㈠ 中國大數據的提出的時間和背景是什麼發展情況和現狀分別是什麼樣的
大數據在中國的發展相對比較年輕。2012年,中國政府在美國提出《大數據研究和發展計劃內》並且批復了「十容二五國家政務信息化建設工程規劃」,總投資額估計在幾百億,專門有人口、法人、空間、宏觀經濟和文化等五大資源庫的五大建設工程。我國的開放、共享和智能的大數據的時代才真正大面積的開始
發展和現狀是:(一)市場規模快速增長,供給結構初步形成 市場規模快速增長。十二五以來,我國大數據產業從無到有,全國各地發展大數據積極性較高,行業應用得到快速推廣,市場規模增速明顯。易觀國際數據顯示,2011-2014年,我國大數據市場規模分別為37.4億元、47.3億元、59億元和75.7億元,年平均復合增長約為27%。易觀國際同時預測,2015、2016年我國大數據市場規模將保持約30%的增長速度,在十二五末市場規模接近100億元。
㈡ 我想問問大數據的概念什麼時候,提出
「大數據」的名稱來自於1980年未來學家托夫勒所著的《第三次浪潮》,對「大數據」進行收集和分陵數析的設想,來自於世界著名的管理咨詢公司麥肯錫公司。
大數據(bigdata,megadata)或稱巨量資料,指的是需要新處理尺蠢首模式才能具有更強的決策力、洞察力和檔咐流程優化能力的海量、高增長率和多樣化的信息資產。
更多關於大數據的概念什麼時候,提出,進入:https://m.abcgonglue.com/ask/065d231615832135.html?zd查看更多內容
㈢ 大數據一詞最早出現於20世紀90年代
「大數據」一詞,最早出現於20世紀90年代,當時的數據倉庫之父比爾·恩門經常提及BigData。
㈣ 大數據概念最早是在哪一年提出的
有資料說「大數據」這個概念最早由全球知名咨詢公司麥肯錫提出,但並未提及大專致時間;還有的資料說,屬1980年,未來學家阿爾文·托夫勒便在《第三次浪潮》一書中,將大數據熱情地贊頌為「第三次浪潮的華彩樂章」,那麼晚於1980年的論著應該都不是首創了。
㈤ 哪年哪月是中國大數據元年
大數據元年是2013年。
大數據(big data),IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》。 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
㈥ 大數據的概念是由( )首先提出的
大數據的概念是由美國技術學者道格拉斯·克羅克福特(Douglas Carl Engelbart)在20世紀60年代提出的。不過,隨著計算機技術的不斷發展和應用,大數據的概念也在不斷演化和完善,現在已經成悶拆為了一個廣泛使用的術語。
大數據的概念涉及到數據的獲取、存儲、處理、分析和應用等多個方面。大數據的特點包括數據規模大、數據類型多樣、數據處理速度快、數據價值高等。通過對大數據的睜罩採集、存儲和分析,可以幫助人們更好地理解和預測市場趨勢、社會變化、自然現象等,從而支持決策和創新。
㈦ 部分計算機專家首次提出大數據概念是在哪一年
部分計算機專家首次提出大數據概念是在2008年。大數據概念最早在2008年8月由維克托·邁爾·舍恩伯格和肯尼斯·庫克耶在編寫《大數據時代》中提出。
㈧ 大數據概念最早是在哪一年提出的
2008年八月中旬
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據進行分析處理。大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
對於「大數據」(Big data)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
根據維基網路的定義,大數據是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
㈨ 大數據是什麼時候提出來的
大數據的概念最早可以追溯到上亂禪岩個世紀 90 年代,當時美國 IT 公司 Teradata 提出了「大型資料庫管理系統」(DBMS)的概念,這就是「大數據」的前身。然而,大數據這一術語的真正流行是在 2000 年之後的。隨著互聯網、移動設備和感測器技術襲尺的普及,越來越多的數據被持續地產生、收集、存儲和分析,這使得大數嘩御據概念得到了廣泛關注和應用。㈩ 大數據時代是什麼意思大數據是在什麼背景下提出的
大數據時代:
最早提出大數據時代到來的是全球知名咨詢公司麥肯錫, 大數據在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。
大數據提出的背景:
進入2012年,大數據(big data)一詞越來越多地被提及,人們用它來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。
它已經上過《紐約時報》《華爾街日報》的專欄封面,進入美國白宮官網的新聞,現身在國內一些互聯網主題的講座沙龍中,甚至被嗅覺靈敏的國金證券、國泰君安、銀河證券等寫進了投資推薦報告。
數據正在迅速膨脹並變大,它決定著企業的未來發展,雖然很多企業可能並沒有意識到數據爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數據對企業的重要性。
正如《紐約時報》2012年2月的一篇專欄中所稱,「大數據」時代已經降臨,在商業、經濟及其他領域中,決策將日益基於數據和分析而作出,而並非基於經驗和直覺。
哈佛大學社會學教授加里·金說:「這是一場革命,龐大的數據資源使得各個領域開始了量化進程,無論學術界、商界還是政府,所有領域都將開始這種進程。」
(10)哪年提出大數據擴展閱讀
大數據影響
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。
大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
在現今的社會,大數據的應用越來越彰顯他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。
有了大數據這個概念,對於消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。
「大數據」在互聯網行業指的是這樣一種現象:互聯網公司在日常運營中生成、累積的用戶網路行為數據。這些數據的規模是如此龐大,以至於不能用G或T來衡量。
大數據到底有多大?一組名為「互聯網上一天」的數據告訴我們,一天之中,互聯網產生的全部內容可以刻滿1.68億張DVD;發出的郵件有2940億封之多(相當於美國兩年的紙質信件數量)。
發出的社區帖子達200萬個(相當於《時代》雜志770年的文字量);賣出的手機為37.8萬台,高於全球每天出生的嬰兒數量37.1萬??
截止到2012年,數據量已經從TB(1024GB=1TB)級別躍升到PB(1024TB=1PB)
EB(1024PB=1EB)乃至ZB(1024EB=1ZB)級別。國際數據公司(IDC)的研究結果表明,2008年全球產生的數據量為0.49ZB,2009年的數據量為0.8ZB,2010年增長為1.2ZB,2011年的數量更是高達1.82ZB,相當於全球每人產生200GB以上的數據。
而到2012年為止,人類生產的所有印刷材料的數據量是200PB,全人類歷史上說過的所有話的數據量大約是5EB。IBM的研究稱,整個人類文明所獲得的全部數據中,有90%是過去兩年內產生的。而到了2020年,全世界所產生的數據規模將達到今天的44倍。
每一天,全世界會上傳超過5億張圖片,每分鍾就有20小時時長的視頻被分享。然而,即使是人們每天創造的全部信息——包括語音通話、電子郵件和信息在內的各種通信,以及上傳的全部圖片、視頻與音樂,其信息量也無法匹及每一天所創造出的關於人們自身的數字信息量。
這樣的趨勢會持續下去。我們現在還處於所謂「物聯網」的最初級階段,而隨著技術成熟,我們的設備、交通工具和迅速發展的「可穿戴」科技將能互相連接與溝通。
科技的進步已經使創造、捕捉和管理信息的成本降至2005年的六分之一,而從2005年起,用在硬體、軟體、人才及服務之上的商業投資也增長了整整50%,達到了4000億美元。
大數據的精髓
大數據帶給我們的三個顛覆性觀念轉變:是全部數據,而不是隨機采樣;是大體方向,而不是精確制導;是相關關系,而不是因果關系。
A.不是隨機樣本,而是全體數據:在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前我們通常把這看成是理所應當的限制,但高性能的數字技術讓我們意識到,這其實是一種人為限制);
B.不是精確性,而是混雜性:研究數據如此之多,以至於我們不再熱衷於追求精確度;之前需要分析的數據很少,所以我們必須盡可能精確地量化我們的記錄,隨著規模的擴大,對精確度的痴迷將減弱;擁有了大數據,我們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可。
適當忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力;
C.不是因果關系,而是相關關系:我們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大數據時代,我們無須再緊盯事物之間的因果關系,而應該尋找事物之間的相關關系;相關關系也許不能准確地告訴我們某件事情為何會發生,但是它會提醒我們這件事情正在發生。