分布式資料庫是一個邏輯資料庫,它的物理資料庫在地理位置上分布在多個資料庫管理系統的計算機網路中,這些資料庫系統構成了分布式的資料庫管理系統
在分布式資料庫管理系統中,每台計算機上的用戶在訪問資料庫時並不感到他使用的漏伍數據在物理上不存儲在自己的計算機中,而是由分布式資料庫系統由網路從其它機器中傳輸過來
因此,對每一用戶來說,看到的都是一個統一的概念模式
分布式資料庫系統的主要特點是:(1)具有較高的可靠性,當系統中一台機器發生故障時、不會導致整個系統的破壞
當故障排除後,分布式資料庫系統可將故障期間的資料庫加以恢復修改段搜兄
(2)分散了工作負荷,使大量的處理均勻分擔
(3)便於實現系統的擴充
分布式資料庫系統是計算機握襲通訊和資料庫技術相結合的產物,是非常有代表性的資料庫技術發展方向之一
Ⅱ 稅務大數據比對哪些內容
一、正面回答:
比對內容包括表表比對、票表比對和表稅比對。表表比對是指申報表表內、表間邏輯關系比對。票表比對是指各類發票、憑證、備案資格等信息與申報表進行比對。表稅比對是指納稅人當期申報的應納稅款與當期的實際入庫稅款進行比對。
二、詳情分析:
比對信息范圍包括:增值稅納稅申報表及其附列資料信息。增值稅一般納稅人和小規模納稅人開具的增值稅發票信息。增值稅一般納稅人取得的進項抵扣憑證信息。納稅人稅款入庫信息。增值稅優惠備案信息。申報比對所需的其他信息。
三、稅收大數據的概念是什麼
稅收大數據就是指我國的金稅系統,在案件的發現和查處中功不可沒。目前稅務部門使用的是金稅三期,已經實現了對國稅、地稅數據的合並及統一,其功能是對稅務系統業務流程的全監控。金稅四期也於2021正式啟動建設,新的系統將納入非稅業務,實現對業務更全面的監控。同時搭建了各部委、人民銀行以及銀行等參與機構之間信息共享和核查的通道,實現企業相關人員手機號碼、企業納稅狀態、企業登記注冊信息核查三大功能。
Ⅲ 不定期進行大數據比對的意義
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。在實用中,數據分析可以幫助人們做出判斷,以便採取適當行動。
1.數據分析的目的
數據分析的目的就是對過去發生的現象進行評估和分析,尋找事物存在的證據及原因,並在這個基礎上對未來事物的發生和發展做出結論並形成能夠指導未來行為的知識或者依據。
數據分析的核心並不在於數據本身,而在於設計有意義、有價值的數據分析主題與指標體系,通過科學有效的手段去分析,進而發現問題優化迭代。無論分析給出的結果是積極的還是負面的,都是價值承載體,必須以客觀的態度面對。
2.數據分析的意義。數據分析的意義表現在以下幾個方面:
(1)有利於企業加強科學管理,提高經營管理水平。企業推行科學管理,有效發揮決策、計劃、組織、領導、控制等管理職能,都必須採取科學的態度,充分利用各種數據信息,分析企業現實情況。例如,我們所做的每一項決策,都要事先進行科學預測;我們的每一項經營活動,都需要進行量化監控;我們完成的每一項工作,都需要總結、分析與提高。可以說,企業的一切活動都離不開數據分析,它是企業管理必不可少的管理手段,更是改善和提升企業經營管理與決策水平的利器。
(2)有利於企業實現簡化管理,提高經營管理效率。企業的任何管理工作都是圍繞企業的效率與效益展開,數據分析工作也不例外。近百年來,管理學界總結和創建了非常多的數據分析方法與模型,推進了企業規范化、標准化管理工作,只要我們能夠積極地學習與使用,就能極大地提高人們的認識效率和工作效率。
(3)有利於企業提高經濟效益,增強核心競爭力。不斷地提高經濟效益是經濟發展的客觀要求。為了實現這一要求,企業必須對經營活動進行監控,開展數據分析工作。通過經常的和定期的分析,對企業年度預算目標完成進展情況進行比較,找出差距及其原因,及時採取應對策略,有利於企業經濟效益的提升。通過與競爭對手的對標分析,找出競爭上的薄弱環節,以利於增強企業核心競爭力。
(4)有利於企業完善經濟責任制,搞好企業內部分配。通過數據分析,考察客觀經濟環境變化對企業各項經濟活動的影響,分清影響企業及內部各部門、單位經濟效益的主、客觀原因;查明企業內部各單位的經營管理活動對企業實現目標的影響和應付的經濟責任,這對正確評價和考核各部門和各單位的工作業績,分清責任與貢獻大小,搞好企業內部分配,合理獎懲,有著重要的作用。
大數據分析的目的與意義.中琛魔方大數據平台表示大數據分析的結果可以給企業帶來決策影響,也同時關繫到企業的利益體現,大數據分析正在為企業帶來了新的變化,主要是幫助企業分析客戶數據,進一步掌握了解客戶數據,以便做出有針對性的決策。
發布於 1 年前著作權歸作者所有
贊同 3
喜歡 3
分享
評論 0
你見過最陰暗的事情是什麼。?
Ⅳ 大數據攻略案例分析及結論
大數據攻略案例分析及結論
我們將迎來一個「大數據時代」。與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?
{研究結論}
■大數據營銷的本質是一個影響消費者購物前心理路徑的問題,而這在大數據時代前很難做到。
■對於傳統企業而言,要打通線上與線下營銷,實現新的商業模式,如O2O等,離不開大數據。
■雖然大數據應用往往集中於大數據營銷,但對於一些企業,大數據的應用早已超越了營銷范疇,全面進入了企業供應鏈、生產、物流、庫存、網站和店內運營等各個環節。
■對於大部分企業,由於數據分析人員與業務人員之間的彼此視角與思考方向不同,大數據分析和運營之間存在脫節情況,這是大數據無法用於企業運營最大的阻力
■對於大多數互聯網公司來說,大數據量、大用戶量是一個相互促進,強者越強的循環過程。
■對於大型互聯網平台,大數據已經成為其生態循環中的血液,對於這些企業,最重要
的不是如何利用大數據改進自身運營,而是利用大數據更好地繁榮平台生態。
■對於平台企業,它們的大數據策略正逐漸從大數據運營,向運營大數據轉變,前者和
後者的差別在於,前者只是運營改進的動力,而後者則成為企業實現未來戰略的核心資源。
我們都已被反復告知:我們將迎來一個「大數據時代」。
大數據應用,將和雲計算、3D列印這些技術變革一樣,顛覆既有規則,並成為先行企業的制勝關鍵。
與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?
來自於互聯網、移動互聯網、物聯網感測器、視頻採集系統的數據正海量增長,匯成大數據的海洋,相伴的是海量數據存儲、分析技術的突破性發展,所有這一切都給企業的應用帶來了無限可能性。
中國企業家研究院對當前中國企業大數據應用的狀況進行了歸納分類,以幫助企業了解實際應用大數據時的困局難點,並提供領先企業的典型案例以資借鑒。
表1
表2
大數據運營—企業提升效率的助推力
對於大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自於互聯網、物聯網、各種感測器的海量辯笑虧數據撲面而至。於是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。大數據運營應用中,大數據的應用分為三類:用於企業外部營銷、用於內部運營,以及用於領導層決策。
一、大數據營銷
大數據營銷的本質是影響目標消費者購物前的心理路徑,它主要應用在三個方面:1、大數據渠道優化,2、精準營銷信息推送,3、線上與線下營銷的連接。在消費者購物前,通過各種方式,直接介入其信息收集和決策過程。而這種介入,是建立在對於線上與線下海量用戶數據分析的基礎之上。相比傳統狂轟濫炸或等客上門的營銷,大數據營銷無論在主動性和精準性方面,都有非常大的優勢。它是目前主要的大數據應用領域。
大數據營銷不僅僅是用大數據找出目標顧客,向其發布促銷信息,它還可以做到:
實現渠道優化。根據用戶的互聯網痕跡進行渠道營銷效果優化,就是根據互聯網上顧客的行為軌跡來找出哪個營銷渠道的顧客來源最多,哪個來源顧客實際購買量最多,是否是目標顧客等等,從而調整營銷資源在各個渠道的投放。例如東風日產,它利用對顧客來源的追蹤,來改進營銷資源在各個網路渠道如門戶網站、搜索和微博的投放。
精準營銷信息攜神推送。精準建立在對海量消費者的行為分析基礎之上,消費者網路瀏覽、搜索行為被網路留下,線下的購買和查看等行為可以被門店的POS機和視頻監控記錄,再加上他們在購買和注冊過程中留下的身份信息,在商家面前,正逐漸呈現出消費者信息的海洋。
一些企業通過收集海量的消費者信息,然後利用大數據建模技術,按消費者屬升猛性(如所在地區、性別)和興趣、購買行為等維度,挖掘目標消費者,然後進行分類,再根據這些,對個體消費者進行營銷信息推送。比如孕婦裝品牌十月媽咪通過對自己微博上粉絲評論的大數據分析,找出評論有「喜愛」相關關鍵詞的粉絲,然後打上標簽,對其進行營銷信息推送。京東商城副總經理李曦表示:「用大數據找出不同細分的顧客需求群,然後進行相應的營銷,是京東目前在做的事情。」小也化妝品將自身網站作為收集消費者信息的雷達,對不同消費者推薦相應的肌膚解決方案,創始人肖尚略希望在未來,大數據營銷能替代網站的作用,真正成為面向顧客的前端。
打通線上線下營銷。一些企業將互聯網上海量消費者的行為痕跡數據與線下購買數據打通,實現了線上與線下營銷的協同。比如東風日產,線上與線下的協同營銷方式為:其門戶網站帶來訂單線索,而通過這些線索,服務人員進行電話回訪,從而推動顧客在線下交易。在此過程中,東風日產記錄了消費者進入、瀏覽、點擊、注冊、電話回訪和購買各個環節的數據,實現了一個橫跨線上線下,以大數據分析為支持的,營銷效果不斷優化的閉環營銷通路。而國雙科技,衡量某一地區線下促銷活動的效果,就是看互聯網上,來自這個地區對於促銷內容的搜索量。一些企業,通過鼓勵線下顧客使用微信和Wi-Fi等可追蹤消費者行為和喜好的設備,來打通線上與線下數據流,銀泰百貨計劃鋪設Wi-Fi,鼓勵顧客在商場內使用,然後根據Wi-Fi賬號,找出這個顧客,再通過與其它大數據挖掘公司合作,以大數據的手段,發掘這個顧客在互聯網的歷史痕跡,來了解這個顧客的需求類型。
二、大數據用於內部運營
相比大數據營銷,大數據在內部運營中的應用更深入,對於企業內部的信息化水平,以及數據採集和分析能力的要求更高。本質上,是將企業外部海量消費者數據與企業內部海量運營數據聯系起來,在分析中得到新的洞察,提升運營效率。(詳見P96表5:大數據在內部運營中的應用)
表5
三、大數據用於決策
在大數據時代,企業面對眾多新的數據源和海量數據,能否基於對這些數據的洞察,進行決策,進而將其變成一項企業競爭優勢的來源?同大數據營銷和大數據內部運營相比,運用大數據決策難度最高,因為它需要一種依賴數據的思維習慣。
已有少數企業開始嘗試。比如國內一些金融機構在推出一個金融產品時,會廣泛分析該金融產品的應用情況和效果、目標顧客群數據、各種交易數據和定價數據等,然後決定是否推出某個金融產品。
但是,中國企業家研究院在調研中發現,目前中國企業當中,大數據決策的應用非常之少,許多企業領導者進行決策時,仍習慣於憑借歷史經驗和直覺。
大數據產品——企業利潤滋長的新源泉
大數據除了用於運營外,還能夠與企業產品結合,成為企業產品背後競爭力的核心支持或者直接成為產品。提供大數據產品的企業分為兩類,直接提供大數據產品的企業,以及將大數據作為產品和服務核心支撐的企業。前者主要為大數據產業鏈中提供數據服務的參與者,包括數據擁有者、存儲企業,挖掘企業、分析企業等,後者則主要是那些以大數據為產品核心支撐的企業,它們大多是互聯網企業,其產品和服務先天就有大數據基因,這些企業包括搜索引擎、在線殺毒、互聯網廣告交易平台以及眾多植根於移動互聯網之上,為用戶提供生活和資訊服務的APP等。
表3
表4
一、大數據作為產品核心支持
它們主要在以下幾方面使用大數據:
1、提供信息服務。很多互聯網企業通過對海量互聯網信息和線下信息的整合和分析,為個人和企業提供信息服務,典型的如網路、去哪兒、一淘、高德地圖、春雨醫生等等。在美國,一些互聯網企業甚至根據大數據提供更深度的預測信息服務,美國科技創新公司farecast,通過分析特定航線機票的價格,幫助消費者預測機票價格走勢。
2、分析用戶的個性化需求,藉此提供個性化產品和服務,或者實現更精準的廣告。典型的有移動社交工具陌陌、網路、騰訊、廣告交易平台品友互動以及一些互聯網游戲商。這種應用往往先是收集海量用戶的互聯網行為數據,將用戶分類,根據不同類型的用戶,提供個性化的產品,或者提供個性化的促銷信息。比如網易等門戶網站推出了訂閱模式,讓使用者按照個人喜好方便地定製和整合不同來源的信息。
3、增強產品功能。對於很多互聯網產品,如殺毒軟體、搜索引擎等等,海量數據的處理能夠讓產品變得更聰明更強大,如果沒有大數據,產品的功能就大大減弱。比如奇虎360公司的360殺毒軟體,憑借每天海量的殺毒處理,建立了龐大的病毒庫,這使它能夠更快地發現病毒,而一些小的殺毒軟體公司則無法做到這一點。
4、掌控信用狀況,提供信貸服務。阿里巴巴上匯集了海量中小企業的日常資金與貨品往來,通過對這些往來數據的匯總與分析,阿里巴巴能發現單個企業的資金流與收入情況,分析其信用,找出異常情況與可能發生的欺詐行為,控制信貸風險。
5、實現智能匹配。婚戀網站、交易平台等,利用大數據可以進行精準而高效的配對服務。網易花田會挖掘用戶行為數據,比如點擊哪些異性的頁面,發表什麼樣的評論,建立用戶興趣模型,從而挖掘到用戶所期待另一半的類型,然後主動推薦與對方匹配度比較高的人選。2010年,阿里巴巴嘗試性地推出「輕騎兵」服務,由阿里巴巴將中國各產業集群地的供應商與海外買家的個性采購需求進行快速匹配,所憑借的,就是對供應商的海量交易數據信息的整合與挖掘。
二、大數據直接作為產品
對一些企業,大數據直接成為了產品,這些產品包括海量數據、分析、存儲與挖掘的服務等,目前大數據產業鏈正在形成過程中,出現了一批開放、出售、授權大數據和提供大數據分析、挖掘的公司和機構,前者主要是一些擁有海量數據的公司,將數據服務作為新的盈利來源。如大型的互聯網平台、民航、電信運營商、一些擁有大數據的政府機構等等,後者主要包括一些能夠存儲海量數據或者將海量數據與業務場景結合,進行分析和挖掘,或者提供相關產品的公司,如IBM、SAP、拓而思、天睿公司。它們為大數據應用者們提供海量數據存儲、數據挖掘、圖像視頻、智能分析等服務以及相關系統產品。
大數據平台——企業群落繁榮的滋養劑
而網路已建成了包括網路指數、司南、風雲榜、數據研究中心和網路統計在內的五大數據體系平台,幫助其營銷平台上的企業了解消費者行為、興趣變化,以及行業發展狀況、市場動態和趨勢、競爭對手動向等信息。
為解決這些問題,各個平台在積極地努力。比如阿里巴巴建立了數據委員會,在統一數據格式標准、從源頭上保證數據的質量,採集和加工出精細化的數據,確保其能符合平台企業的應用場景等方面,不遺餘力地嘗試。尤其在大數據精細化方面,阿里巴巴更是作為其大數據戰略的重點。這方面,騰訊目前也在加快步伐。比如新版騰訊網出現了「一鍵登錄」的提示,用戶可以在上面通過一些細分標簽,訂閱自己關注的內容。實際上,這也是騰訊收集更精細化的用戶興趣數據的一個有效手段。
Tips
大數據實戰手冊
將大數據應用於內部運營中時,企業會遇到一些常見問題
1企業如何獲取與分析數據?
互聯網是大數據的一個主要來源,一些線下的傳統企業很難獲得。但它們可以:
a和擁有或能抓取海量數據的平台、企業以及政府機構合作。比如淘寶上的電商就購買淘寶收集的海量數據中與自身運營相關的部分,用於自身業務。再如卡夫通過與IBM合作,在博客、論壇和討論版的內容中抓取了47.9萬條關於自己產品的討論信息,通過大數據分析出消費者對卡夫食品的喜愛程度和消費方式。
b建立自己在互聯網上的平台,比如朝陽大悅城利用自己的微信、微博等平台收集消費者評論數據。
c許多傳統企業沒有分析海量數據的能力,此時它們可以和大數據分析和挖掘公司合作,目前市場上已經有天睿公司、IBM、百分點、華勝天成等一批提供大數據分析和挖掘服務的公司,它們是傳統企業進行大數據分析可以藉助的力量。
2如何避免大數據應用時的部門分割?
對於許多企業,其信息流被各部門彼此分割,數據難以互通,對於這種情況下,大數據的共享和匯集就只是一個泡影,更難以實現大數據的深度應用。
要打通部門之間信息分割的局面,首先要建立統一的、集中的數據系統。就像立白信息與知識總監王永紅所說的,「要真正用好大數據,企業要採用大集中的信息系統。」從更深入的角度來談,企業信息流的部門分割,更在於企業部門之間的分割,比如有一些企業的營銷按照渠道分割,導致對於顧客的大數據收集和分析效果大打折扣。
IBM智慧商務技術總監楊旭青認為,「很多時候由於組織結構問題,大數據分析有效性大大降低了。」這就需要組織與流程層面的重新設計,在這方面,阿里巴巴的部門負責人輪崗制度,對於打破部門壁壘無疑是一劑好葯。而一些企業為了打破部門分割,建立了矩陣型的組織結構,強化部門間的橫向合作,這些無疑為大數據的匯集、共享與應用創造了良好條件。
3如何讓業務人員重視大數據的應用?
解決這個問題,一方面在於一把手對整個企業數據文化的倡導,比如1號店董事長於剛就要求業務人員無論在開會,還是匯報工作時,都以數據說話,而馬雲更是將大數據提升到了戰略高度。
另一方面,也在於數據部門的帶動,阿里巴巴數據委員會負責人車品覺分享了經驗,「因為運營部門的業務人員很難看到大數據的潛力,可以首先從一些對業務見效快,見效顯著的數據項目出發,通過一兩個項目的成功,調動對方的積極性,然後再逐步一個個地引導。」
4為何大數據工作與運營需求脫節?
這往往是由於數據人員與業務人員視角、專業知識不同而導致的。大數據人員做了很多努力,但是業務人員卻認為這些努力無關痛癢。如何解決這個問題?
有的企業從組織設計上發力,將大數據納入業務分析部門的管理之下,用業務統馭數據。對於朝陽大悅城,由主要負責戰略和經營分析的部門來管理大數據工作,其中的大數據分析人員則作為支持人員。在負責人張岩看來,大數據要靠商業法則指導,關鍵是找到業務需求的點,然後由數據分析和挖掘人員實現。在具體操作中,大悅城對微信的數據挖掘,挖掘什麼樣的關鍵詞,由業務分析人員確定,而具體挖掘則由數據部門做;有的企業從流程設計上著手,推動業務部門與數據部門人員之間的溝通,建立數據人員工作與效果掛鉤的考核機制。
例如阿里巴巴根據數據挖掘的成效(比如帶來的商品轉化率的提升)來考核數據挖掘師,考核數據分析師則看其分析結果能否出現在經營負責人的報告中。從數據部門自身角度則需要降低運營部門使用數據的障礙和門檻,比如立白集團的數據人員會努力嘗試向運營部門提供更易懂、更生動的圖形化數據分析界面,在立白老闆辦公室上,就有一份「客戶運營健康體檢表」,讓老闆對全國經銷商的當月銷售情況一目瞭然。再如阿里巴巴開發的無線Bi,讓經營人員在手機上也可以看到大數據分析結果,拿車品覺的話說,「以數據之氧氣包圍經營人員。」
Ⅳ 大數據對比是什麼意思
大數據對比是什麼意思:大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點
Ⅵ 大數據比對法怎麼做
大數據(big
data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數專據集合,是屬需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)
Ⅶ 請教,大數據量比對解決方案
我們公司的人員表my_person,數據量大概760萬,身份證和姓名都相同的記錄有可能存在
兩列上建內有聯合索引
身份證號容碼 姓名
123 張三
456 李四
公安的人員表gongan_person,數據量大概4100萬,身份證和姓名都相同的記錄有可能存在
兩列上建有聯合索引,未分區
身份證號碼 姓名 照片ID
123 張三 75362
456 李大山 8562
Ⅷ 大白話談大數據:數據分析方法之對比分析
對比分析是數據分析中最常用、好用、實用的分析方法,它是將兩個或兩個以上的數據進行比較,分析其中的差異,從而揭示這些事物代表的發展變化情況以及變化規律。
先看看思維導圖:
使用分析方法(和誰比)
如何使用對比分析法,就要先考慮 和誰比 這個問題。
和自己比較
通過和自己過去的平均值相比,發現問題,圍繞問題進行分析,出現的問題是自身問題導致的還是行業問題導致的,如果自己的環比出現了問題,就要從自身上找原因,提高活躍率。
和行業比較
將自己的平均值和行業平均值進行比較,和同行一比,往往會發現很多問題。
使用分析方法(如何比較)
第二個要考慮的問題就是 如何比較 ?
數據整體的大小 :用某些指標來衡量整體數據的大小,常用的數據指標為:平均值、中位數、某個業務指標
數據整體波動 :用變異系數來衡量整體數據的波動情況
趨勢變化 :運用對比分析來分析趨勢變化的時候,最主要的是找到合適的對比標准。找到標准,將對比對象的指標與標准進行對比,就能得出有結果了。目前常用標準是時間標准、空間標准、特定標准。
第一類時間標准 :
動作前後對比 ,可以看到動作前後的效果,如對比某次營銷活動前後的對比。
時間趨勢對比 ,可以評估指標在一段時間內的變化,可以通過環比,來判斷短時間內趨勢的變化。
與去年同期對比 ,當數據存在時間周期變化的時候,可以與去年同期對比,剔除時間周期變化因素。通過同比,來判斷短時間內趨勢的變化。
環比:本月和上個月比較,短時間的比較
同比:本年和上一年比較,長時間的比較
第二類空間標准 :
A/B測試 ,在同一時間維度,分別讓組成成分相同的目標用戶,進行不同的操作,最後分析不同組的操作效果,A/Btest我接下去也會講。
相似空間對比 ,運用兩個相似的空間進行比較,找到二者的差距,比如同類型甲APP(貝殼)乙APP(自如)的年留存率情況,明顯看出哪個APP的留存率更高,日常生活中相似空間比較常用的就是城市、分公司之間的對比。
先進空間對比 ,是指與行業內領頭羊對比,知曉差距多少,再細分原因,從而提高自身水平。如淘寶和京東的對比。
第三類特定標准 :
與計劃值對比 ,目標驅動運營,在營銷中會制定年、月、甚至日的目標,通過與目標對比,分析自己是否完成目標,若未完成目標,則深層次分析原因。目標驅動的好處,就是讓運營人員一直積極向上努力的去完成目標,從而帶動公司盈利。
與平均值對比 ,與平均值對比,主要是為了知曉某部分與總體差距。
與理論值對比 ,這個對比主要是因為無歷史數據,所以這個時候只能與理論值對比。理論值是需要經驗比較豐富的員工,利用工作經驗沉澱,參考相似的數據,得出來的值。
對比分析方法原則
對比分析需要堅持可比性原則:對比對象相似,對比指標同質
對比對象相似 :進行比較的時候注意,比較規模要一致,對比對象越相似,就越具有可比性,比如說不能用你的工資和思聰的零花錢進行比較,這樣不公平。如果要比,就和你出生,教育背景相似的人進行比較。當然這只是個不恰當的例子haha
對比指標同質: 同質可以表現在下面三點:
1.指標口徑范圍相同 ,比如甲 APP 與乙 APP 的用戶年留存率比較,如果用甲 APP 18年的用戶留存率,那乙 APP 也需要是18年的,不能拿乙17年的與甲18年的比較。
2.指標計算方法一樣 ,也就是計算公式相同,比如一個用除法、一個用加法進行計算。
3.指標計量單位一致 ,不能拿身高和體重進行比較,二者常用單位一個是厘米,一個是千克。
分析方法應用
舉一個例子吧,A/Btest
什麼是A/B測試呢?為統一個目標制定兩個版本,這兩個版本只有某個地方不一樣,其他地方保持不變,讓一部分用戶使用A版本,一部分用戶使用B版本,A版本為實驗組,B版本為對照組,兩個版本運行一段時間後,分別統計兩組用戶的表現,然後對兩組數據進行對比分析,選擇效果好的版本,正式發布給全部用戶。
當然現實中的A/Btest也遠沒有這么簡單,我接下去會寫一篇文章專門講講A/Btest的,挖坑+1 hahaha
最後打個小廣告,我的公眾號(顧先生的數據挖掘)
喜歡的小夥伴可以關注下,你的關注是我最大的動力。