❶ 國內醫療大數據公司有哪些最好結合案例
大數據在醫療行業的應用可在以下幾個方面發揮積極作用:
(1)服務居民。居民健康指導服務系統,提供精準醫療、個性化健康保健指導,使居民能在醫院、社區及線上的服務保持連續性。例如,提供心血管、癌症、高血壓、糖尿病等慢性病干預、管理、健康預警及健康宣教(保健方案訂閱、推送);同時減少患者住院時間,減少急診量,提高家庭護理比例和門診醫生預約量。
5、疾病模式的分析
通過分析疾病的模式和趨勢,可以幫助醫療產品企業制定戰略性的研發投資決策,幫助其優化研發重點,優化配備資源。
新的商業模式
大數據分析可以給醫療服務行業帶來新的商業模式。
匯總患者的臨床記錄和醫療保險數據集
匯總患者的臨床記錄和醫療保險數據集,並進行高級分析,將提高醫療支付方、醫療服務提供方和醫葯企業的決策能力。比如,對醫葯企業來說,他們不僅可 以生產出具有更佳療效的葯品,而且能保證葯品適銷對路。臨床記錄和醫療保險數據集的市場剛剛開始發展,擴張的速度將取決於醫療保健行業完成EMR和循證醫 學發展的速度。
公眾健康
大數據的使用可以改善公眾健康監控。公共衛生部門可以通過覆蓋全國的患者電子病歷資料庫,快速檢測傳染病,進行全面的疫情監測,並通過集成疾病監測 和響應程序,快速進行響應。這將帶來很多好處,包括醫療索賠支出減少、傳染病感染率降低,衛生部門可以更快地檢測出新的傳染病和疫情。通過提供准確和及時 的公眾健康咨詢,將會大幅提高公眾健康風險意識,同時也將降低傳染病感染風險。所有的這些都將幫助人們創造更好的生活。
❷ 醫療行業大數據數據治理概況
1、醫療行業大數據數據治理痛點
醫療行業的大數據,存在數據收集、存儲、整合、管理不規范的情況,導致數據利用率不高;加之跨部門、跨機構之間數據共享機制的缺失,「信息孤島」現象普遍,直接影響到大數據的有效利用。
2、醫療行業對數據治理的要求
(1)數據採集環節:存在海量多源異構數據,數據採集工具需覆蓋全業務、多終端、多形態的數據。
(2)數據處理環節:需要標准化的數據處理工具,將匯集整合的數據,與國際標准、國家標准、行業標准進行比對,轉換為統一格式的標准化數據。
(3)數據質控環節:可通過數據邏輯校驗,對數據的完整性、准確性、一致性、關聯性、規范性、可用性等方面的質量進行評價管理,並及時對匯總數據進行修正,從而提高數據質量。
(4)數據安全環節:需要滿足數據採集、傳輸、存儲、處理、交換及銷毀等各環節的數據安全防護需求,實現數據的分類分級管控、許可權管控、敏感數據監控、數據操作異常行為監控、數據加密等服務。
(5)數據應用環節:需要面對輔助診斷、精準醫療、臨床科研等數據應用場景,提供便捷的數據查詢、分析和展示服務,並基於一定的安全保障措施,實現數據流全流程留痕、可查詢、可追溯。
3、醫療行業數據治理工具全景
中國電子技術標准化研究院新出的《數據治理工具圖譜研究報告(2021版)》中,將數據治理工具分為三層,數據戰略層、數據管理層和數據操作層,如下為全景圖譜。
❸ 大數據醫療行業有哪些應用
一、電子病歷
到目前為止,大數據最強大的應用就是電子醫療記錄的收集。每一個病人都有自己的電子記錄,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。
二、健康監控
醫療業的另一個創新是“可穿戴設備”的應用,這些設備能夠實時匯報病人的健康狀況。和醫院內部分析醫療數據的軟體類似,這些新的分析設備具備同樣的功能,但能在醫療機構之外的場所使用,降低了醫療成本,病人在家就能獲知自己的健康狀況,同時還獲得智能設備所提供的治療建議。這些可穿戴設備持續不斷地收集健康數據並存儲在雲端。
三、醫護資源配置
這個看似不可能完成的任務,已經在大數據的幫助幫助下在一些“試點”單位實現。在法國巴黎,有四家醫院通過多個來源的數據預測每家醫院每天和每小時的患者數量。
四、大數據與人工智慧
人工智慧技術通過演算法和軟體,分析復雜的醫療數據,達到近似人類認知的目的。因此AI使得計算機演算法能夠在沒有直接人為輸入的情況下預估結論成為可能。由AI支持的腦機介面可以幫助恢復基本的人類體驗,例如因神經系統疾病和神經系統創傷而喪失的說話和溝通功能。
❹ 大數據在醫療行業的應用有哪些
大數據專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。所以大數據在眾多行業都有應用,下面說說其在醫療領域的應用。
隨著互聯網規模不斷的擴大,大數據正在改變著這個時代的絕大一部分的行業或者企業,醫療行業也不例外,醫療健康正在成為人們關注的重點問題,以智能化、數字化為特徵的醫療信息化正在蓬勃興起,醫療行業的數據類型也在向海量、復雜、多樣的類型方式轉變。
1.就醫數據進行電子化管理
對電子醫療記錄的收集,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。在信息系統中進行分享,每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。
2.健康預測
通過智能手錶等可穿戴設備的數據,建立健康預測模型,通過這些可穿戴設備持續不斷地收集健康數據並存儲在雲端,實時匯報病人的健康狀況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。
3.醫學影像以及臨床診斷
通過讓大數據機器人來識別記住各類海量的醫學影像,例如X射線、核磁共振成像、超聲波……等各種的圖像。對大量病歷進行深度挖掘與學習,訓練其對影片的診斷,最終實現輔助醫生進行臨床決策,規范診療路徑,提高醫生的工作效率。
4.葯品研發
利用大數據進行數據建模並進行分析,預測葯物的臨床結果,可以為臨床階段的實驗結果提供參考,節省臨床階段的時間並優化臨床實驗結果。制葯公司也可以通過數據建模進行分析,從而生產出治療成功率更高的葯品並極大地縮短葯品從研發到投入市場的時間。
❺ AI賦能醫療的背後,臨床大數據該如何「跑起來」
19世紀,英國流行病學家、麻醉學家約翰·斯諾運用近代早期的數據科學,記錄每天的死亡人數和傷患 人數,並將死亡者的地址標注在地圖上,繪制了倫敦霍亂爆發的「群聚」地圖,霍亂在過去被普遍認為是由有害空氣導致,斯諾通過調查數據的匯總,確定了霍亂的元兇是被污 染的公共水井,並同時奠定了疾病細菌理論的基礎,這算是大數據運用的早期雛形之一。
斯諾大概不會想到,在近兩百年後,大數據的應用早已不再是偶然,隨著醫療衛生信息化的迅速發展,其通過與AI的結合在生物醫葯研發、疾病管理、公共衛生和 健康 管理等方面的滲透已逐漸常態化,但問題也相應地隨之凸顯。
信息孤島仍存
近兩年,關於醫療大 健康 數據的政策頻出,從頂層設計、具體規劃指導、數 據隱私和安全、數據管理等多個方面提出了相關的指導意見。
2016年6月,國務院辦公廳下發《關於促進和規范 健康 醫療大數據應用發展的指導意見》指出,鼓勵各類醫療衛生機構推進 健康 醫療大數據採集、存儲,加強應用支撐和運維技術保障,打通數據資源共享通道,加快建設和完善以居民電子 健康 檔案、電子病歷、電子處方等為核心的基礎資料庫。
2018年9月, 國家衛生 健康 委印發《國家 健康 醫療大數據標准、安全和服務管理辦法(試行)》,對醫療 健康 大數據行業從規范管理和開發利用的角度出發進行規范。《辦法》從醫療大數據標准、醫 療大數據安全、醫療大數據服務、醫療大數據監督四個方面提出指導意見,直擊目前醫療大數 據領域的痛點,未來對數據的統籌標准管理、落實安全責任、規范數據服務和管理具有重要意義。
然而,即使有專項政策的支持,但都限於宏觀層面,相較於其他成熟領域而言, 健康 醫療大數據領域的法律法規依然存在明顯的滯後性,缺乏比較全面、細致、明確的指引和規則,使其的發展受到嚴重製約。雖然現階段,已有很多企業在醫療大數據領域進行深耕布局,但受制於市場准入和產業政策的不確定性,目前尚在摸著石頭過河,市場熱情和活力並未得到充分、有效地釋放。
復旦大學上海醫學院生物醫學研究院教授劉雷認為,正是醫療大數據政策的不明朗,標準的不統一,也直接導致了各個系統之間難以進行數據交換和信息共享,產生了大量的「信息孤島」。舉個簡單的例子,患者在A醫院拍的片子到了B醫院卻不認,B醫院的醫生想要了解患者的信息則需要從零開始,患者曾在A醫院做的檢查需要在B醫院重新再來一輪,「想要打通醫療機構間臨床大數據資源的共享通道,至少在現階段是一件挺困難的事情。」劉雷表示。
相似的困擾也發生在相距超過一萬公里之外的美國,華盛頓大學醫學院信息研究所所長Philip Paynes在接受醫谷采訪時表示:臨床大數據間的彼此「孤立」給國家醫保機構、患者和醫院都帶來了負擔,實現大數據間的互通互用,是全世界范圍內都在著力解決的問題。
作為兩所頂尖大學的知名研究學者,劉雷和Paynes想在臨床大數據領域做一些努力和嘗試。
兩人共有的想法迅速得到了學校層面的大力支持,2019年7月26-29日,由復旦大學醫學院和聖路易斯華盛頓大學醫學院聯合授課的「應用臨床信息學和數據分析研修班」進行了第一次開班。
復旦大學生物醫學研究院教授、復旦大學大數據研究院醫學信息與醫學影像智能診斷研究所所長劉雷授課
據劉雷介紹,此次研修班得到了業界人士的積極響應,在第一屆學員中,來自醫院、醫療企業、高校各佔了三分之一,「就是純粹地想把對臨床大數據分析和感興趣的業界人士聚集在一起,通過共有的努力,能把臨床大數據的有效運用更推進一步。」
聖路易斯華盛頓大學醫學院信息學研究所主任Philip Paynes授課
「希望通過這種國際化的合作,能讓臨床大數據在醫療機構間甚至跨國間真正地』跑』起來多一種可能性。」 Paynes說道。
各自所做的 探索
而在這種可能性之前,劉雷和Paynes各自所在的研究機構均已做了大量的工作。
據悉,劉雷所在的復旦大學上海醫學院生物醫學研究作為一家致力於創建「中國第一、世界一流的生物醫學交叉學術研究機構」,已經在生物醫學交叉學科領域形成「代謝與腫瘤的分子細胞生物學」、「醫學表觀遺傳學」、「系統生物醫學」三個優勢方向,並正在努力拓展轉化醫學研究和精準醫學研究,包括老年醫學、腫瘤和心血管疾病、出生缺陷、靶點結構與活性小分子、組學和大數據、生物治療與干預,形成新的交叉學科生長點和下游技術。
另悉,目前,復旦大學上海醫學院生物醫學研究還在申請一個超算中心的建設項目,以該項目來支撐生物學大數據的研究,「復旦大學有包括中山醫院、華山醫院、仁濟醫院等17所附屬教學醫院,這其中有一些醫院也在做自身的臨床大數據中心,從研究所層面,希望能夠給他們提供一些人才培養和技術研究的有力支持。」劉雷表示。
Paynes所在的華盛頓大學醫學院信息研究所則是華盛頓大學所有大數據計劃的中心, 「我們擁有世界上最好的基因組研究所和最具生產力和影響力的基礎科學研究企業」,在醫學信息技術方面的能力非常強,但在大數據的整合方面還有待加強。」而這也成了Paynes擔任華盛頓大學醫學院信息研究所第一屆所長之後重點開展的工作。
自Paynes上任後,首先將研究所與旗下15所附屬教學醫院進行了打通聯動,從臨床大數據的收集到整合再到挖掘,最後到應用,鋪設了一條全鏈式的臨床大數據之路。
在Paynes看來:研究所下屬的15所教學醫院簡直就是大數據來源的寶藏,這15家在全美醫療機構中排名比較靠前的醫院每天產生大量的臨床數據,依託這些已有的臨床數據的回顧性研究,是分析研究疾病最基本、最重要的研究方法之一,通過將這些海量的臨床數據進行統計分析,分析的結果又將反過來為醫生臨床診療全過程提供疾病共享的發病及治療總體情況信息,幫助醫生科學決策,實現精準醫療。
「我們的夢想是不僅僅是利用臨床大數據幫助患者,而是希望這些臨床大數能滲透到他們的生活和工作,甚至休閑 娛樂 ,通過大數據的分析能夠把他們患病的概率降到最低,讓人們能一直保持 健康 的狀態。」 Paynes對醫谷展望道。
未來發展構想
在劉雷、Paynes和其團隊所做的大量臨床數據整合的工作中,由於各自旗下擁有多所強大的教學醫院,數據的來源已不是問題,然而,擺在他們面前更為現實的問題有兩個,一是要解決多模態臨床大數據的選擇問題。臨床大數據來源多樣,是一種多模態數據,其包括有結構化很好的數據,比如化驗單、處方;還有一些半結構化的數據,比如住院小結、出院小結;還有完全無結構化的數據,比如醫療影像;還有像基因測序這樣的組學數據;以及時間序列數據,比如ICU里會看到患者插著各種各樣的儀器測量血壓心率脈搏等各種流數據。
怎樣從這些不同模態的數據裡面選出需要的數據,劉雷表示他們,他們需要的更多的是結構化很好的臨床數據,為了得到這部分數據,會通過一定的技術平台會對數據進行一定的清洗,從中選取高質量的有效數據。
這個問題解決後,還有一個臨床大數據一直以來繞不開的一個爭議--安全和隱私問題。
對此,劉雷表示,依託現有的技術,目前收集的臨床大數據基本都能做到「不出院」,這在一定程度程度上很好地保證了數據的安全性。Paynes也指出,美國對於醫療大數據有很嚴密的保護法規,患者的關鍵隱私數據,如姓名、住址、電話、身份證號等進入數據管理的時候必須要打馬賽克,同時對數據進行強加密,數據即使被泄露也是不可解密的,對所有的數據訪問(誰什麼時間能訪問什麼)都要有一套嚴格的訪問控制,通過這樣的方式來保證數據安全性。
當技術的問題已不再是問題, 這意味著臨床大數據和AI的結合會變得更為完美,因此,劉雷和Paynes更多希望監管層能在未來對基於大數據訓練的AI能進行更多關於有效性和安全性方面的評估,也就是審批准入要做到嚴,同時,還要加強公眾對醫療AI的認知,不管AI發展到多麼先進的程度,總歸存在一定的局限性,它永遠不可能替代醫生,只能是醫生的一種輔助診斷工具。
盡管還有一段路要走,但對於臨床大數據和AI的搭配,劉雷和Paynes都充滿信心,至少在他們現有開展工作的規劃里,「應用臨床信息學和數據分析研修班」能最終逐步發展為一個碩士人才培養項目,為臨床大數據和人工智慧培養更多專業人才。同時,基於兩個研究機構現階段開展的工作,有天能實現跨國界的匯聚統一,可以把所有的臨床大數據統一在同一個模型上,建立一個類似於聯盟數據一樣的聯合體,這對於數據的整合和應用就會變得游刃有餘。
【凡本網註明來源非大 健康 Pai的作品,均轉載自其它媒體,目的在於傳遞更多信息,並不代表本網贊同其觀點和對其真實性負責。】
❻ 醫療大數據的分析和挖掘發展現狀如何未來會有什麼樣的應用前景
如今是大數據時代,前景自然好了,據前瞻產業研究院《2016-2021年中國行業大數據市場發展前景預測與投資戰略規劃分析報告》顯示,總的來說,醫療大數據應用主要體現在臨床操作、研發、新的商業模式、付款/定價、公眾健康五大領域,在這些場景中,大數據的分析和應用都將發揮巨大的作用。
醫療大數據的應用對於臨床醫學研究、科學管理和醫療服務模式轉型發展都具有重要意義,而大數據技術的運用前景是十分光明的。
醫院和醫療行業面臨的大數據主要有醫學影像、視頻(教學、監控)及文獻等非結構化數據。由於這些數據增長很快且結構復雜,給數據管理和利用帶來較大的壓力,存儲與管理成本不斷提高,數據利用困難、利用率低。除了數據數量和形態的迅速增加,醫療數據還需要越來越長的保留期。一旦存儲系統的安全性出現問題,導致醫療數據丟失,醫院會面臨嚴重不良局面。醫療大數據的應用要保證數據的全面性、准確性、實時性和使用的便捷性,要能快速運算和快速展現,要與日常工作平台緊密結合。
國人已經把健康大數據上升為國家戰略,而面對「大數據」的挑戰,醫院必須考慮三大主要問題。
(1) 數據存儲是否安全可靠?因為系統一旦出現故障,首先考驗的就是數據的存儲、災備和恢復能力。如果數據不能迅速恢復,而且恢復不能到斷點,則將對醫院的業務、患者滿意度構成直接損害。
(2) 如何提高醫院運行和服務的效率?提高效率就是節省醫生的時間,從而緩解醫療資源的緊張狀況,在一定程度上可以幫助解決「看病難」的問題。
(3) 如何控制大數據的成本?存儲架構是否合理,不僅影響醫院IT系統的成本,而且關乎醫院的運營成本,醫療數據激增,使醫院普遍存在著較大的存儲擴容壓力。如今,醫院的存儲設備大多是由不同廠商構成的完全異構的存儲系統。這些不同的存儲設備利用各自不同的軟體工具來進行控制和管理,這樣就增加了整個系統的復雜性,使管理成本非常高。
未來,大數據必將影響醫療行業,未來醫療行業的大數據將會具體應用在:臨床輔助決策,醫療質量監管,疾病預測模型,臨床實驗分析。其發展空間有:個人健康門戶,慢病管理和健康管理,電子病歷和臨床質量監控,醫學知識管理,臨床路徑和循證醫學,遠程醫療和移動醫療,醫學研究數據倉庫和共享平台,跨醫療機構協作平台。
❼ 大數據醫療具體是指什麼
醫療大數據是個很寬泛的概念,他有很多詳細的分類,包括:電子病歷數據,這是患者就醫過程中所產生的數據,包括患者基本信息、疾病主訴、檢驗數據、影像數據、診斷數據、治療數據等,這類數據一般產生及存儲在醫療機構的電子病歷中,這也是醫療數據最主要的產生地。電子化的醫療病歷方便了病歷的存儲和傳輸,但是並未達到進行數據分析的要求。大約80%的醫療數據是自由文本構成的非結構化數據,其中不僅包括大段的文字描述,也包括包含非統一文字的表格欄位。通過醫學自然語言理解技術,將非結構化醫療數據轉化為適合計算機分析的結構化形式是醫療大數據分析的基礎。電子病歷中所採集的數據是數據量最多、最有價值的醫療數據。通過和臨床信息系統的整合,內容涵蓋了醫院內的方方面面的臨床數據集。在電子病歷的互通互聯上,出於各自的利益性(限制病人轉診),各大電子病歷企業也不願意使數據互通互聯。根據美國政府相關報告顯示,其電子病歷共享比例也僅為30%左右。
檢驗數據
醫院檢驗機構產生了大量患者的診斷、檢測數據,也有大量存在的第三方醫學檢驗中心也在產生數據。檢驗數據是醫療臨床子系統中的一個細分小類,但是可以通過檢驗數據直接患者的疾病發展和變化。目前臨床檢驗設備得到迅速發展,通過LIS 系統對檢驗數據進行收集,可以對疾病的早發現早診斷和正確診斷做出貢獻。
影像數據
隨著資料庫技術和計算機通訊技術的發展,數字化影像傳輸和電子膠片應運而生。醫療影像數據是通過影像成像設備和影像信息化系統產生的,醫院影像科和第三方獨立影像中心存儲了大量的數字化影像數據。醫學影像大數據,是由DR、CT、MR 等醫學影像設備產生所產生並存儲在PACS 系統內的大規模、高增速、多結構、高價值和真實准確的影像數據集合。與檢驗信息系統(LIS)大數據和電子病歷(EMR)等同屬於醫療大數據的核心范疇。醫學影像數據量非常龐大,影像數據增速快,標准化程度高。影像數據和臨床其他數據比較起來,它的標准化、格式化、統一性是最好的,價值開發也最早。
費用數據
醫院門診費用、住院費用、單病種費用、醫保費用、檢查和化驗收入、衛生材料收入、診療費用、管理費用率、資產負債率等和經濟相關的數據。除了醫療服務的收入費用之外,還包含醫院所提供醫療服務的成本數據,包含葯品、器械、衛生人員工資等成本數據。在DRGs 按疾病診斷相關組付費模式中,需要詳細的成本數據核算。通過大樣本量的測算,建立病種標准成本,加強病種成本核算和精細化成本管理。
基因測序數據
基因檢測技術通過基因組信息以及相關數據系統,預測罹患多種疾病的可能性。基因測序會產大量的個人遺傳基因數據,一次全面的基因測序,產生的個人數據則達到300GB。一家基因測序企業每月產生的數據量可以達到數百TB 甚至1PB。
智能穿戴數據
各種智能可穿戴設備的出現,使得血壓、心率、體重、體脂、血糖、心電圖等健康體征數據的監測都變成可能,患者的單一體征健康數據以及運動數據快速上傳到雲端,而且數據的採集頻率和分析速度大大提升。除了生命體征之外,還有其他智能設備收集的健康行為數據,比如每天的卡路里攝入量、喝水量、步行數、運動時間、睡眠時間等等。智能穿戴設備雖然在這兩年遇冷,用戶很難形成粘性,但是並不意味著智能穿戴設備所產生的數據沒有意義。提供健康數據和服務,可能是智能穿戴廠商未來的轉型之路。健康大數據的收集必須依靠硬體載體,智能穿戴設備還將會遇到自己的第二春。
體檢數據
體檢數據是體檢機構所產生的健康人群的身高、體重、檢驗和影像等數據。這部分數據來自醫院或者第三體檢機構,大部分是健康人群的體征數據。隨著亞健康人群、慢病患者的增加,越來越多的體檢者除了想從體檢報告中了解自己的健康狀況,還想從體檢結果中獲得精準的健康風險評估,以及如何進行健康、慢病管理。
移動問診數據
通過移動設備端或者PC 端連接到互聯網醫療機構,產生的輕問診數據和行為數據。曾經通過互聯網問診企業春雨醫生的數據,分析各地醫生互聯網問診的活躍度、細分疾病種的問診行為。通過這些數據的分析,對行業發展、互聯網問診企業的決策有非常重要的幫助。
❽ 國家籌建三大健康醫療大數據集團,各有哪些特色
從此前發布的公開信息可見,三大健康醫療大數據集團均以國有資本為主體,三大集團由國家衛生和計劃生育委員會統一牽頭組織,由國家健康醫療大數據安全管理委員會(大數據辦)統一監管。
4月份,中國健康醫療大數據產業發展集團公司由中國電子信息產業集團公司、國家開發投資公司、中國聯合網路通信有限公司、中國國有企業結構調整基金股份有限公司宣布正式籌建;隨後,中國健康醫療大數據科技發展集團公司由中國科學院控股有限公司、中國銀行、工商銀行、中國電信、中國信達、廣州城投等公司宣布籌建,公司將於7月底之前完成籌備,與相關試點城市政府簽約,並進駐項目建設現場。
6月20日,中國健康醫療大數據股份有限公司宣布籌建,由中國移動通信集團公司與浪潮集團有限公司作為發起方,攜手國新控股、國家開發銀行、工商銀行、農業銀行、中國銀行、建設銀行、交通銀行等多家企業共同組建。
2016年6月,國務院辦公廳印發了《關於促進和規范健康醫療大數據應用發展的指導意見》(以下簡稱《意見》),將健康醫療大數據應用發展納入國家大數據戰略布局,並從夯實應用基礎、全面深化應用、規范和推動「互聯網+健康醫療」服務、加強保障體系建設等四個方面部署了14項重點任務和重大工程。三大集團公司的籌備成立將有助於推動該《意見》落到實處。
金小桃告訴記者,「組建以國有資本為主體的三個健康醫療大數據集團,目標非常明確:
一是通過健康醫療大數據應用促進優質醫療資源下沉到基層群眾,努力提高人民群眾獲得感;
二是通過健康醫療大數據支持三醫聯動、分級診療、異地結算和遠程服務等,為深化醫改注入新動力;
三是通過健康醫療大數據應用發展,創新健康服務新業態,發展健康科技產品,推進覆蓋一二三產業的全健康產業鏈的發展,促進數字經濟為國民經濟增添新動能。」
金小桃表示,健康醫療大數據是涉及到國家戰略安全、群眾生命安全以及隱私保護安全的重要戰略性資源,以國有資本為主體建設三大健康醫療大數據集團公司,「這是承擔國家使命、落實國家戰略的重要舉措」。在未來的健康醫療大數據應用發展過程中,歡迎各方力量加入國家重點項目建設、健康產業和數字經濟發展隊伍,實現共建共享共贏。
三大集團目標任務一致,發展各具特色
三大集團公司的目標任務就是承擔國家健康醫療大數據中心、區域中心和應用發展中心的建設和健康醫療科技文化產業園等經濟發展運營工作。金小桃強調,三大集團所承擔的建設任務,總體目標是一致的,但是有其區域特點,有其發展特色,形成集群優勢,為國家經濟發展注入新的活力,最終建成國民經濟重要支柱產業。「特別是在產業發展上,各集團公司將根據各地不同的實際情況,形成不同的發展模式、產業形態及應用方向。」
據金小桃介紹,根據國務院要求,總體規劃是建設一個國家數據中心,加七個區域中心,並結合各地實際情況,建設若干個應用和發展中心,也就是「1+7+X」的健康醫療大數據應用發展的總體規劃。
一個國家中心將容納全體公民健康醫療大數據,形成以「全息數字人」為願景的健康科技產業生態圈,涵蓋每個公民所有涉及到生產、生活、生命的全過程全周期的生理心理社會環境等數據,預計數據採集和應用的規模將達到1000 ZB以上。
七個區域中心,將按照國家總體規劃、按照地域布局進行建設。「現在我們已經在華南和華東進行了國家第一批試點,也就是在福建省和江蘇省兩個省分別建兩個區域中心。其他的區域中心也很快將通過調研、專家論證和國家批復以後進入正式建設階段。」
X個應用發展中心主要指國家中心和七個區域中心建設帶動下,各省區市在依法依規負責收集匯聚上報國家的健康醫療大數據基礎上,開展應用創新及產業園建設。
「通過這樣的總體規劃,我們在推動國家健康醫療大數據中心建設的過程中,既避免了過去數據分散、互不聯通、共享困難形成的數據孤島和數據煙囪等問題,同時也為既有區域集中應用和國家一體化大數據中心的建設提出了方向和要求。有利於健康醫療大數據採集、存儲、應用過程中的互聯互通和共建共享,有利於開發應用創新和產業集群發展。」金小桃稱。