Ⅰ 一文認識並讀懂大數據
一文認識並讀懂大數據
在寫這篇文章之前,我發現身邊很多IT人對於這些熱門的新技術、新趨勢往往趨之若鶩卻又很難說的透徹,如果你問他大數據和你有什麼關系?估計很少能 說出一二三來。究其原因,一是因為大家對新技術有著相同的原始渴求,至少知其然在聊天時不會顯得很「土鱉」;二是在工作和生活環境中真正能參與實踐大數據 的案例實在太少了,所以大家沒有必要花時間去知其所以然。
我希望有些不一樣,所以對該如何去認識大數據進行了一番思索,包括查閱了資料,翻閱了最新的專業書籍,但我並不想把那些零散的資料碎片或不同理解論述簡單規整並堆積起來形成毫無價值的轉述或評論,我很真誠的希望進入事物探尋本質。
如果你說大數據就是數據大,或者侃侃而談4個V,也許很有深度的談到BI或預測的價值,又或者拿Google和Amazon舉例,技術流可能會聊起 Hadoop和Cloud Computing,不管對錯,只是無法勾勒對大數據的整體認識,不說是片面,但至少有些管窺蠡測、隔衣瘙癢了。……也許,「解構」是最好的方法。
怎樣結構大數據?首先,我認為大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
其次,想要系統的認知大數據,必須要全面而細致的分解它,我著手從三個層面來展開:
第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。我會從大數據的特徵定義理解行業對大數據 的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;從對大數據的現在和未來去洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角 審視人和數據之間的長久博弈。
第二層面是技術,技術是大數據價值體現的手段和前進的基石。我將分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。
第三層面是實踐,實踐是大數據的最終價值體現。我將分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。
和大數據相關的理論? 特徵定義最早提出大數據時代到來的是麥肯錫:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」
業界(IBM 最早定義)將大數據的特徵歸納為4個「V」(量Volume,多樣Variety,價值Value,速Velocity),或者說特點有四個層面:第一, 數據體量巨大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T);第二,數據類型繁多。比如,網路日誌、視頻、圖 片、地理位置信息等等。第三,價值密度低,商業價值高。第四,處理速度快。最後這一點也是和傳統的數據挖掘技術有著本質的不同。
其實這些V並不能真正說清楚大數據的所有特徵,下面這張圖對大數據的一些相關特性做出了有效的說明。
古語雲:三分技術,七分數據,得數據者得天下。先不論誰說的,但是這 句話的正確性已經不用去論證了。維克托·邁爾-舍恩伯格在《大數據時代》一書中舉了百般例證,都是為了說明一個道理:在大數據時代已經到來的時候要用大數 據思維去發掘大數據的潛在價值。書中,作者提及最多的是Google如何利用人們的搜索記錄挖掘數據二次利用價值,比如預測某地流感爆發的趨 勢;Amazon如何利用用戶的購買和瀏覽歷史數據進行有針對性的書籍購買推薦,以此有效提升銷售量;Farecast如何利用過去十年所有的航線機票價 格打折數據,來預測用戶購買機票的時機是否合適。
那麼,什麼是大數據思維?維克托·邁爾-舍恩伯格認為,1-需要全部數據樣本而不是抽樣;2-關注效率而不是精確度;3-關注相關性而不是因果關系。
阿里巴巴的王堅對於大數據也有一些獨特的見解,比如,
「今天的數據不是大,真正有意思的是數據變得在線了,這個恰恰是互聯網的特點。」
「非互聯網時期的產品,功能一定是它的價值,今天互聯網的產品,數據一定是它的價值。」
「你千萬不要想著拿數據去改進一個業務,這不是大數據。你一定是去做了一件以前做不了的事情。」
特別是最後一點,我是非常認同的,大數據的真正價值在於創造,在於填補無數個還未實現過的空白。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。
? 價值探討大數據是什麼?投資者眼裡是金光閃閃的兩個字:資產。比如,Facebook上市時,評估機構評定的有效資產中大部分都是其社交網站上的數據。
如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
Target 超市以20多種懷孕期間孕婦可能會購買的商品為基礎,將所有用戶的購買記錄作為數據來源,通過構建模型分析購買者的行為相關性,能准確的推斷出孕婦的具體臨盆時間,這樣Target的銷售部門就可以有針對的在每個懷孕顧客的不同階段寄送相應的產品優惠卷。
Target的例子是一個很典型的案例,這樣印證了維克托·邁爾-舍恩伯格提過的一個很有指導意義的觀點:通過找出一個關聯物並監控它,就可以預測 未來。Target通過監測購買者購買商品的時間和品種來准確預測顧客的孕期,這就是對數據的二次利用的典型案例。如果,我們通過採集駕駛員手機的GPS 數據,就可以分析出當前哪些道路正在堵車,並可以及時發佈道路交通提醒;通過採集汽車的GPS位置數據,就可以分析城市的哪些區域停車較多,這也代表該區 域有著較為活躍的人群,這些分析數據適合賣給廣告投放商。
不管大數據的核心價值是不是預測,但是基於大數據形成決策的模式已經為不少的企業帶來了盈利和聲譽。
從大數據的價值鏈條來分析,存在三種模式:
1- 手握大數據,但是沒有利用好;比較典型的是金融機構,電信行業,政府機構等。
2- 沒有數據,但是知道如何幫助有數據的人利用它;比較典型的是IT咨詢和服務企業,比如,埃森哲,IBM,Oracle等。
3- 既有數據,又有大數據思維;比較典型的是Google,Amazon,Mastercard等。
未來在大數據領域最具有價值的是兩種事物:1-擁有大數據思維的人,這種人可以將大數據的潛在價值轉化為實際利益;2-還未有被大數據觸及過的業務領域。這些是還未被挖掘的油井,金礦,是所謂的藍海。
Wal-Mart作為零售行業的巨頭,他們的分析人員會對每個階段的銷售記錄進行了全面的分析,有一次他們無意中發現雖不相關但很有價值的數據,在 美國的颶風來臨季節,超市的蛋撻和抵禦颶風物品竟然銷量都有大幅增加,於是他們做了一個明智決策,就是將蛋撻的銷售位置移到了颶風物品銷售區域旁邊,看起 來是為了方便用戶挑選,但是沒有想到蛋撻的銷量因此又提高了很多。
還有一個有趣的例子,1948年遼沈戰役期間,司令員林彪要求每天要進行例常的「每日軍情匯報」,由值班參謀讀出下屬各個縱隊、師、團用電台報告的 當日戰況和繳獲情況。那幾乎是重復著千篇一律枯燥無味的數據:每支部隊殲敵多少、俘虜多少;繳獲的火炮、車輛多少,槍支、物資多少……有一天,參謀照例匯 報當日的戰況,林彪突然打斷他:「剛才念的在胡家窩棚那個戰斗的繳獲,你們聽到了嗎?」大家都很茫然,因為如此戰斗每天都有幾十起,不都是差不多一模一樣 的枯燥數字嗎?林彪掃視一周,見無人回答,便接連問了三句:「為什麼那裡繳獲的短槍與長槍的比例比其它戰斗略高?」「為什麼那裡繳獲和擊毀的小車與大車的 比例比其它戰斗略高?」「為什麼在那裡俘虜和擊斃的軍官與士兵的比例比其它戰斗略高?」林彪司令員大步走向掛滿軍用地圖的牆壁,指著地圖上的那個點說: 「我猜想,不,我斷定!敵人的指揮所就在這里!」果然,部隊很快就抓住了敵方的指揮官廖耀湘,並取得這場重要戰役的勝利。
這些例子真實的反映在各行各業,探求數據價值取決於把握數據的人,關鍵是人的數據思維;與其說是大數據創造了價值,不如說是大數據思維觸發了新的價值增長。
以上是小編為大家分享的關於一文認識並讀懂大數據的相關內容,更多信息可以關注環球青藤分享更多干貨
Ⅱ 什麼是「大數據」,如何理解「大數據」
大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
Ⅲ 什麼是大數據,大數據時代怎麼理解
大數據的定義
大數據(Bigdata)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據的特點
數據量大、數據種類多、要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復陪答雜的,需要搜索、處理、分析、歸納、總結其深層次的規律。
大數據時代的影響
越來越多的政府、企業等機構開始意識到數據正在成為組織最重要的資產,數據分析能力正在成為組織的核心競爭力。如2012年3月22日,奧巴馬政府宣布投資2億美元拉動大數據相關產業發展,將「大數據戰略」上升為國家意志。聯合國也在2012年發布了大數據政務白皮書,指出大數據對於聯合國和各國政府來說是一個歷史性的機遇,人們如今可以使用極為豐富的數據資源,來對社會經濟進行前所未有的實時分析,幫助政府更好地響應社會和經濟運行。
大數據的意義和前景
大數據是對大量、動態、能持蘆游慧續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可磨配能會一葉障目、可見一斑,因此不能了解到事物的真正本質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在大家面前。
大數據分析的目的
大數據分析的核心目的就是預測,在海量數據的基礎上,通過機器學習相關的各種技術和數學建模來預測事情發生的可能性並採取相應措施。預測股價、預測機票價格、預測流感等等。
預測事情發生的可能性繼續往下延伸,就可以通過適當的干預,來引導事情向著期望的方向發展。比如亞馬遜和所有的電商一樣,都會基於對用戶的喜好及消費能力分析來推薦商品,引導用戶提高消費金額;Google等互聯網巨頭也會通過各種技術手段來試圖向不同的用戶展現不同的廣告,並稱之為精準營銷,由此來提高點擊率(公司收入);網游公司也會在運營工程中通過玩家行為數據的分析來及時調整游戲關卡及計費點等設計。
Ⅳ 大數據是什麼意思,大數據概念怎麼理解
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
Ⅳ 什麼是大數據有什麼意義
當然有用了,看來你不懂。現在國內很多人,包括所謂的磚家和業內人士所版講的大數權據都是指「數據抓取」和「數據分析統計」,最後為「決策」作依據,其實這是對大數據錯誤的認識和思維。大數據的難點不在於技術,而在於應用。這幫人完全把未來信息化社會想像的過於簡單,完全沒有想像力的人出來討論和定義大數據概念。真正的大數據其實是國家層面的戰略,大數據結構是扁平式(也稱分布式),這就決定了大數據主要的運用是國家化,社會化的特點。所以,大數據不僅僅是在生活、工作中簡單孤立的抓取、分析、統計或者決策依據,更是對接未來信息化社會物聯網,行政司法監管,軍事經濟等資源優化和集中管理、調配,這將有助於進一步解放生產力,節省地球有限的人類生命資源。建議你可以看一下陳龍劍的《互聯網+和大數據這樣實現偉大復興的中國夢》一文去看看。
Ⅵ 一文讀懂工業大數據的脈絡
一文讀懂工業大數據的脈絡
工業大數據不同於大數據,具有自己獨特的特徵。本文著重從工業大數據的定義與范疇、來源、特徵、技術及應用領域、面臨的問題等,全面剖析工業大數據的方方面面,讓你一文讀懂工業大數據的脈絡!
工業大數據是指在工業領域中,圍繞典型智能製造模式,從客戶需求到銷售、到訂單、計劃、研發、設計、工藝、製造、采購、供應、庫存、發貨和交付、售後服務、運維、報廢或回收再製造等整個產品全生命各個環節所產生的各類數據及相關技術和應用的總稱,其以產品數據為核心,極大延展了傳統工業數據范圍,同時還包括工業大數據相關技術和應用。
——工業大數據來源——
我們所談的工業大數據,不完全等同於企業信息化軟體中流淌的數據,從業界的共識看,主要來源有三類,第一類是企業經營相關的業務數據,這類數據來自企業信息化范疇,包括企業資源計劃(ERP)、產品生命周期管理(PLM)、供應鏈管理(SCM)、客戶關系管理(CRM)和環境管理系統(EMS)等,此類數據是工業企業傳統的數據資產。
第二類是機器設備互聯數據,主要是指工業生產過程中,裝備、物料及產品加工過程的工況狀態、環境參數等運營情況數據,通過MES系統實時傳遞,目前在智能裝備大量應用的情況下,此類數據量增長最快。
第三類是企業外部數據,這包括了工業企業產品售出之後的使用、運營情況的數據,同時還包括了大量客戶、供應商、互聯網等數據狀態。
——工業大數據特徵——
筆者曾就工業大數據特徵及數據驅動工業價值創造等話題,專門采訪過工業大數據領域知名專家——美國科學基金會(NSF)智能維護系統(IMS)中心主任李傑教授,他表示:工業大數據與互聯網大數據最大的區別在於工業大數據有非常強的目的性,而互聯網大數據更多的是一種關聯的挖掘,是更加發散的一種分析。
除此之外,兩者在數據的特徵和面臨的問題方面也有不同。有別於互聯網大數據,工業大數據的分析技術核心要解決「3B」問題:
1)Below Surface —— 隱匿性,即需要洞悉背後的意義
工業環境中的大數據與互聯網大數據相比,最重要的不同在於對數據特徵的提取上面,工業大數據注重特徵背後的物理意義以及特徵之間關聯性的機理邏輯,而互聯網大數據則傾向於僅僅依賴統計學工具挖掘屬性之間的相關性。
2)Broken —— 碎片化,即需要避免斷續、注重時效性
相對於互聯網大數據的量,工業大數據更注重數據的全,即面向應用要求具有盡可能全面的使用樣本,以覆蓋工業過程中的各類變化條件、保障從數據中能夠提取以反映對象真實狀態的信息全面性。因此,工業大數據一方面需要在後端的分析方法上克服數據碎片化帶來的困難,利用特徵提取等手段將這些數據轉化為有用的信息,另一方面,更是需要從數據獲取的前端設計中以價值需求為導向制定數據標准,進而在數據與信息流通的平台中構建統一的數據環境。
3)Bad Quality —— 低質性,即需要提高數據質量、滿足低容錯性
數據碎片化缺陷來源的另一方面也顯示出對於數據質量的擔憂,即數據的數量並無法保障數據的質量,這就可能導致數據的低可用率,因為低質量的數據可能直接影響到分析過程而導致結果無法利用,但互聯網大數據則不同,其可以只針對數據本身做挖掘、關聯而不考慮數據本身的意義,即挖掘到什麼結果就是什麼結果,最典型的就是經過超市購物習慣的數據挖掘後啤酒貨架就可以擺放在尿不濕貨架的對面,而不用考慮他們之間有什麼機理性的邏輯關系;
換句話說,相比於互聯網大數據通常並不要求有多麼精準的結果推送,工業大數據對預測和分析結果的容錯率遠遠比互聯網大數據低的多。互聯網大數據在進行預測和決策時,僅僅考慮的是兩個屬性之間的關聯是否具有統計顯著性,其中的雜訊和個體之間的差異在樣本量足夠大時都可以被忽略,這樣給出的預測結果的准確性就會大打折扣。比如當我覺得有70%的顯著性應該給某個用戶推薦A類電影,即使用戶並非真正喜歡這類電影也不會造成太嚴重的後果。但是在工業環境中,如果僅僅通過統計的顯著性給出分析結果,哪怕僅僅一次的失誤都可能造成嚴重的後果。
——工業大數據技術:演算法與模型——
有了工業數據的大量積累,但並不等於直接的商業收益,中間隔著一道非常關鍵的通道——工業大數據技術。近幾年,很多大數據專家和行業專家也在爭執:數據量重要還是大數據演算法更重要,雙方各執一詞。比如Googole就認為數據量的多寡至關重要,甚至直言:更多的數據勝過更好的演算法。這種觀點與我們意識認知中的「信息越多,就越靠近真相」類似。
而如《The Signal and the Noise》(信號與雜訊,作者NateSilver),這本書裡面的一個觀點是「更多的數據意味著更多的雜訊。信號是真相,雜訊卻使我們離真相越來越遠。」所以,人們需要構建有效的演算法和模型,去識別和認知何為真相。
在這里暫不討論到底是數據量重要還是演算法模型更重要,但針對工業大數據的有效利用,肯定離不開工業大數據的分析技術。
——工業大數據應用領域(場景)——
一、研發設計:主要用於提高研發人員的研發創新能力,研發效率和質量,支持協同設計,具體體現在:(1)、基於模型和模擬的研發設計;(2)、基於產品生命周期的設計;(3)、融合消費者反饋的設計
二、在復雜生產過程優化的應用:(1)、工業物聯網生產線;(2)、生產質量控制;(3)、生產計劃與排程;
三、在產品需求預測中的應用
四、在工業供應鏈優化中的應用
——工業大數據應用發展存在的主要問題——
《工業大數據白皮書2017年版》指出,研究與應用工業大數據,產品大數據是核心,物聯大數據是實現手段,集成貫通是基礎(業務模式、商業和價值驅動、關鍵抽取和應用)。而在實踐過程中,這三個方面都存在不同程度的難點。
《工業大數據白皮書2017年版》封面
1、產品大數據:產品大數據是工業大數據的根源與核心,但工業製造業領域涵蓋十分廣泛,行業種類繁多,產品種類數量龐大且仍在不斷增長,如何規范產品大數據的定義與分類方法,建立規范的、屬性明確的、可查詢可追溯可定位的產品大數據,將是順利應用工業大數據的前提。
2、物聯接入設備:物聯大數據是實現工業大數據暢通流動的必要手段,但在工業實際應用中,工業軟體、高端物聯設備不具備國產自主可控性,物聯接入的高端設備的讀寫不開放,形成設備信息的孤島,數據流通不暢,突破這種束縛是實現工業大數據的關鍵。
3、信息集成貫通:集成貫通的難點在於商業驅動、打通關鍵點和環節,掌控產品源和設備,持續優化。
Ⅶ 有誰知道大數據指的是什麼
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法[2])大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
說起大數據,就要說到商業智能:
商業智能(Business Intelligence,簡稱:BI),又稱商業智慧或商務智能,指用現代數據倉庫技術、線上分析處理技術、數據挖掘和數據展現技術進行數據分析以實現商業價值。
商業智能作為一個工具,是用來處理企業中現有數據,並將其轉換成知識、分析和結論,輔助業務或者決策者做出正確且明智的決定。是幫助企業更好地利用數據提高決策質量的技術,包含了從數據倉庫到分析型系統等。
商務智能的產生發展
商業智能的概念經由Howard Dresner(1989年)的通俗化而被人們廣泛了解。當時將商業智能定義為一類由數據倉庫(或數據集市)、查詢報表、數據分析、數據挖掘、數據備份和恢復等部分組成的、以幫助企業決策為目的技術及其應用。
商務智能是20世紀90年代末首先在國外企業界出現的一個術語,其代表為提高企業運營性能而採用的一系列方法、技術和軟體。它把先進的信息技術應用到整個企業,不僅為企業提供信息獲取能力,而且通過對信息的開發,將其轉變為企業的競爭優勢,也有人稱之為混沌世界中的智能。因此,越來越多的企業提出他們對BI的需求,把BI作為一種幫助企業達到經營目標的一種有效手段。
目前,商業智能通常被理解為將企業中現有的數據轉化為知識,幫助企業做出明智的業務經營決策的工具。這里所談的數據包括來自企業業務系統的訂單、庫存、交易賬目、客戶和供應商資料及來自企業所處行業和競爭對手的數據,以及來自企業所處的其他外部環境中的各種數據。而商業智能能夠輔助的業務經營決策既可以是作業層的,也可以是管理層和策略層的決策。
為了將數據轉化為知識,需要利用數據倉庫、線上分析處理(OLAP)工具和數據挖掘等技術。因此,從技術層面上講,商業智能不是什麼新技術,它只是ETL、數據倉庫、OLAP、數據挖掘、數據展現等技術的綜合運用。
把商業智能看成是一種解決方案應該比較恰當。商業智能的關鍵是從許多來自不同的企業運作系統的數據中提取出有用的數據並進行清理,以保證數據的正確性,然後經過抽取(Extraction)、轉換(Transformation)和裝載(Load),即ETL過程,合並到一個企業級的數據倉庫里,從而得到企業數據的一個全局視圖,在此基礎上利用合適的查詢和分析工具、數據挖掘工具、OLAP工具等對其進行分析和處理(這時信息變為輔助決策的知識),最後將知識呈現給管理者,為管理者的決策過程提供支持。
企業導入BI的優點
1.隨機查詢動態報表
2.掌握指標管理
3.隨時線上分析處理
4.視覺化之企業儀表版
5.協助預測規劃
導入BI的目的
1.促進企業決策流程(Facilitate the Business Decision-Making Process):BIS增進企業的資訊整合與資訊分析的能力,匯總公司內、外部的資料,整合成有效的決策資訊,讓企業經理人大幅增進決策效率與改善決策品質。
2.降低整體營運成本(Power the Bottom Line):BIS改善企業的資訊取得能力,大幅降低IT人員撰寫程式、Poweruser製作報表的時間與人力成本,而彈性的模組設計介面,完全不需撰寫程式的特色也讓日後的維護成本大幅降低。
3.協同組織目標與行動(Achieve a Fully Coordinated Organization):BIS加強企業的資訊傳播能力,消除資訊需求者與IT人員之間的認知差距,並可讓更多人獲得更有意義的資訊。全面改善企業之體質,使組織內的每個人目標一致、齊心協力。
商業智能領域的技術應用
商業智能的技術體系主要有數據倉庫(Data Warehouse,DW)、聯機分析處理(OLAP)以及數據挖掘(Data Mining,DM)三部分組成。
數據倉庫是商業智能的基礎,許多基本報表可以由此生成,但它更大的用處是作為進一步分析的數據源。所謂數據倉庫(DW)就是面向主題的、集成的、穩定的、不同時間的數據集合,用以支持經營管理中的決策制定過程。多維分析和數據挖掘是最常聽到的例子,數據倉庫能供給它們所需要的、整齊一致的數據。
在線分析處理(OLAP)技術則幫助分析人員、管理人員從多種角度把從原始數據中轉化出來、能夠真正為用戶所理解的、並真實反映數據維特性的信息,進行快速、一致、交互地訪問,從而獲得對數據的更深入了解的一類軟體技術。
數據挖掘(DM)是一種決策支持過程,它主要基於AI、機器學習、統計學等技術,高度自動化地分析企業原有的數據,做出歸納性的推理,從中挖掘出潛在的模式,預測客戶的行為,幫助企業的決策者調整市場策略,減少風險,做出正確的決策。
商業智能的應用范圍
1.采購管理
2.財務管理
3.人力資源管理
4.客戶服務
5.配銷管理
6.生產管理
7.銷售管理
8.行銷管理
商業智能實施步驟
商業智能系統處理流程[1]
商業智能(BI)作為一個概念,描述與業務緊密結合,並且根據需要進行相關特性展示和數據處理的過程。
為了讓數據「活」起來,往往需要利用數據倉庫、數據挖掘、報表設計與展示、聯機在線分析(OLAP)等技術。數據或者數據源包含的種類繁多,例如存儲在關系型資料庫中的,在外圍數據文件中的,在業務流中實時產生存儲在內存中的等等。而商業智能最終能夠輔助的業務經營決策,既可以是操作層的,也可以是戰術層和戰略層的決策。
這些分析有財務管理、點擊流分析(Clickstream)、供應鏈管理、關鍵績效指標(Key Performance Indicators, KPI)、客戶分析等。商業智能關注的是,從各種渠道(軟體,系統,人,等等)發掘可執行的戰略信息。商業智能用的工具有抽取(Extraction)、轉換(Transformation)和載入(Load)軟體(搜集數據,建立標準的數據結構,然後把這些數據存在另外的資料庫中)、數據挖掘和在線分析(Online Analytical Processing,允許用戶容易地從多個角度選取和察看數據)等 。
商業智能系統的功能
商業智能系統應具有的主要功能:
數據倉庫:高效的數據存儲和訪問方式。提供結構化和非結構化的數據存儲,容量大,運行穩定,維護成本低,支持元數據管理,支持多種結構,例如中心式數據倉庫,分布式數據倉庫等。存儲介質能夠支持近線式和二級存儲器。能夠很好的支持現階段容災和備份方案。
數據ETL:數據ETL支持多平台、多數據存儲格式(多數據源,多格式數據文件,多維資料庫等)的數據組織,要求能自動化根據描述或者規則進行數據查找和理解。減少海量、復雜數據與全局決策數據之間的差距。幫助形成支撐決策要求的參考內容。
數據統計輸出(報表):報表能快速的完成數據統計的設計和展示,其中包括了統計數據表樣式和統計圖展示,可以很好的輸出給其他應用程序或者Html形式表現和保存。對於自定義設計部分要提供簡單易用的設計方案,支持靈活的數據填報和針對非技術人員設計的解決方案。能自動化完成輸出內容的發布。
分析功能:可以通過業務規則形成分析內容,並且展示樣式豐富,具有一定的交互要求,例如預警或者趨勢分析等。要支持多維度的聯機在線分析(OLAP分析),實現維度變化、旋轉、數據切片和數據鑽取等。幫助決策做出正確的判斷。
典型的商業智能系統
典型的商業智能系統有:
客戶分析系統、菜籃分析系統、反洗錢系統、反詐騙系統、客戶聯絡分析系統、市場細分系統、信用計分系統、產品收益系統、庫存運作系統以及與商業風險相關的應用系統等。
[編輯]商業智能解決方案廠商
提供商業智能解決方案的著名IT廠商包括微軟、IBM、Oracle、Microstrategy、Business Objects、Cognos、SAS等
最後,希望你關注一下FineBI,帆軟軟體的大數據解決方案,我看了,還是很不錯的
Ⅷ 如何理解大數據
1、我理解的大數據就是:數據量大(Volume)、數據種類多樣(Variety)、 要求實時性強(Velocity) 。對它關注也是因為它蘊藏的商業價值大(Value)。也是大數據的4V特性。符合這些特性的,叫大數據。
2、對它關注一個原因就它的大價值,比方ebay,建立的大數據分析平台可以准確分析用戶的購物行為。通過對顧客的行為進行跟蹤、對搜索關鍵字廣告的投入產出進行衡量,優化後eBay 產品銷售的廣告費降低了99%,頂級賣家占總銷售額的百分比卻上升至32%。就大數據價值這一塊,例子很多,詳情可以再自己查查。
再一個對它關注的原因就是因為這么大量和復雜的數據確實不好管理,這樣就有了處理大數據的一些技術,比如Hadoop。Hadoop是個開源的,像網路做搜索,就用Hadoop管理數據。淘寶在2011年11月11日,搞得優惠活動,你想想在零點的時候,淘寶點擊有多高,每一筆買賣算一個數據請求,那怎麼保證網站的正常運轉啊?這些就是一些技術方面的關注了。
3、它的作用更多,拿球賽說,我們現在可以通過比賽錄像找出對手缺點了。有個大數據應用是視頻教練工具,用這個工具,球員可以比較和對比同一投球手的不同投球,或是幾天或幾周的投球情況的時間序列數據。
4、解決的問題。你問的大數據解決什麼問題,應該是處理大數據的技術解決什麼問題。通過我上面說的,你大概也能知道一點了,管理大規模的復雜數據需要用到大數據的技術,通過大數據的技術把這些大數據管理分析好了,可以使企業領導對各方面有更明確的認識,做出更好的決策。
總結下:大數據更多的體現數據的價值。各行業的數據都越來越多,在大數據情況下,如何保障業務的順暢,有效的管理分析數據,能讓領導層做出最有利的決策。這是關注大數據的原因。也是大數據技術要解決的問題。
這些都是我自己寫的我個人的理解,供你參考。再有不明白的可以網路,或者加追問咱們共同探討。嘿嘿。