓勵採用以學生為中心的教學方法,充分調動學生學習的自主性和學習的積極性,重視了學生高階推理與問題解決能力的培養,重視了對學生創新思維和創新能力的培養,在實施素質教育和創新教育的今天,必將推動教育教學向更深層次發展。

互聯網+時代已經來臨,對教育質量和教育資源有了更高的要求,教師的權威受到挑戰,在此形勢下對教師提出了更高的要求,教師由講台上的教書匠變為教育專家,變為學生的指導者、合作者、學習者的榜樣,教學設計不僅定位在教師教的過程的設計,教案應向學案轉變,具有彈性化的學生學習過程和活動的設計成為學案的重要部分,教師成了教育資源的設計者、開發者,知識庫的更新者、維護者和管理者。要盡快適應教育形勢的變化,提高教育質量,最關鍵是樹立以人為本的觀念,改變教育者的角色,這才從根本上改進傳統教學,實現現代教育技術水平實質性的提升,更好的為4

學生服務,讓學生積極主動學習,成為學習的主人。

㈧ 大數據時代下高中數學教學探討論文

大數據時代下高中數學教學探討論文

摘要: 大數據時代的到來,為人們的生產生活帶來了極大的便利,也為教育教學的創新以及發展帶來很大的影響。因此,在大數據時代下,要分析大數據的相關概念,然後對大數據時代下的歷棗高中數學教學方式的創新以及應用進行研究,以此來提高高中數學教學的有效性。

關鍵詞: 大數據時代;高中數學;教學方式

信息技術的發展促使了大數據時代的到來,不僅增加了知識獲取的途徑,也改變了傳統的學科教學方式,對促進高中數學教學改革的推進具有重要影響。因此,在大數據時代下,高中數學教師要利用大數據的技術優勢,對現存的教學模式進行改革,突出數學教學的時代性,使學生在數學學習中既能夠獲得相應的知識,還能夠樹立正確的價值觀念,促進高中生數學綜合素養的形成,從而促進高中數學學科的健康發展。下面本文將對其進行詳細論述。

1大數據相關概念

第一,大數據概念。數據是知識的來源,也是信息的一種記載方式。隨著社會的發展和科學的進步,數據數量不斷增多,對數據進行記錄、測量以及分析的范圍也就不斷擴大,這標志著人類已經獲得越來越多的知識和信息。大數據可以從宏觀和微觀兩個角度去理解,多數學者都是從宏觀上對大數據概念進行定義的,即用新的處理模式提高數據出來的執行力,洞察能力以及海量信息的優化能力。大數據具有數據信息量大、種類多種多樣、真實性以及實效性強等特點。

第二,大數據分析概念。大數據分析簡單來說就是要對大規模的數據進行科學分析,而對這些龐大的數據資源進行分析最根本的目的就是要發現和總結出這些數據中存在的規律以及模式,然後再利用數據的動態性特徵去預測事物的未來發展趨勢。

2大數據時代下高中數學教學方式的應用

2.1利用大數據轉變教師的教學角色

第一,應用大數據技術為教師教學模式的創新提供了機會。大數據時代的到來,傳統的教學方法弊端逐漸顯現,不僅體現出了與現代社會的不適應,也影響了學生學習積極性的提高。因此,在大數據時代,教師要利用大數據技術開展例如合作鏈爛液探究、個性化教學等多樣化的教學方式,豐富課堂教學形式和內容,使學生不再死板地接受學習內容,而教師也能夠根據學生的不同階段開展針對性的.教學活動。教師教學角色和教學模式的轉變,強調了學生在課堂中的主體地位,對活躍課堂氣氛,提升課堂教學的有效性具有重要作用。例如:在學習「集合」這節課時,教師就可以採用合作探究的教學方式。首先,結合學生的差異性,將學生分成不同的小組,然後設計不同的問題組織學生進行探究,如:①用什麼對集合進行表示?可以用一個元素表示集合嗎?集合與元素之間有什麼關系呢?②集合都有棚物哪些特徵呢,結合具體題目進行判斷。之後,小組之間對研究結果進行互相交流。再後教師設計突出本節課重點的習題,給學生鍛煉的機會。通過這樣的教學方式,不同的學生組織到一起集思廣益,互相幫助,不僅有利於促進學生思維的發散,還轉變了教師的教學角色,提升了課堂學習效率。

第二,應用大數據技術對學生的學習情況進行深入了解。在傳統的課堂教學形式下,教師過於側重學生學習成績的提升,忽視對學生的了解,導致教學針對性不強,影響教學效果。通常情況下,教師對學生了解是通過考試以及隨堂測試的形式進行側面分析,但這種分析得出的結果並不準確。但在大數據時代,利用大數據技術教師能夠對學生的真實情況進行挖掘,然後根據學生之間的個性差異,對學生進行充分的了解,同時教師利用網路技術能夠對學生的興趣點和薄弱點進行准確判斷,從而使自己的教學活動與學生的學習需求相吻合,突出數學教學的針對性。

2.2利用大數據發揮學生的主體作用

第一,應用大數據提升學生的學習興趣。在以往的教學方式下,學生是知識的接受者,部分教師為了提高教學效率甚至一味地向學生進行知識傳輸,殊不知這種填鴨式的教學方式,不僅無法激發學生的學習興趣,還會造成學生的抵觸情緒,對學習產生厭煩心理,進而影響數學學科教學效率的提升。因此,在大數據時代下,要充分發揮大數據的優勢,利用大數據技術去激發學生的學習興趣,豐富數學課堂的內容,使學生產生主動求知的慾望,能夠積極主動地參與到教師組織的教學活動中來。大數據技術的具體應用可以從以下幾個方面進行。首先,教師可以利用計算機平台設計預習內容,然後學生能夠通過計算機平台自己完成教師布置的習題,教師之後可以藉助大數據進行數據分析,這樣教師在授課之前就能夠找到學生學習的弱點以及難懂點。例如,教師可以利用大數據對學生在「函數」知識中存在的問題進行分析,然後了解到學生易錯點和薄弱的地方,之後據此設計相應的課程教案。這樣在課堂上學生就能夠根據教師針對性的教學設計進行學習,以此來提升課堂教學的有效性。

第二,應用大數據提升學生的學習自主性。學科教學最關鍵的就是要提高學生的學習積極性,所以在高中數學教學中教師要注重學生自主性的提升。在高中數學教學中,課後知識鞏固與習題練習是提高學生學習成績的重要組成部分,但以往學生通常都是靠手抄錯題的形式進行習題糾錯和解答的,這種方式取得的效果並不顯著,一是浪費了較多的學習時間,二是形式枯燥,學生學習自主性不高,在整理之後查漏補缺效果也不好。所以在此環節可以應用大數據技術為學生的課後自主學習提供平台。在大數據技術的支持下,教師可以將學生之前做好的試卷或者解答過程的問題輸入到計算機系統當中,之後學生通過網路進行問題的下載和解答,以便於學生對問題進行查漏補缺。這種方式相比於傳統的糾錯形式,具有實時性的特徵,有利於學生對糾錯內容進行更好的掌握。

第三,應用大數據開展分層式的教學形式。目前我國多數高中數學課堂教學採取的都是班級統一上課的教學形式,模式單一固定,缺乏創新性,不僅不利於激發學生的學習積極性,還會影響學生的個性發揮,進而影響學生的潛能的挖掘。「因材施教」是孔子提出的教學思想,所以在大數據環境下,教師要利用大數據技術採取分層式教學的方式,結合每個學生的差異性,開展不同類型的教學活動。每個學生都是獨立存在的個體,在思想、能力以及身心發展上都具有差異性,所以針對不同學生的不同特性開展分層教學活動,不僅能夠滿足學生層次化的學習需求,還能夠有效地激發學生的學習興趣。同時,教師在數學教學中嘗試不同的教學方法,應用創新型的教學模式,也能夠很好地活躍課堂氛圍,調動學生的課堂參與度,從而達到提升學生學習效果的目的。

2.3利用大數據拓寬學生獲取知識的途徑

大數據時代下,數據量和知識信息不斷擴大,學生能夠接觸和學習到的內容也不斷增多,所以教師要利用網路信息技術,在網路上搜集和整理更多的學習資料和信息,然後結合具體的教學目標和學習內容進行這些信息的分析和處理,以此來提高教師的教學效果。而在大數據環境下,學生也能夠利用網路技術自行進行數學資源的獲取,不斷豐富自身的學習的內容,對抽象的數學知識進行簡化。另外,在大數據環境下,教師要為學生提供真實、可靠的數據教學服務,引導學生養成善於開發和應用數據的意識和能力,能夠根據自身的需要進行數據的獲取,這也能夠為教師教學互動的開展提供針對性,促進師生間的共同進步。例如:在學習「數列」這節課時,教師可以在課前引導學生利用網路自己進行課前的預習,對數列這節課的知識有個簡單的認識,並能夠對基本的知識點以及概念進行理解。之後,在課堂上教師可以利用多媒體技術開展具體的教學活動,將教學知識點直觀、形象地展現在學生的面前,在課程結束之後,教師組織學生對自己設計的隨堂測試問題進行解答,然後對錯題進行整理。這種一系列的教學活動,能夠提高學生大數據技術的利用與開發能力,對拓寬學生的知識獲取途徑,提高學生的學習效率具有關鍵作用。

2.4利用大數據為家長提供教育平台

家庭在學生教育中具有非常重要的作用,家庭是學生的第一所學校,但以往的高中數學教學對家庭教育並不重視,家長沒有廣泛地參與到學校教育中去,而學校也沒有為家長提供更多學習教育的機會,除了每次家長會之外,教師其他時間很少能見到家長,也就很少能參與學生的學習。但大數據時代,網路技術的應用為家長與學校教育的溝通提供了很寬廣的平台,家長可以通過固定的軟體進行賬號的綁定,然後隨時對自己家孩子的上課以及課後情況進行了解,進而更好地了解學生近期的表現情況。同時,家長也可以利用這些軟體與教師進行交流,對學生的學習和生活情況進行了解,與教師進行充分的溝通和互動。使家長能夠更好地配合學校的教育活動,在提高學生數學學習效果的同時,促進學生的健康成長。

3結語

綜上所述,大數據時代下數據數量不斷增多,網路技術的應用越發廣泛,在此種環境下開展高中數學教學活動,不僅有利於創新教師的教學思想和教學方式,也有利於激發學生的學習興趣,提高學生對數學學科的學習熱情,從而達到大數據促進學科教學效果提升的目的。高中數學是一門綜合性學科,能夠培養學生的邏輯思維和推理能力,同時數學也是一門與人們日常生活密切相關的一門學科。所以在大數據時代,教師要利用好大數據信息,發揮好信息技術在教學中的優勢,不斷改善自身的教學角色,突出學生的主體地位,拓寬學生獲取知識的途徑,加強家長與學校的溝通等,使學生在大數據環境下能夠養成樂於學習的好習慣和科學的學習方法,推動高中數學教學效果的有效提升,促進學生身心健康成長。

參考文獻

[1]孟越飛.大數據背景下的高中數學教學[J].中小學電教(下半月),2018(1):22.

;

㈨ 大數據對教學的影響

大數據對教學的影響

隨著時代的發展和科技的進步,「大數據」時代悄然來臨。隨著硬體的高速革新化與軟體的高速智能化,大數據時代也對高校教育領域產生了廣泛而深刻的影響。大數據就其性質來說,不是產品,也不是一種技術,而是一個抽象的概念,有人將「大數據」形象地比喻成21世紀人類探索的新邊疆,是以高度發達的信息網路技術為支撐,所呈現出的巨大數據信息,當然包括伴生的相關處理技術。大數據是近年來繼雲計算、物聯網後的新技術熱點。

大數據具有4V特性,包括海量的數據規模(Volune)、快速的數據流轉和動態的數據體系(Velocity)、多樣的數據類型(Variety)和巨大的數據價值(Value)。而就數據的實用價值,IBM認為還應具有第五個V特徵,就是真實性(Veracity),在日常工作和學習中,數據信息真實性的好處不言而喻,對教育領域來說,更是最基本的要求與保障。要利用大數據時代的巨大資源為教育服務,教師的選取和甄別手段更顯得尤為重要,從這個層面上來說,數據的真實性在一定方面上制約著教師教的內容和學生學的內容。

大數據時代給傳統的教育提出了挑戰,由於自身特點,它給教育提出了教育對象的個性化發展、教育方式的變革、教育觀念的開放化、管理的科學化等要求,更有利於素質教育的開展。大數據時代的數據具有信息量大、形式多樣、實時性強和價值多元等特性,因此教育模式和教育理念只有關注人的多樣化發展才能培養出高素質人才。然而,與此相矛盾的是,傳統的教學方式強調教師的主體地位,為了便於管理和保證教學效果,教師最有效也最輕松的方式就是以標准化來要求每一位同學,表現於統一的教材、統一的作業、統一的考核和對學生單一的評價方式上,這不僅不利於發揮學生的主動性,長此以往,更限制了學生的思維方式與視域,無法滿足學生個性化發展和大數據時代對高素質人才的需求。

要想利用信息時代的數據更好地應用於教育,必須變革教學方式,對教師提出新的要求,教師不僅要樹立終身學習的理念,還要更好地掌握學科前沿的動態信息,更好地利用數據的開放性、共享性等特點,充實學習內容,提升教學水平。以「慕課」和「小微課」平台的問世為廣大學生所熟悉和利用,豐富和發展了在線教學模式,這更需要教師不斷調整,告別傳統的授業者的角色,以學生為主體,以技術為手段和平台,成為知識學習的組織者、引導者和評價者。

除了促進個性化發展、豐富學習內容和提高學習效率,大數據技術的應用更有利於教師掌握學生的身心發展規律。與傳統的教師通過面談、電話交流、家訪及其他同學側面反映和憑借工作經驗判斷學生心理特徵等方式,應用大數據技術,分析和測量學生的心理特點,通過對以前遇到的實際問題的解決方式進行歸納和總結,這種體察方式不僅更理性,還可進一步對未來的心理狀況進行有效預測,能促進教師更好地了解學生,還能有針對性地促進學習效果,提高學習能力。

大數據背景下,不僅革新教育理念,對高等學校的管理也提供了新思路。高等學校的信息化進程中會產生大量的數據,包括教師和學生信息、學籍和成績信息、注冊與選課信息等,利用大數據技術管理這些信息,對幫助學校資源管理和教學方法等方面將會產生極大的便利。目前,高等學校的信息化系統正不斷發展完善。除數據管理、校園網路和遠程教育系統外,還發展了圖書館信息管理系統、數字化校園等,如何對這些系統產生的大量信息進行系統分析,在信息化背景下建設優質高校就顯得尤為重要。其中,教學管理、學習行為、教學評估等,均受到大數據的影響。

在教育領域如何利用大數據及其相關技術促進教育發展,是一個漫長的過程,在此過程中機遇與挑戰並存,作為教育人士,我們應抓住機遇,迎接挑戰,緊緊握住時代的脈搏,更好地服務於教育。

以上是小編為大家分享的關於大數據對教學的影響的相關內容,更多信息可以關注環球青藤分享更多干貨

㈩ 利用大數據教師在課前可以做什麼

利用大數據教師在課前可以精準定位教學目標和重難點;採集學生預習數據;進行學情分析。

教育大數據的本質是對教豎兆師教學過程中產生的信息進行的數據量化,它的產生讓教學從量的擴張轉到質的變革。在傳統教學時代,教師教學決策通常依據理論指導的演繹法和經驗總結的歸納法。

根據教學過程的不同階段,教學決策可分為教學前的計劃決策、教學中的互動決策、教學後的評價決策。教師依據學情,對課前、課中及課後依據技術手段搜集到的數據信息進行研判和加工並決定接下來的教學決策,在此基礎上引導學生行為。

在教育大數據的驅動下,對不同階段採集到的數據信息進行分析研究可以探究教師教學的過程,實現課堂教學與教育大數據的融合,讓教師在課堂教學中的決策具有科學性和有效性。

閱讀全文

與大數據時代教師教學相關的資料

熱點內容
數據ltc是什麼意思 瀏覽:568
順序表存儲數據結構有哪些特點 瀏覽:891
蘋果手機在微信怎麼搜索文件 瀏覽:375
資料庫服務怎麼重啟 瀏覽:841
蘋果6s通話聲音太小 瀏覽:517
什麼是數據分析法 瀏覽:659
多頁雙面文件按順序復印如何操作 瀏覽:772
diskgen硬碟工具 瀏覽:642
後端編程哪個好 瀏覽:540
編程哪個軟體最簡單 瀏覽:591
山西運城疫苗用哪個app預約 瀏覽:413
有線網路電視機頂盒如何看直播 瀏覽:909
linux掛載硬碟home 瀏覽:964
word2010全部接受修訂 瀏覽:802
咋找文件管理中找下載路徑 瀏覽:967
冒險小鎮怎麼快速升級 瀏覽:573
如何修改5g手機的5g網路 瀏覽:486
為什麼網站查不到流量 瀏覽:215
微信錄音怎麼錄音文件 瀏覽:450
iphone6顯示無法滿屏 瀏覽:747

友情鏈接