1. 大數據對供應鏈將產生哪些影響
大數據對供應鏈將產生哪些影響
大數據對供應鏈將產生哪些影響,大數據時代的到來為供應鏈管理提供了難得的機遇,但同時也會伴隨著一些不好的影響,有利也有弊,能順應時代而變化才是正確的方向,以下是關於大數據對供應鏈將產生哪些影響。
傳統供應鏈管理模式所面臨的挑戰
大數據時代的來臨不僅僅是給我們提供了很大的發展機遇,重要的是傳統供應鏈模式所面臨的挑戰極大的加劇了新生產力條件下企業之間的競爭,正是因為大數據時代的生產力特徵這種新事物與傳統的生產力特徵供應鏈管理模式之間的矛盾
所以傳統的供應鏈管理模式所面臨的挑戰也是非常嚴重的,新事物取代舊事物必然是舊事物自身的轉型升級,適應新事物的發展,供應鏈管理模式也不例外。
1、響應速度較慢
傳統供應鏈管理在技術水平不斷提升的同時,經歷了從最基本的MIS到ERP,再從ERP到當前供應鏈一體化的進化,但是從整體水平上來看,傳統的供應鏈管理仍然存在著以訂貨訂單為驅動的庫存管理,周轉庫存的管理從本質上來看是一種應對傳統供應鏈管理的經營模式,再次種經營模式的管理水平下,周轉庫存構成了晶瑩的基本保障
安全庫存成為訂貨管理的服務水平底線。另一方面,此種模式的出現,也在一定程度上說明了產品生命周期理論的響應速度依靠周轉庫存和安全庫存來保障客戶的服務水平,所以在這種模式下顧客需求的響應速度比較慢。
2、終端消費需求不能有效滿足
傳統供應鏈模式對企業經營的貢獻主要在於企業對市場是一處永的形式滿足部分需求而進行產品的設計,在這種情況下,終端消費者的基本需求能夠得到滿足,但是現有產品不能滿足終端消費者的潛在的深層次需求
這種產品經營的設計和生態註定了終端消費需求和源頭的生產製造脫節的商業邏輯。供給側的生產製造不能夠針對終端用戶的體驗進行個性化設計,只能在短期內以批量的模式提升自己的生產效率。
例如,在互聯網時代出現之前,市場上的衣服大部分是根據設計師對終端用戶體驗的評估進行設計,而沒有針對更多用戶特別是普遍用戶的個性化需求進行定製,而且衣服定製成本非常高、時間比較長,這從根本上制約了終端消費需求的普遍性滿足。
3、庫存周期較長
傳統的供應鏈管理模式以存貨管理構成支撐企業經營的基本條件,庫存成為實現經營的流動資產,大部分行業的庫存檔點是以月為單位進行計算的,因為產品屬性的不同,庫存管理盤點有所差異
從整體的水平看庫存周期大部分在計算倉儲、包裝、搬運裝卸、運輸等時間的條件下基本上在途庫存和周轉庫存周期均在兩個月以上,從資金利用的角度來看,在很大程度上制約了流動資金的利用率。
4、協同效應差
供應鏈管理模式協同效應較差主要體現在,生產製造型企業不能夠快速的實現渠道的建立,銷售渠道未能實現和終端消費者有效的互動,終端消費者的反饋也不能其實的成為生產製造企業進行產品換的升級的依據
從整個供應鏈的管理水平可以看出各個環節都在實現自身利益的最大化,但是未能實現整體效益的最大化,在面臨市場的競爭時存在著互相擠壓,為維護自身環節的利益犧牲整體供應鏈整體效益的情況屢見不鮮。
5、管理成本非常高
傳統供應鏈模式的管理成本由於信息化水平低下,不能將各個環節所設計的的企業進行信息的有效傳遞最終造成了各自企業所付出的固定成本中的攤銷成本非常高,人工成本尤其突出,因為條塊分割的嚴重所造成的管理混亂進而導致的管理成本已經成為供應鏈管理當中佔比較高的部分之一。
供應鏈管理要順應大數據時代發展的歷史潮流
從馬克思主義對經濟學的深入研究理論來看,變革時代正確的研究方法應該從生產力與生產關系的矛盾入手,時間對生產力要素特徵的分析才能對生產關系各個方面進行針對性的改革,這一點是生產力決定生產關系的集中體現,同時也是生產關系必須順應生產力發展的必然要求。
(一)大數據時代生產力的主導因素分析
生產力的三個要素是勞動者、生產工具和勞動對象,大數據時代改變了傳統生產力的三個要素特徵使得科學技術特別是互聯網為核心的人工智慧為代表的數據獲取、處理、分析以及應用的技術成為生產力的核心特徵。這些核心特徵從根本上改變傳統供應鏈管理的生存環境,也就是改變了供應鏈管理的生態特徵。
1、大數據時代的生產力變革決定了供應鏈管理的變革
每個時代的生產力都決定了所在時代的生產關心的管理特徵和管理模式,這個是基於人類文明的發展所確定的,大數據時代也不例外。所以,當大數據時代生產力的三個要素發生了根本的變化之後,隨之而來的供應鏈管理也必須根據實際情況變革,符合生產力發展特徵才能提升競爭力量,實現效率的提升和發展。
2、勞動者發生了決定性變化
大數據時代出現之前,傳統的勞動者是以體力勞動和基本的腦力勞動來對供應鏈進行管理的,這種腦力勞動主要包括基本的信息處理、業務知識的一些規范、與業務相關的數據處理等內容,但是大數據時代出現之後,勞動者需要更多的參與和大數據相關的腦力勞動,例如數據的獲取、對供應鏈數據的分析、與消費者相關的數據研究和預測
與產品設計有關的產品性能的監測和分析等內容,這樣從根本上改變了勞動者對知識的掌握的需求水平,你改變了勞動者對供應鏈管理的思維模式認知的改變和理念的變革。進而包括人事行政管理,在招聘績效考核等各個方面都改變了原有對供應鏈管理者的要求。
供應鏈管理貼近消費者的前端,需要更多的去對數學的進行收集和消費者行為的描述,這樣的信息處理大大改變了原來依靠調研預測進行管理的模式,從而也改變了對消費端勞動者的要求
這些要求從本質上需要變革原來的管理模式,也是對勞動者創造價值的有效提升,但是這種創造的主體必須是勞動者自身的改變。所以從整體上來看對人力資源的需求是大數據時代生產力變革的第一要務。
3、生產資料中生產工具發生了很大的變化
傳統的供應鏈管理基本上是基於信息的傳遞而進行的傳統互聯網電腦網路的設置,在這種模式下互聯網僅僅是作為一種信息傳輸的工具電腦也是信息採集的輸入埠
大部分的電腦使用者都是用來錄入相關的信息或者使用電腦網路進行傳遞相關的業務數據。大數據時代電腦更多的傾向於採集分析處理相關的數據,更加強調軟體和智能硬體的結合
最終的目標可能會是實現人機一體化,而錄入和傳輸相關的數據成為最基本的`功能,所以從電腦計算機網路的用途來看,功能上已經完全改變了原來的目標。
4、勞動對象發生了很大的變化
大數據時代供應鏈管理的勞動對象逐漸從基於傳統庫存管理的產品生產製造、流通和銷售,逐漸轉化為對於產品生產製造的特徵也就是滿足消費者深度需求的特徵進行設計
數據的利用從原來的事後分析說明解釋逐漸轉化為大數據的相關性應用,這一點幾乎體現在每年大規模的支付信息的統計分析,例如近兩年微信發紅包數量的統計
支付寶對用戶指出每個月賬單的統計分析,跨進電商對消費者購買行為的統計分析,這樣的數據分析最後形成了供應鏈管理中對供給的判斷,也形成了對消費者未來深度需求的判斷和評估。原來的分析和預測逐漸轉變為大數據相關性的應用。
大數據時代生產力特徵
大數據時代的生產力不同於以往技術變革所帶來的生產力要素的變化,可概括的總結為以下幾點。
從整個農業文明到工業文明時代各種變革的整體特徵來看,農業文明時代是以生產工具的變革為主要特徵,其中典型的變革包括青銅器的出現和應用、鐵器工具的出現和大范圍的普及和應用為主要特徵,極大的推動了生產效率的提高,從而推動整個社會效率的提升、物質財富大幅度積累,使封建文明出現前所未有的鼎盛時代。
工業文明主要集中在生產工具能源的變革方面所產生的生產工具動力變革,主要包括經過長期經驗的積累,18世紀蒸汽時代蒸汽機的發明和應用,工業化時代電力和以電力為動力能源的機器應用,極大提升了社會生產力的變革,促使人類文明從封建文明走向資本主義文明和社會主義文明,在政治制度方面發展延續到今天。
隨著時間的推移,20世紀初期部分學者提出了新技術為代表的生產力變革的來臨,這些新技術包括新能源、新材料和計算機技術,經過半個世紀的發展,這些技術的應用也極大的推動了生產效率的提高,改變了生產方式的具體特徵。
主要表現為新經濟學的興起和管理學派的細化。新的商業模式和企業組織方式層出不窮,資本市場以證券市場為代表,成為經濟發展的晴雨表。這些生產力發展現象已經成為人們的共識。
新技術時代網路信息的應用。而大數據時代出現的今天,可以概要的總結為是以信息化時代為基礎、智能化數據信息處理和應用所帶來生產力在生產工具、勞動者即人力資源變革、生產方式等方面革命為主要特徵的生產力的變革。
與上述人類歷史上其他生產力的變革相比較,大數據時代的變革從時間的角度看來的更加突然,對社會生產生活方式的影響更大,傳播速度更快,拉近了供應鏈的生產段和消費終端,依靠現代智能硬體和軟體相結合,極大的提升了兩端信息獲取的能力,供需充分結合高度統一起來,並加速了產品生命周期的周轉速度。
大數據時代變革所帶來的機遇
隨著大數據時代生產力的變革,企業組織在供應鏈管理方面機遇難得,主要體現在以下幾個方面:
1、供應鏈管理理念精準化
管理理念隨著生產的進步技術的發展越來越成為先進生產管理方式的核心和精髓。大數據時代的變革使得供應鏈管理理念能夠實現深層次精準化的發展,包括供應鏈消費終端需求信息的收集以及用戶體驗反饋到生產端,對產品進行再次設計製造和生產,滿足終端消費者的深層次更精準的需求。
在供應渠道方面,信息通過網路的精準傳遞有利於渠道的多樣化,通過精準的營銷廣告的投放實現渠道的快速銷售能力。
在庫存方面主要意義消費需求拉動的庫存管理為主,時間庫存訂貨批量的同時安全庫存大大降低零庫存的概念已經能夠完全實現周轉庫存。水平大大降低所以從庫存成本的角度來看供應鏈管理裡面的精準化。
最終整體上。不僅滿足了消費者的終端需求深層次需求同時也滿足了生產者降低成本一嘯訂單公民及時用戶體驗完美的高層次目標。
2、協同效應作用加大
通過智能硬體和軟體技術的數據化處理,在供應鏈各個環節的信息處理收集分析和應用方面,均能及時有效地實現最優化,不但實現每個環節執行層面的學術性和敏捷性而且可以實現整體各個環節的協同作用,例如在當代電子商務的供應鏈管理中最典型的是以京東商城為代表的自營物流體系和平台的協同結合
不僅實現了訂單的快速處理,而且是京東商城的自營物流體系實現了庫存管理的最優化,更使商城的賣家能夠一大數據為基礎進行產品的選擇,營銷策略的制定,采購渠道的優化,從而最終實現了供應鏈一體化的最大協同效應。
除了電子商務企業這種行業的典型代表之外,在中國的汽車後市場特別是針對汽車配件供應鏈大數據的實現准確的進行分類包裝挑選等物流服務,有效地實現產品多品類、同一個產品多參數的復雜產品特性的供應鏈管理
為中國汽車後市場中小企業特別是最近消費者的終端企業實踐成功的用戶體驗奠定了堅實的基礎,與傳統的汽車修理廠門店相比,這種利用數據進行供應鏈管理的中小企業在競爭力方面特別是用戶體驗方面具有巨大的明顯優勢。
3、消費需求定製化驅動
大數據的應用對供應鏈管理中消費者精準需求實現了有效地滿足,不僅能夠對交易的分析和消費者購買行為的分析以及消費者對未來預期的分析而且可以根據這種分析實現生產定製化,把供給側問題存在的批量生產轉變為以個性化需求為滿足特徵的定製化生產。
例如,對衣服的生產,在傳統模式下幾乎都是設計者進行設計引導消費者進行購買,定製化需求在市場競爭中處於弱勢地位,沒有能夠實現消費者個人需求的滿足,而且衣服的定製化成本非常高,廣大消費者不能夠承擔這種定製化的成本,從而造成的定製化的發展緩慢。
近幾年以來一紅外技術對人體描繪使得軟體和硬體相結合,不僅能夠實現了消費者身體特徵的描述而且能夠根據不同的消費者對衣服的偏好進行設計,能夠快速的讓消費者根據自己的意願進行設計,在購買和交易的階段也能夠通過智能試衣鏡對現有的衣服進行挑選
在此過程中以數據收集和消費者之間的交互等環節實現了數據的分析與處理,對未來衣服的消費趨勢進行描述,而且能夠最終消費者為消費者提供深層次的長期的服務,這樣僅能從交易中獲得利潤而且能夠從的單一消費者的長期服務中,實現消費者粘性的提高,有利於廣大中小企業利用數據實現精益經營。
4、供給側結構管理優化
供給側改革是我國十三五期間的主導政策,大數據時代為供給側改革提供了有利的條件。當前,我國大部分行業在傳統模式,以投資需求和外貿為拉動的主要發展模式下普遍發生了產能過剩,解決產能過剩的問題主要從兩個方面入手,一方面有提高攻擊測產品生產製造的質量
實現產業的轉型升級,優化結構,提高生產製造的效率特別是注重保護環境等可持續發展策略;另一方面要針對終端消費者的消費需求,實現適銷對路、真正滿足消費者需求的競爭性產品。大數據時代為供給側改革提供了難得的機遇。
對供給側結構的優化管理以能源的利用為典型,隨著環境問題日益嚴重,我國對新能源代替傳統的化石能源必須採取非常有效地管理措施,其中主要體現在以數據為核心的管理處理新能源逐步代替傳統化石能源從而改善環境提高能源的利用率,2010年政府下達力度關閉了近百個火力發電廠同事計劃增加十三五期間核電站開發100所。
實現東部沿海地區和能源利用交大地區的清潔能源代替工程,必須利用大數據對能源的有效利用進行強力管控,對污染環境的傳統化石能源進行逐步改善,最終實現我國經濟的可持續發展。
5、中小企業大數據應用提升競爭力
在傳統的生產力條件下,中小企業面臨市場激烈的競爭,資源方面的不足創造力的不足效率利用地下等各個方面造成了大企業對中小企業的生存空間的擠壓,大數據出現之後,中小企業雖然在資源方面以及創新能力方面不如大企業強,但是中小企業利用戰略上的靈活性,充分發揮瞄準立即市場進行發力的敏捷。
利用大數據對市場進行再次細分,鎖定目標細分市場,對客戶進行深度挖掘,對產品進行二次創新,實現了市場競爭中的不對稱性,在微創新方面不斷滿足消費者的需求,提升自身產品和服務的競爭能力。
有效的完善了自身的不足,最終提升了生存競爭力,在國家大力倡導大眾創新萬眾創業的宏觀環境下中小企業使用大數據技術,在信息溝通、營銷競爭、戰略再投資等方面緊緊地把握住了細分市場目標客戶的有效需求,不但滿足了針對性的深度需求而且提升了掌控用戶體驗、滿足細分市場目標客戶潛在需求的工具和方法,在創造和實現顧客價值的同時,也創造了大量的就業崗位,從此品牌競爭深入人心。
從國家申請專利的數量來看,除了在市場競爭中佔主導地位的大型客機企業對研發投入比例大,而產生了大量的專利之外,廣大中小企業在滿足細分市場目標需求的同時,利用自身條件而進行重新申請專利的數量大幅度增長,競爭力提升的同時實現了價值重塑品牌塑造。
2. 大數據分析的主要技術
主要技術有五類。根據查詢大數據相關資料得知,大數據分析的主要技術分為以下5類。
1、數據採集:對於任何的數據分析來說,首要的就是數據採集,因此大數據分析軟體的第一個技術就是數據採集的技術,該工具能夠將分布在互聯網上的數據,一些移動客戶端中的數據進行快速而又廣泛的搜集,同時它還能夠迅速的將一些其他的平台中的數據源中的數據導入到該工具中,對數據進行清洗、轉換、集成等,從而形成在該工具的資料庫中或者是數據集市當中,為聯系分析處理和數據挖掘提供了基礎。
2、數據存取:數據在採集之後,大數據分析的另一個技術數據存取將會繼續發揮作用,能夠關系資料庫,方便用戶在使用中儲存原始性的數據,並且快速的採集和使用,再有就是基礎性的架構,比如說運儲存和分布式的文件儲存等,都是比較常見的一種。
3、數據處理:數據處理可以說是該軟體具有的最核心的技術之一,面對龐大而又復雜的數據,該工具能夠運用一些計算方法或者是統計的方法等對數據進行處理,包括對它的統計、歸納、分類等,從而能夠讓用戶深度的了解到數據所具有的深度價值。
4、統計分析:統計分析則是該軟體所具有的另一個核心功能,比如說假設性的檢驗等,可以幫助用戶分析出現某一種數據現象的原因是什麼,差異分析則可以比較出企業的產品銷售在不同的時間和地區中所顯示出來的巨大差異,以便未來更合理的在時間和地域中進行布局。
5、相關性分析:某一種數據現象和另外一種數據現象之間存在怎樣的關系,大數據分析通過數據的增長減少變化等都可以分析出二者之間的關系,此外,聚類分析以及主成分分析和對應分析等都是常用的技術,這些技術的運用會讓數據開發更接近人們的應用目標
3. 大數據的特點主要有什麼
大數據的特點:
數據體量巨大。從TB級別,躍升到PB級別。
數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。
概念:
「大數據」是指以多元形式,自許多來源搜集而來的龐大數據組,往往具有實時性。在企業對企業銷售的情況下,這些數據可能得自社交網路、電子商務網站、顧客來訪紀錄,還有許多其他來源。這些數據,並非公司顧客關系管理資料庫的常態數據組。
優勢:
在大數據和大數據分析,他們對企業的影響有一個興趣高漲。大數據分析是研究大量的數據的過程中尋找模式,相關性和其他有用的信息,可以幫助企業更好地適應變化,並做出更明智的決策。
1.數據量大 大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。 2.類型繁多 包括網路日誌、音頻、視頻、圖片、地理位置信息等等
大數據具有4V特點,即Volume(大量)、Velocity(高速)、Variety(多樣)和Veracity(精確),其核心在於對這些含有意義的數據進行專業化處理。比如微碼鄧白氏通過數據分析發現采購A產品的用戶80%也會要同時采購B產品,而采購周期大約是3個月,這樣就可以每三個月來向采購A產品的客戶推送一次信息,推送的時候除了A產品的信息也同時推送B的信息。
就是大,第一:數據體量巨大。第二:數據類型繁多。第三:價值的密度比較低。第四:處理的四度快。檸檬學院大數據。
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
魔方(大數據模型平台)
大數據模型平台是一款基於服務匯流排與分布式雲計算兩大技術架構的一款數據分析、挖掘的工具平台,其採用分布式文件系統對數據進行存儲,支持海量數據的處理。採用多種的數據採集技術,支持結構化數據及非結構化數據的採集。通過圖形化的模型搭建工具,支持流程化的模型配置。通過第三方插件技術,很容易將其他工具及服務集成到平台中去。數據分析研判平台就是海量信息的採集,數據模型的搭建,數據的挖掘、分析最後形成知識服務於實戰、服務於決策的過程,平台主要包括數據採集部分,模型配置部分,模型執行部分及成果展示部分等。
大數據平台數據抽取工具
大數據平台數據抽取工具實現db到hdfs數據導入功能,藉助Hadoop提供高效的集群分布式並行處理能力,可以採用資料庫分區、按欄位分區、分頁方式並行批處理抽取db數據到hdfs文件系統中,能有效解決大數據傳統抽取導致的作業負載過大抽取時間過長的問題,為大數據倉庫提供傳輸管道。數據處理伺服器為每個作業分配獨立的作業任務處理工作線程和任務執行隊列,作業之間互不幹擾靈活的作業任務處理模式:可以增量方式執行作業任務,可配置的任務處理時間策略,根據不同需求定製。採用非同步事件驅動模式來管理和分發作業指令、採集作業狀態數據。通過管理監控端,可以實時監控作業在各個數據處理節點作業任務的實時運行狀態,查看作業的歷史執行狀態,方便地實現提交新的作業、重新執行作業、停止正在執行的作業等操作。
互聯網數據採集工具
網路信息雷達是一款網路信息定向採集產品,它能夠對用戶設置的網站進行數據採集和更新,實現靈活的網路數據採集目標,為互聯網數據分析提供基礎。
未至·雲(互聯網推送服務平台)
雲計算數據中心以先進的中文數據處理和海量數據支撐為技術基礎,並在各個環節輔以人工服務,使得數據中心能夠安全、高效運行。根據雲計算數據中心的不同環節,我們專門配備了系統管理和維護人員、數據加工和編撰人員、數據採集維護人員、平台系統管理員、機構管理員、輿情監測和分析人員等,滿足各個環節的需要。面向用戶我們提供面向 *** 和面向企業的解決方案。
顯微鏡(大數據文本挖掘工具)
文本挖掘是指從文本數據中抽取有價值的信息和知識的計算機處理技術, 包括文本分類、文本聚類、信息抽取、實體識別、關鍵詞標引、摘要等。基於Hadoop MapRece的文本挖掘軟體能夠實現海量文本的挖掘分析。CKM的一個重要應用領域為智能比對, 在專利新穎性評價、科技查新、文檔查重、版權保護、稿件溯源等領域都有著廣泛的應用。
數據立方(可視化關系挖掘)
大數據可視化關系挖掘的展現方式包括關系圖、時間軸、分析圖表、列表等多種表達方式,為使用者提供全方位的信息展現方式。
大數據(big data),是指在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。
大數據的特點:
1、容量(Volume):數據的大小決定所考慮的數據的價值的和潛在的信息;
2、種類(Variety):數據類型的多樣性;
3、速度(Velocity):指獲得數據的速度;
4、可變性(Variability):妨礙了處理和有效地管理數據的過程。
5、真實性(Veracity):數據的質量
6、復雜性(Complexity):數據量巨大,來源多渠道
大數據的意義:
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。
大數據的缺陷:
不過,「大數據」在經濟發展中的巨大意義並不代表其能取代一切對於社會問題的理性思考,科學發展的邏輯不能被湮沒在海量數據中。著名經濟學家路德維希·馮·米塞斯曾提醒過:「就今日言,有很多人忙碌於資料之無益累積,以致對問題之說明與解決,喪失了其對特殊的經濟意義的了解。」 這確實是需要警惕的。
閉幕詞是一些大型會議結束時由
有關領導人或德高望重者向會議所作的講話。
具有總結性、評估性和號召性。
旅遊人數的變化,旅遊時間,旅遊地點,旅遊習慣,過程中的消費習慣,團的還是個人的,等等數據。—檸檬學院大數據,線上大數據學習平台。