⑴ 大數據需要哪些人才_大數據人才需要具備的能力有哪些
大數據需要以下六類人才含讓:
一、大數據系統研發工程師。
這一專業人才負責大數據系統研發,包括大規模非結構化數據業務模型構建、大數據存儲、資料庫構設、優化資料庫構架、解決資料庫中心設計等,同時,還要負責數據集群的日常運作和系統的監測等,這一類人才是任何構設大數據系統的機構都必須的。
二、大數據應用開發工程師。
此類人才負責搭建大數據應用平台以及開發分析應用程序,他們必須熟悉工具或演算法、編程、優化以及部署不同的MapRece,他們研發各種基於大數據技術的應用程序及行業解決方案。其中,ETL開發者是很搶手的人才,他們所做的是從不同的源頭抽取數據,轉換並導入數據倉庫以滿足企業的需要,將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫,成為聯機分析處理、數據挖掘的基礎,為提取各類型的需要數據創造條件。
三、大數據分析師。
此類人才主要從事數據挖掘工作,運用演算法來解決和分析問題,讓數據顯露出真相,同時,他們還推動數據解決方案的不斷更新。隨著數據集規模不斷增大,殲清企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapRece、Pig等的需求將持續增長,具備Hadoop框架經驗的技術人員是最搶手的大數據人才,他們所從事的是熱門的分析師工作。
四、數據可視化工程師。
此類人才負責在收集到的高質量數據中,利用圖形化的工具及手段的應用,清楚地揭示數據中的復雜信息,幫助用戶更好地進行大數據應用開發,如果能使用新型數據可視化工具如Spotifre,Qlikview和Tableau,那麼,就成為很受歡迎的人才。
五、數據安全研發人才。
此類人才主要負氏老前責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施,而對於數據安全方面的具體技術的人才就更需要了,如果數據安全技術,同時又具有較強的管理經驗,能有效地保證大數據構設和應用單位的數據安全,那就是搶手的人才。
六、數據科學研究人才。
數據科學研究是一個全新的工作,夠將單位、企業的數據和技術轉化為有用的商業價值,隨著大數據時代的到來,越來越多的工作、事務直接涉及或針對數據,這就需要有數據科學方面的研究專家來進行研究,通過研究,他們能將數據分析結果解釋給IT部門和業務部門管理者聽,數據科學專家是聯通海量數據和管理者之間的橋梁,需要有數據專業、分析師能力和管理者的知識,這也是搶手的人才。
⑵ 大數據專業就業需求大不大
需求量是很大的。
大數據專業就業前景
大數據人才稀缺
據數聯尋英發布《大數據人才報告》顯示,目前全國的大數據人才僅46萬,未來3-5年內大數據人才的缺口將高達150萬。
據職業社交平台LinkedIn發布的《2016年中國互聯網最熱職位人才報告》顯示,研發工程師、產品經理、人力資源、市場營銷、運營和數據分析是當下中國互聯網行業需求最旺盛的六類人才職位。其中研發工程師需求量最大,而數據分析人才最為稀缺。領英報告表明,數據分析人才的供給指數最低,僅為0.05,屬於高度稀缺。數據分析人才跳槽速度也最快,平均跳槽速度為19.8個月。
根據中國商業聯合會數據分析專業委員會統計,未來中國基礎性數據分析人才缺口將達到1400萬,而在BAT企業招聘的職位里,60%以上都在招大數據人才。
大數據專業就業方向
大數據主要的三大就業方向:大數據系統研發類人才、大數據應用開發類人才和大數據分析類人才。
在此三大方向中,各自的基礎崗位一般為大數據系統研發工程師、大數據應用開發工程師和數據分析師。
大數據專業人才就業薪資
1、基礎人才-數據分析師
北京數據分析平均工資: 10630/月,取自 15526 份樣本,較 2016 年,增長 9.4%。
數據分析師崗位職責
業務類別:技術
業務方向:數據分析
工作職責:
1. 根據公司產品和業務需求,利用數據挖掘等工具對多種數據源進行診斷分析,建設徵信分析模型並優化,為公司徵信運營決策、產品設計等方面提供數據支持;
2. 負責項目的需求調研、數據分析、商業分析和數據挖掘模型等,通過對運行數據進行分析挖掘背後隱含的規律及對未來的預測;
3. 參與數據挖掘模型的構建、維護、部署和評估;
4. 整理編寫商業數據分析報告,及時發現和分析其中變化和問題,為業務發展提供決策支持;
5. 獨立完成項目需求管理、方案設計、實施管理和項目成果質量的把控;
6. 參與編寫項目相關文檔。
教育背景:
學歷:本科其它:
經驗要求:工作經驗:3-5年
任職要求:
1. 統計學、數學或計算機、數理統計或數據挖掘專業方向相關專業本科或以上學歷;有扎實的數據統計和數據挖掘專業知識;
2. 熟練使用數理統計、數據分析、數據挖掘工具軟體(SAS、R、Python等的一種或多種),能熟練使用SQL讀取數據;
3. 使用過 邏輯回歸、神經網路、決策樹、聚類 等的一種或多種建模方法;
4. 3年以上數據分析工作經驗,徵信從業背景人員優先;
5. 具有金融行業項目經驗的相關經驗者優先考慮;
6. 主動性強,有較強的責任心,積極向上的工作態度,有團隊協作精神。
能力素養:
良好的分析、歸納和總結能力,善於分析、解決實際問題; 主動性強,有較強的責任心,積極向上的工作態度,有團隊協作精神。
2、大數據開發工程師
北京大數據開發平均工資:30230/月。
大數據開發工程師/專家 崗位指責(引自 滴滴出行):
職位描述:
1、構建分布式大數據服務平台,參與和構建公司包括海量數據存儲、離線/實時計算、實時查詢,大數據系統運維等系統;
2、服務各種業務需求,服務日益增長的業務和數據量;
3、深入源碼內核改進優化開源項目,解決各種hadoop、spark、hbase疑難問題,參與到開源社區建設和代碼貢獻;
崗位要求:
1、計算機或相關專業本科以上學歷(3年以上工作經驗);
2、精通C++/Java/Scala程序開發(至少一種),熟悉Linux/Unix開發環境;
3、熟悉常用開源分布式系統,精通Hadoop/Hive/Spark/Storm/Flink/HBase之一源代碼;
4、有大規模分布式系統開發、維護經驗,有故障處理能力,源碼級開發能力;
5、具有良好的溝通協作能力,具有較強的分享精神;
6、對Ku、Kylin、Impala、ElasticSearch,github等系統有深入使用和底層研究者加分;
⑶ 大數據人才需求有哪些趨勢
當前大數據領域的人才需求有三個較為明顯的趨勢,這些趨勢一定要引起從業者的重視,其一是大數據崗位的劃分逐漸行業化,更多行業領域出現了自己的大數據崗位,這些崗位不再僅僅以開發崗、演算法崗來劃分,而更趨向於全棧化,這就要求從業者的知識結構要更加全面化。
其次是大數據領域的創新會更趨向於數據價值出口的打造,這個過程會要求大數據與更多技術相結合,比如大數據與區塊鏈的結合就有很多創新點。從大的發展和創新趨勢來看,大數據未來將是互聯網(包括產業互聯網)價值的主要承載方式之一,所以互聯網的價值越大則大數據的價值就越大,基於這個創新思路,大數據技術必然要與眾多技術手段相結合。
除此之外,大數據的生產將從被動變為主動,傳統的數據採集方式將發生變化,傳統的數據採集概念會逐漸被數據生產概念所取代,而如何生產數據則是大數據從業者需要重點考慮的核心問題之一,所以掌握大數據生產技術將會有更大的發展空間。
最後,大數據不論如何發展,大數據的背後都是各種資源,隨著行業資源和社會資源紛紛向互聯網遷移,資源和數據的邊界也在逐漸模糊,資源即是數據,從這個角度來看,未來更多的行業從業者都可以看成是大數據從業者。
關於大數據人才需求有哪些趨勢,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑷ 大數據技術就業前景
大數據技術就業前景光明。
從近兩年大數據方向研究生的就業情況來看,大數據領域的崗位還是比較多的,尤其是大數據開發崗位,目前正逐漸從大數據平台開發向大數據應用開發領域覆蓋,這也是大數據開始全面落地應用的必然結果。
大數據開發崗位的數量明顯比較多,而且不僅需要研發型人才,也需要應用型人才,所以本科生的就業機會也比較多。
初期,大數據人才的需求主要集中在ETL研發、系統架構開發、數據倉庫研究等偏硬體領域,以IT、計算機背景的人才居多。隨著大數據往各垂直領域延伸發展,對統計學、數學專業的人才,數據分析、數據挖掘、人工智慧等偏軟體領域的需求加大。
大數據工作領域
1、數據開發工程師:負責數據接入、數據清洗、底層重構,業務主題建模等工作;大數據整體的計算平台開發與應用。
2、數據分析師:在擁有行業數據的電商、金融、電信、咨詢等行業里做業務咨詢,商務智能,出分析報告。
3、數據挖掘工程師:在多媒體、電商、搜索、社交等大數據相關行業里做機器學習演算法實現和分析。
4、科學研究方向:在高校、科研單位、企業研究院等高大上科研機構研究新演算法效率改進及未來應用。
⑸ 大數據行業現在還缺人嗎,就業前景怎麼樣
目前,大數據分析職位缺口主要集中在三大巨頭行業:移動互聯網、計算機軟體以及金融,總佔比64%,同時非典型數據產業,潛移默化、迅速崛起。可以看出,大數據分析在各行業算是通吃的技能 ,基本不用擔心就業問題。
2013-2017年排名前五職位增長率
圖片來源:領英中國2019年《新興職業報告》
在互聯網、金融、咨詢、電信、零售、醫療、旅遊等行業,迫切需要專門從事數據採集、清洗、處理、分析並能製作業務報告、提供決策的新型數據分析人才。
類似CFA、PMP、ACCA快速崛起並成為行業內普遍認可的證書一樣,數據分析行業的蓬勃發展亦催生出CDA數據分析師認證,並被政府、企業和從業者所認可,逐漸成為長期、穩定的行業人才標准。
培養DT時代前沿技術人才的國際化職業教育品牌CDA,一直專注於數據分析(Certified Data Analyst),2020年CDA認證考試已全新升級,逐漸成大數據和人工智慧時代全社會普遍認可的數據分析專業人才標准。