Ⅰ 大數據技術是什麼
大數據本身是一個抽象的概念。從一般意義上講,大數據是指無法在有限時間內用常規軟體工具對其進行獲取、存儲、管理和處理的數據集合。
目前,業界對大數據還沒有一個統一的定義,但是大家普遍認為,大數據具備 Volume、Velocity、Variety 和 Value 四個特徵,簡稱「4V」,即數據體量巨大、數據速度快、數據類型繁多和數據價值密度低,如圖 1 所示。下面分別對每個特徵作簡要描述。
1)Volume:表示大數據的數據體量巨大。
數據集合的規模不斷擴大,已經從 GB 級增加到 TB 級再增加到 PB 級,近年來,數據量甚至開始以 EB 和 ZB 來計數。
例如,一個中型城市的視頻監控信息一天就能達到幾十 TB 的數據量。網路首頁導航每天需要提供的數據超過 1-5PB,如果將這些數據列印出來,會超過 5000 億張 A4 紙。圖 2 展示了每分鍾互聯網產生的各類數據的量。
2)Velocity:表示大數據的數據產生、處理和分析的速度在持續加快。
加速的原因是數據創建的實時性特點,以及將流數據結合到業務流程和決策過程中的需求。數據處理速度快,處理模式已經開始從批處理轉向流處理。
業界對大數據的處理能力有一個稱謂——「 1 秒定律」,也就是說,可以從各種類型的數據中快速獲得高價值的信息。大數據的快速處理能力充分體現出它與傳統的數據處理技術的本質區別。
3)Variety:表示大數據的數據類型繁多。
傳統 IT 產業產生和處理的數據類型較為單一,大部分是結構化數據。隨著感測器、智能設備、社交網路、物聯網、移動計算、在線廣告等新的渠道和技術不斷涌現,產生的數據類型無以計數。
現在的數據類型不再只是格式化數據,更多的是半結構化或者非結構化數據,如 XML、郵件、博客、即時消息、視頻、照片、點擊流、 日誌文件等。企業需要整合、存儲和分析來自復雜的傳統和非傳統信息源的數據,包括企業內部和外部的數據。
4)Value:表示大數據的數據價值密度低。
大數據由於體量不斷加大,單位數據的價值密 度在不斷降低,然而數據的整體價值在提高。以監控視頻為例,在一小時的視頻中,有用的數據可能僅僅只有一兩秒,但是卻會非常重要。現在許多專家已經將大數據等同於黃金和石油,這表示大數據當中蘊含了無限的商業價值。
通過對大數據進行處理,找出其中潛在的商業價值,將會產生巨大的商業利潤
Ⅱ 什麼是大數據技術
大數據技術(Big Data)是指那些超過傳統資料庫系統處理能力的數據。它的數據規模和轉輸速度要求很高,或者其結構不適合原本的資料庫系統。
為了獲取大數據中的價值,我們必須選擇另一種方式來處理它。數據中隱藏著有價值的模式和信息,在以往需要相當的時間和成本才能提取這些信息。
對於企業組織來講,大數據的價值體現在兩個方面:分析使用和二次開發。對大數據進行分析能揭示隱藏其中的信息。
大數據的4V特徵:大量化(Volume)、多樣化(Variety)、快速化(Velocity)、價值(Value)。
參考網路文庫http://wenku..com/link?url=XzTKixKZq_3XsH0jM3ovYnWirow_lbWmNGZh90Lt8ErLSh8B4DI95_psxZ-_BNppfPpfjoQ_
Ⅲ 大數據是不是一門技術
大數據是一門技術。
隨著科技的進步,人們逐漸告別了日出而作、日落而息的單調生版活,在信息化的社權會里,每時每刻都在創造著大量的數據。
將人們所收集的各種數據分類匯總,最終通過高精尖的平台運算,分析其中的規律所在,就是大數據的應用。如果數據收集得當,任何行業、任何事情都可以運用大數據尋找規律,最終做出最優的小抉擇。
在現今的社會,大數據的應用越來越彰顯他的優勢,它佔領的領域也越來越大,電子商務、O2O、物流配送等,各種利用大數據進行發展的領域正在協助企業不斷地發展新業務,創新運營模式。有了大數據這個概念,對於消費者行為的判斷,產品銷售量的預測,精確的營銷范圍以及存貨的補給已經得到全面的改善與優化。
Ⅳ 什麼是大數據技術
大數據技術是指從各種各樣類型的數據中,快速獲得有價值信息的能力。適用於大數據的技術。
包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
大數據的應用:大數據是信息產業持續高速增長的新引擎,幾乎各個行業都會逐步引入大數據技術,尤其是那些將要實現互聯網信息化轉型的傳統企業。
面向大數據市場的新技術、新產品、新服務、新業態會不斷涌現。在硬體與集成設備領域,大數據將對晶元、存儲產業產生重要影響,還將催生一體化數據存儲處理伺服器、內存計算等市場。在軟體與服務領域,大數據將引發數據快速處理分析、數據挖掘技術和軟體產品的發展。
Ⅳ 什麼是大數據技術
大數據技術是指大數據的應用技術,涵蓋各類大數據平台、大數據指數體系等大數據應用技術。大數據是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
大數據技術能夠處理比較大的數據量。其次,能對不同類型的數據進行處理。大數據技術不僅僅對一些大量的、簡單的數據能夠進行處理,通能夠處理一些復雜的數據,例如,文本數據、聲音數據以及圖像數據等等。
另外,大數據技術的應用具有密度低和價值大的效果。一些零散的,各種類型的數據,如果不能在短時間內分析出來信息所表達的含義,那麼可以利用大數據分析技術,將信息中潛藏的價值挖掘出來,以便於工作研究或者其他用途的使用,便於政務的便捷化和深層次化。
大數據技術有哪些
跨粒度計算(In-DatabaseComputing)
Z-Suite支持各種常見的匯總,還支持幾乎全部的專業統計函數。得益於跨粒度計算技術,Z-Suite數據分析引擎將找尋出最優化的計算方案,繼而把所有開銷較大的、昂貴的計算都移動到數據存儲的地方直接計算,我們稱之為庫內計算(In-Database)。這一技術大大減少了數據移動,降低了通訊負擔,保證了高性能數據分析。
並行計算(MPP Computing)
Z-Suite是基於MPP架構的商業智能平台,她能夠把計算分布到多個計算節點,再在指定節點將計算結果匯總輸出。Z-Suite能夠充分利用各種計算和存儲資源,不管是伺服器還是普通的PC,她對網路條件也沒有嚴苛的要求。作為橫向擴展的大數據平台,Z-Suite能夠充分發揮各個節點的計算能力,輕松實現針對TB/PB級數據分析的秒級響應。
列存儲 (Column-Based)
Z-Suite是列存儲的。基於列存儲的數據集市,不讀取無關數據,能降低讀寫開銷,同時提高I/O 的效率,從而大大提高查詢性能。另外,列存儲能夠更好地壓縮數據,一般壓縮比在5 -10倍之間,這樣一來,數據佔有空間降低到傳統存儲的1/5到1/10 。良好的數據壓縮技術,節省了存儲設備和內存的開銷,卻大大了提升計算性能。
內存計算
得益於列存儲技術和並行計算技術,Z-Suite能夠大大壓縮數據,並同時利用多個節點的計算能力和內存容量。一般地,內存訪問速度比磁碟訪問速度要快幾百倍甚至上千倍。通過內存計算,CPU直接從內存而非磁碟上讀取數據並對數據進行計算。內存計算是對傳統數據處理方式的一種加速,是實現大數據分析的關鍵應用技術。
Ⅵ 什麼是大數據技術
大數據技術可以理解為在巨量的數據資源中提取到有價值的數據加以分析和處版理,主要的表現特權征如下:
數據量大(Volume)。第一個特徵是數據量大,包括採集、存儲和計算的量都非常大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
類型繁多(Variety)。第二個特徵是種類和來源多樣化。包括結構化、半結構化和非結構化數據,具體表現為網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
價值密度低(Value)。第三個特徵是數據價值密度相對較低,或者說是浪里淘沙卻又彌足珍貴。隨著互聯網以及物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何結合業務邏輯並通過強大的機器演算法來挖掘數據價值,是大數據時代最需要解決的問題。
速度快時效高(Velocity)。第四個特徵數據增長速度快,處理速度也快,時效性要求高。比如搜索引擎要求幾分鍾前的新聞能夠被用戶查詢到,個性化推薦演算法盡可能要求實時完成推薦。這是大數據區別於傳統數據挖掘的顯著特徵。
Ⅶ 大數據技術是什麼
大數據技術是指大數據的應用技術,涵蓋各類大數據平台、大數據指數體系等大數據應用技術。大數據技術是近來的一個技術熱點,但從名字就能判斷它並不是什麼新詞。畢竟,大是一個相對概念。歷史上,資料庫、數據倉庫、數據集市等信息管理領域的技術,很大程度上也是為了解決大規模數據的問題。
大數據的發展:
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
Ⅷ 怎樣理解大數據技術
一、數據倉庫不需要大數據
數據倉庫是一種架構,而大數據純粹是一種技術。因此,人們不能在技術上取代其他人。像大數據這樣的技術可以存儲和管理大量數據,以合理的低成本將它們用於不同的大數據解決方案。
二、大數據技術將消除數據集成的必要性
大數據技術使用“讀取模式”方法來處理信息。這使組織可以使用多個數據模型來讀取相同的源。人們普遍認為,它可以靈活地允許終用戶確定如何按需解釋數據資產。此外,假設大數據提供針對各個用戶定製的數據訪問。
三、大數據總是質量數據
大數據並不一定意味著它包含干凈和高質量的數據。相反,在大多數情況下,大數據包括數據質量錯誤。此外,為了從收集的大數據中利用更好和正確的見解,有必要對它們進行清理。因此,錯誤的假設是不需要數據清理,收集或分析大數據。
四、大數據只用於分析
您將從各種來源獲得至少12種不同的大數據定義。在某個地方,它被定義為5V,在某個地方作為海量數據集,在某個地方它與分析相交。因此,每個人都有不同的方法來定義。