『壹』 真實性不是大數據的特徵對嗎
錯誤。大數據五大基本特點包括容量、種類、速度、可變帶差裂性、真實性慶虛,蠢閉所以這句話是錯誤的,真實性是大數據的特徵。
『貳』 大數據的五個典型特性
大數據的5V 特性包括:Volume(大量),Velocity(高速),Variety(多樣),Value(低價值密度),Veracity(真實)。
『叄』 大數據分析的5個方面
1、可視化分析。大數據分析的使用者有大數據分析專家,同時還有普通用戶,但他們二者對於大數據分析最基本的要求就是可視化分析,因可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
2、數據挖掘演算法。大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點。
3、預測性分析能力。大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,便可以通過模型帶入新的數據,從而預測未來的數據。
4、語義引擎。大數據分析廣泛應用於網路數據挖掘,可從用戶的搜索關鍵詞、標簽關鍵詞、或其他輸入語義,分析,判斷用戶需求,從而實現更好的用戶體驗和廣告匹配。
5、數據質量和數據管理。大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
『肆』 大數據分析的五個基本方面
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。
<a href="http://www.hqqt.com/webnews/16021099515344.html" title="2、數據挖掘演算法" target="_blank">2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、語義引擎
大數據分析廣泛應用於網路數據挖掘,可從用戶的搜索關鍵詞、標簽關鍵詞、或其他輸入語義,分析,判斷用戶需求,從而實現更好的用戶體驗和廣告匹配。
5、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
關於大數據分析的五個基本方面,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
以上是小編為大家分享的關於大數據分析的五個基本方面的相關內容,更多信息可以關注環球青藤分享更多干貨
『伍』 大數據發展五大關鍵要素
大數據發展五大關鍵要素
目前,大數據正成為推動企業效率提升和管理變革的強大力量,一些企業正利用互聯網與物聯網等帶來的海量數據,通過挖掘、分析與業務應用,贏得優勢。它正成為經濟繁榮的催化劑,在美國,大數據已經被提到了國家戰略的高度。但如何發展大數據呢?從新加坡的經驗來看,政府在其中起到關鍵性的作用。
新加坡政府抓住了大數據發展的五大關鍵要素:基礎設施、產業鏈、人才、技術和立法。它在其中發揮了關鍵角色,尤為值得一提的是,這五個要素是普通企業所做不到的,而新加坡政府正好填補了企業的短板。
大數據基礎設施方面:一個國家在信息和存儲等方面的基礎設施,決定了大數據時代的海量數據能否匯集、傳達,存儲和應用。為了為大數據的發展提供良好的基礎,新加坡在基礎建設投資方面毫不吝嗇。新加坡是世界十大高速網路架構之一,並承載了東南亞地區半數以上的第三方數據中心儲存量。新加坡已確立其作為全球數據管理樞紐的地位,匯集了東南亞超過50%的商業數據託管及中立運營商數據中心。
大數據產業鏈方面:在大數據產業鏈中,橫跨了包括數據提供者、存儲商、分析和挖掘商,以及應用企業等。對於企業,往往只有應用能力,卻缺乏獲得、存儲和分析與挖掘大數據的能力。而在這方面,當然要依靠產業鏈中相應的服務商,但政府在產業鏈建設中發揮了關鍵性的作用。
在數據挖掘方面,鼓勵大學設立數據挖掘和分析平台,2012年,新加坡管理大學(SMU)推出的「Livelabs」創新平台,旨在增強新加坡在消費者和社會行為領域的數據分析能力;鼓勵企業設立數據分析中心,一些企業通過在新加坡設立數據分析中心,洞察亞洲市場需求,已成功地實現了區域市場業務的拓展。2011年,勞斯萊斯(Rolls-Royce)與新加坡科技研究局(A*STAR)下設的高性能計算研究院合作成立了計算工程實驗室,在智能數據分析領域進行合作研究。
新加坡信息通信研究院(I2R)擁有全亞洲最大的數據挖掘團隊之一。
承擔數據提供者角色,主動披露政府掌握的數據,在大數據建設中,這一點至關重要,因為畢竟政府是最大的數據擁有者。但是讓政府能夠主動開放自己的數據,並不是一件容易的事,而新加坡政府卻做到了這一點。新加坡土地管理局(Singapore Land Authority)研發的電子地圖(OneMap),就為基於位置的服務(LBS)的企業提供了開放數據平台。
新加坡陸路交通管理局則通過公共數據開放計劃開放新加坡交通數據,鼓勵企業甚至是個人開發提升公共交通效率的應用軟體。
新加坡環境局(NEA, National Environment Agency)與多家企業合作,研究如何收取降雨量,並通過掌握不同地區環境的數據,來預測哪個地區接下來會爆發熱帶地區可能產生的疾病。
大數據人才方面:目前企業應用大數據過程中往往最缺少數據人才,培養數據人才要充分發揮政府的作用。為了成為全球領先的數據分析中心,新加坡政府在這方面的努力可謂不遺其力。
它與企業以及本地高等院校開展合作,確保畢業生獲得必備的專業知識和技能。目前,新加坡在數據分析領域開設了4個碩士課程以及5個本科課程,提供側重於具體行業應用的多學科研究方法。
在新加坡經濟發展局的協助下,亞洲頂尖學府新加坡國立大學(NUS)和IBM將開展合作,共同成立新加坡國立大學商業分析中心。該中心旨在幫助在校學生以及在職人員提升商業分析領域的最新職業技能,為未來數據分析工作打好基礎。
大數據技術方面:大數據存儲、分析和挖掘技術與產品往往需要巨大投資,但是一般的企業無法承受這樣的投資,此時政府的作用就尤為重要。而新加坡在其中,從來就沒有缺位。
信息通信研究院(I2R)與中國搜索引擎巨頭網路在東盟自然語言技術開發領域進行合作。這一技術如被普遍應用,將為企業進軍新興的東盟市場創造空前機遇。此外,數據分析會被應用在分析社會認知領域。新加坡高性能計算研究所(IHPC)是率先開發此項技術的研究所之一。通過對人們第一印象的建模研究,企業可以更好地了解亞洲消費者。這項技術能夠幫助企業預測消費者對新產品的反饋。
在立法方面:大數據的發展總是伴隨著與個人隱私權的沖突,而能否通過立法明確保護個人隱私權是大數據能否良性發展的關鍵,而新加坡在這方面做得很充分。新加坡於2012年公布了《個人資料保護法》(PDPA)。《個人資料保護法》作為一項較為寬松的立法,旨在防範對國內數據以及源於境外的個人資料的濫用行為。該法案的出台使公民得以進一步了解個人資料的使用途徑;同時,在進行個人信息處理的過程中,也加強了企業與客戶之間的信任程度。
新加坡在收集、存儲大量數據的基礎上,對數據進行有效的分析與應用,從中獲得經濟價值。到2017年底,預計數據行業將為新加坡經濟貢獻十億新元的增值,並培養2,500名跨領域數據分析專業人才。
而所有這一切在於新加坡對於大數據的戰略定位,對於自然資源稀缺的新加坡而言,「利用數據作為資源」是非常好的選擇,新加坡經濟發展局資訊通信與媒體業執行司長吳汭剛認為,「對於新加坡,數據就是未來流通的貨幣,而我們目前所做的就是將新加坡打造成全球數據管理中心,從而有能力與企業合作,將數據的潛在價值轉化為可見的商業利潤。」
『陸』 大數據技術有哪些 核心技術是什麼
這個只能說主流技術吧,不能說核心技術;現在國內很多公司大數據方面的主回要答使用時Hadoop生態圈內的技術,比如Hadoop、yarn、zookeeper、kafka、flume、spark 、hive、Hbase ,這些事使用比較多的,並不是說就只有這些技術,而且只是應用技術方便的,還有數據分析方向的等等。所以你這個問題首先就有問題,大數據是一個方向領域,就好比你問飲食是什麼,飲食有哪些方面一樣。
『柒』 大數據的五大特點是什麼
IBM提出了大數據」5V」特點:
一、Volume:數據量大,包括採集、存儲和計算的量都非常大。大數據的枯迅中起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
二、Variety:種類和來源多樣化。包括結構化、半結構化和非結構化數昌寬據,具體表現為網路日誌、音頻、視頻、圖片、沒山地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
三、Value:數據價值密度相對較低,或者說是浪里淘沙卻又彌足珍貴。隨著互聯網以及物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何結合業務邏輯並通過強大的機器演算法來挖掘數據價值,是大數據時代最需要解決的問題。
四、Velocity:數據增長速度快,處理速度也快,時效性要求高。比如搜索引擎要求幾分鍾前的新聞能夠被用戶查詢到,個性化推薦演算法盡可能要求實時完成推薦。這是大數據區別於傳統數據挖掘的顯著特徵。
五、Veracity:數據的准確性和可信賴度,即數據的質量。
————————————————
版權聲明:本文為CSDN博主「arsaycode」的原創文章.........
『捌』 大數據處理的五大關鍵技術及其應用
作者 | 網路大數據
來源 | 產業智能官
數據處理是對紛繁復雜的海量數據價值的提煉,而其中最有價值的地方在於預測性分析,即可以通過數據可視化、統計模式識別、數據描述等數據挖掘形式幫助數據科學家更好的理解數據,根據數據挖掘的結果得出預測性決策。其中主要工作環節包括:
大數據採集 大數據預處理 大數據存儲及管理 大數據分析及挖掘 大數據展現和應用(大數據檢索、大數據可視化、大數據應用、大數據安全等)。一、大數據採集技術
數據是指通過RFID射頻數據、感測器數據、社交網路交互數據及移動互聯網數據等方式獲得的各種類型的結構化、半結構化(或稱之為弱結構化)及非結構化的海量數據,是大數據知識服務模型的根本。重點要突破分布式高速高可靠數據爬取或採集、高速數據全映像等大數據收集技術;突破高速數據解析、轉換與裝載等大數據整合技術;設計質量評估模型,開發數據質量技術。
大數據採集一般分為:
大數據智能感知層:主要包括數據感測體系、網路通信體系、感測適配體系、智能識別體系及軟硬體資源接入系統,實現對結構化、半結構化、非結構化的海量數據的智能化識別、定位、跟蹤、接入、傳輸、信號轉換、監控、初步處理和管理等。必須著重攻克針對大數據源的智能識別、感知、適配、傳輸、接入等技術。
基礎支撐層:提供大數據服務平台所需的虛擬伺服器,結構化、半結構化及非結構化數據的資料庫及物聯網路資源等基礎支撐環境。重點攻克分布式虛擬存儲技術,大數據獲取、存儲、組織、分析和決策操作的可視化介面技術,大數據的網路傳輸與壓縮技術,大數據隱私保護技術等。
二、大數據預處理技術
完成對已接收數據的辨析、抽取、清洗等操作。
抽取:因獲取的數據可能具有多種結構和類型,數據抽取過程可以幫助我們將這些復雜的數據轉化為單一的或者便於處理的構型,以達到快速分析處理的目的。
清洗:對於大數據,並不全是有價值的,有些數據並不是我們所關心的內容,而另一些數據則是完全錯誤的干擾項,因此要對數據通過過濾「去噪」從而提取出有效數據。
三、大數據存儲及管理技術
大數據存儲與管理要用存儲器把採集到的數據存儲起來,建立相應的資料庫,並進行管理和調用。重點解決復雜結構化、半結構化和非結構化大數據管理與處理技術。主要解決大數據的可存儲、可表示、可處理、可靠性及有效傳輸等幾個關鍵問題。開發可靠的分布式文件系統(DFS)、能效優化的存儲、計算融入存儲、大數據的去冗餘及高效低成本的大數據存儲技術;突破分布式非關系型大數據管理與處理技術,異構數據的數據融合技術,數據組織技術,研究大數據建模技術;突破大數據索引技術;突破大數據移動、備份、復制等技術;開發大數據可視化技術。
開發新型資料庫技術,資料庫分為關系型資料庫、非關系型資料庫以及資料庫緩存系統。其中,非關系型資料庫主要指的是NoSQL資料庫,分為:鍵值資料庫、列存資料庫、圖存資料庫以及文檔資料庫等類型。關系型資料庫包含了傳統關系資料庫系統以及NewSQL資料庫。
開發大數據安全技術:改進數據銷毀、透明加解密、分布式訪問控制、數據審計等技術;突破隱私保護和推理控制、數據真偽識別和取證、數據持有完整性驗證等技術。
四、大數據分析及挖掘技術
大數據分析技術:改進已有數據挖掘和機器學習技術;開發數據網路挖掘、特異群組挖掘、圖挖掘等新型數據挖掘技術;突破基於對象的數據連接、相似性連接等大數據融合技術;突破用戶興趣分析、網路行為分析、情感語義分析等面向領域的大數據挖掘技術。
數據挖掘就是從大量的、不完全的、有雜訊的、模糊的、隨機的實際應用數據中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。
數據挖掘涉及的技術方法很多,有多種分類法。根據挖掘任務可分為分類或預測模型發現、數據總結、聚類、關聯規則發現、序列模式發現、依賴關系或依賴模型發現、異常和趨勢發現等等;根據挖掘對象可分為關系資料庫、面向對象資料庫、空間資料庫、時態資料庫、文本數據源、多媒體資料庫、異質資料庫、遺產資料庫以及環球網Web;根據挖掘方法分,可粗分為:機器學習方法、統計方法、神經網路方法和資料庫方法。
機器學習中,可細分為歸納學習方法(決策樹、規則歸納等)、基於範例學習、遺傳演算法等。統計方法中,可細分為:回歸分析(多元回歸、自回歸等)、判別分析(貝葉斯判別、費歇爾判別、非參數判別等)、聚類分析(系統聚類、動態聚類等)、探索性分析(主元分析法、相關分析法等)等。神經網路方法中,可細分為:前向神經網路(BP演算法等)、自組織神經網路(自組織特徵映射、競爭學習等)等。資料庫方法主要是多維數據分析或OLAP方法,另外還有面向屬性的歸納方法。
數據挖掘主要過程是:根據分析挖掘目標,從資料庫中把數據提取出來,然後經過ETL組織成適合分析挖掘演算法使用寬表,然後利用數據挖掘軟體進行挖掘。傳統的數據挖掘軟體,一般只能支持在單機上進行小規模數據處理,受此限制傳統數據分析挖掘一般會採用抽樣方式來減少數據分析規模。
數據挖掘的計算復雜度和靈活度遠遠超過前兩類需求。一是由於數據挖掘問題開放性,導致數據挖掘會涉及大量衍生變數計算,衍生變數多變導致數據預處理計算復雜性;二是很多數據挖掘演算法本身就比較復雜,計算量就很大,特別是大量機器學習演算法,都是迭代計算,需要通過多次迭代來求最優解,例如K-means聚類演算法、PageRank演算法等。
從挖掘任務和挖掘方法的角度,著重突破:
可視化分析。數據可視化無論對於普通用戶或是數據分析專家,都是最基本的功能。數據圖像化可以讓數據自己說話,讓用戶直觀的感受到結果。 數據挖掘演算法。圖像化是將機器語言翻譯給人看,而數據挖掘就是機器的母語。分割、集群、孤立點分析還有各種各樣五花八門的演算法讓我們精煉數據,挖掘價值。這些演算法一定要能夠應付大數據的量,同時還具有很高的處理速度。 預測性分析。預測性分析可以讓分析師根據圖像化分析和數據挖掘的結果做出一些前瞻性判斷。 語義引擎。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。語言處理技術包括機器翻譯、情感分析、輿情分析、智能輸入、問答系統等。 數據質量和數據管理。數據質量與管理是管理的最佳實踐,透過標准化流程和機器對數據進行處理可以確保獲得一個預設質量的分析結果。預測分析成功的7個秘訣
預測未來一直是一個冒險的命題。幸運的是,預測分析技術的出現使得用戶能夠基於歷史數據和分析技術(如統計建模和機器學習)預測未來的結果,這使得預測結果和趨勢變得比過去幾年更加可靠。
盡管如此,與任何新興技術一樣,想要充分發揮預測分析的潛力也是很難的。而可能使挑戰變得更加復雜的是,由不完善的策略或預測分析工具的誤用導致的不準確或誤導性的結果可能在幾周、幾個月甚至幾年內才會顯現出來。
預測分析有可能徹底改變許多的行業和業務,包括零售、製造、供應鏈、網路管理、金融服務和醫療保健。AI網路技術公司Mist Systems的聯合創始人、首席技術官Bob fridy預測:「深度學習和預測性AI分析技術將會改變我們社會的所有部分,就像十年來互聯網和蜂窩技術所帶來的轉變一樣。」。
這里有七個建議,旨在幫助您的組織充分利用其預測分析計劃。
1.能夠訪問高質量、易於理解的數據
預測分析應用程序需要大量數據,並依賴於通過反饋循環提供的信息來不斷改進。全球IT解決方案和服務提供商Infotech的首席數據和分析官Soumendra Mohanty評論道:「數據和預測分析之間是相互促進的關系。」
了解流入預測分析模型的數據類型非常重要。「一個人身上會有什麼樣的數據?」 Eric Feigl - Ding問道,他是流行病學家、營養學家和健康經濟學家,目前是哈佛陳氏公共衛生學院的訪問科學家。「是每天都在Facebook和谷歌上收集的實時數據,還是難以訪問的醫療記錄所需的醫療數據?」為了做出准確的預測,模型需要被設計成能夠處理它所吸收的特定類型的數據。
簡單地將大量數據扔向計算資源的預測建模工作註定會失敗。「由於存在大量數據,而其中大部分數據可能與特定問題無關,只是在給定樣本中可能存在相關關系,」FactSet投資組合管理和交易解決方案副總裁兼研究主管Henri Waelbroeck解釋道,FactSet是一家金融數據和軟體公司。「如果不了解產生數據的過程,一個在有偏見的數據上訓練的模型可能是完全錯誤的。」
2.找到合適的模式
SAP高級分析產品經理Richard Mooney指出,每個人都痴迷於演算法,但是演算法必須和輸入到演算法中的數據一樣好。「如果找不到適合的模式,那麼他們就毫無用處,」他寫道。「大多數數據集都有其隱藏的模式。」
模式通常以兩種方式隱藏:
模式位於兩列之間的關系中。例如,可以通過即將進行的交易的截止日期信息與相關的電子郵件開盤價數據進行比較來發現一種模式。Mooney說:「如果交易即將結束,電子郵件的公開率應該會大幅提高,因為買方會有很多人需要閱讀並審查合同。」
模式顯示了變數隨時間變化的關系。「以上面的例子為例,了解客戶打開了200次電子郵件並不像知道他們在上周打開了175次那樣有用,」Mooney說。
3 .專注於可管理的任務,這些任務可能會帶來積極的投資回報
紐約理工學院的分析和商業智能主任Michael Urmeneta稱:「如今,人們很想把機器學習演算法應用到海量數據上,以期獲得更深刻的見解。」他說,這種方法的問題在於,它就像試圖一次治癒所有形式的癌症一樣。Urmeneta解釋說:「這會導致問題太大,數據太亂——沒有足夠的資金和足夠的支持。這樣是不可能獲得成功的。」
而當任務相對集中時,成功的可能性就會大得多。Urmeneta指出:「如果有問題的話,我們很可能會接觸到那些能夠理解復雜關系的專家」 。「這樣,我們就很可能會有更清晰或更好理解的數據來進行處理。」
4.使用正確的方法來完成工作
好消息是,幾乎有無數的方法可以用來生成精確的預測分析。然而,這也是個壞消息。芝加哥大學NORC (前國家意見研究中心)的行為、經濟分析和決策實踐主任Angela Fontes說:「每天都有新的、熱門的分析方法出現,使用新方法很容易讓人興奮」。「然而,根據我的經驗,最成功的項目是那些真正深入思考分析結果並讓其指導他們選擇方法的項目——即使最合適的方法並不是最性感、最新的方法。」
羅切斯特理工學院計算機工程系主任、副教授shanchie Jay Yang建議說:「用戶必須謹慎選擇適合他們需求的方法」。「必須擁有一種高效且可解釋的技術,一種可以利用序列數據、時間數據的統計特性,然後將其外推到最有可能的未來,」Yang說。
5.用精確定義的目標構建模型
這似乎是顯而易見的,但許多預測分析項目開始時的目標是構建一個宏偉的模型,卻沒有一個明確的最終使用計劃。「有很多很棒的模型從來沒有被人使用過,因為沒有人知道如何使用這些模型來實現或提供價值,」汽車、保險和碰撞修復行業的SaaS提供商CCC信息服務公司的產品管理高級副總裁Jason Verlen評論道。
對此,Fontes也表示同意。「使用正確的工具肯定會確保我們從分析中得到想要的結果……」因為這迫使我們必須對自己的目標非常清楚,」她解釋道。「如果我們不清楚分析的目標,就永遠也不可能真正得到我們想要的東西。」
6.在IT和相關業務部門之間建立密切的合作關系
在業務和技術組織之間建立牢固的合作夥伴關系是至關重要的。客戶體驗技術提供商Genesys的人工智慧產品管理副總裁Paul lasserr說:「你應該能夠理解新技術如何應對業務挑戰或改善現有的業務環境。」然後,一旦設置了目標,就可以在一個限定范圍的應用程序中測試模型,以確定解決方案是否真正提供了所需的價值。
7.不要被設計不良的模型誤導
模型是由人設計的,所以它們經常包含著潛在的缺陷。錯誤的模型或使用不正確或不當的數據構建的模型很容易產生誤導,在極端情況下,甚至會產生完全錯誤的預測。
沒有實現適當隨機化的選擇偏差會混淆預測。例如,在一項假設的減肥研究中,可能有50%的參與者選擇退出後續的體重測量。然而,那些中途退出的人與留下來的人有著不同的體重軌跡。這使得分析變得復雜,因為在這樣的研究中,那些堅持參加這個項目的人通常是那些真正減肥的人。另一方面,戒煙者通常是那些很少或根本沒有減肥經歷的人。因此,雖然減肥在整個世界都是具有因果性和可預測性的,但在一個有50%退出率的有限資料庫中,實際的減肥結果可能會被隱藏起來。
六、大數據展現與應用技術
大數據技術能夠將隱藏於海量數據中的信息和知識挖掘出來,為人類的社會經濟活動提供依據,從而提高各個領域的運行效率,大大提高整個社會經濟的集約化程度。
在我國,大數據將重點應用於以下三大領域:商業智能 、政府決策、公共服務。例如:商業智能技術,政府決策技術,電信數據信息處理與挖掘技術,電網數據信息處理與挖掘技術,氣象信息分析技術,環境監測技術,警務雲應用系統(道路監控、視頻監控、網路監控、智能交通、反電信詐騙、指揮調度等公安信息系統),大規模基因序列分析比對技術,Web信息挖掘技術,多媒體數據並行化處理技術,影視製作渲染技術,其他各種行業的雲計算和海量數據處理應用技術等。
『玖』 大數據分析的五個基本方面都是哪些
1、預測性分析能力
數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可 視化分析和數據挖掘的結果做出一些預測性的判斷。
2、 數據質量和數據管理
數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。
3、可視化分析
不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。
4、 語義引擎
我們知道由於非結構化數據的多樣性帶來了數據分析的新的挑戰,我們需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從「文檔」中智能提取信息.
5、 數據挖掘演算法
可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。
假如大數據真的是下一個重要的技術革新的話,我們最好把精力關注在大數據能給我們帶來的好處,而不僅僅是挑戰。