導航:首頁 > 網路數據 > 筡蘭大數據

筡蘭大數據

發布時間:2023-05-13 18:04:43

A. 大數據具有什麼特徵

第一、海量的數據規模。
大數據相較於傳統數據最大的區別就是海量的數據規模,這種規模大到「在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合」。就商業WiFi企業所擁有的數據而言,即便整合一個商場或者商業中心所採集到的數據也很難達到這種「超出范圍」的數據量,更不要說少有WiFi企業可以做到布點一整個商業中心,現在多數的商業WiFi企業還是處於小規模發展階段,所得到的數據多是某一個門店或者單獨營業個體的數據,並不能稱之為大數據。所以要想收集海量的數據,就目前的行業發展態勢而言,最佳的選擇是企業合作,通過合作,集合多家企業的數據,填補數據空白區域,增加數據量,真正意義上實現大數據到大數據的跨步。
第二、快速的數據流轉。
數據也是具有時效性的,採集到的大數據如果不經過流轉,最終只會過期報廢。尤其是對於商業WiFi企業來說,大多數商業WiFi企業採集到的數據都是在一些用戶的商業行為,這些行為往往具備時效性,例如,採集到某位用戶天在服裝商場的消費行為軌跡,如果不能做到這些數據的快速流轉、及時分析,那麼本次所採集到的數據可能便失去了價值,因為這位用戶不會每一天都在買衣服。快速流轉的數據就像是不斷流動的水,只有不斷流轉才能保證大數據的新鮮和價值。
第三、多樣的數據類型。
大數據的第三特徵就是數據類型的多樣性,首先用戶是一個復雜的個體,單一的行為數據是不足以描述用戶的。目前WiFi行業對大數據的使用多是通過分析用戶軌跡,了解用戶的行為習慣,由此進行用戶畫像,從而實現精確推送。但是單一的類型的數據並不足以實現用戶畫像,例如,筆者之前了解過一些企業可通過用戶某一段時間的在某一區域內的飲食數據,並由此在用戶進入這一區域的時候推送相關信息,但是這一信息只是單純的分析了用戶一段時間的飲食數據,並沒有考慮到用戶現階段的身體狀況、個人需求和經濟承受能力等等,所以這種推送的轉化率也就可想而知。
第四、價值密度低。
大數據本身擁有海量的信息,這種信息從採集到變現不要一個重要的過程——分析,只有通過分析才能實現大數據從數據到價值的轉變,但是眾所周知,大數據雖然擁有海量的信息,但是真正可用的數據可能只有很小一部分,從海量的數據中挑出一小部分數據本身就是各巨大的工作量,所以大數據的分析也常和雲計算聯繫到一起。只有集數十、數百或甚至數千的電腦分析能力於一身的雲計算才能完成對海量數據的分析,而很遺憾的是,目前WiFi行業中的絕大部分企業並不具備雲計算的能力

B. 大數據「點將」,這些世界級大咖牛在哪

國際大咖全能王:柯克·伯爾尼(Kirk Borne)25位全球頂尖大數據科學家之一、博思艾倫高級數據科學家、天體物理學家和空間科學家柯克·伯爾尼現擔任博思艾倫(Booz AllenHamwuilton)公司高級數據科學家。被媒體評為25位全球頂尖大數據科學家之一,並在2014年被評為IBM大數據與分析英雄。除了任職於博思艾倫,他還是很多其它公司的顧問委員會成員。他在加州理工學院獲得了天體物理學博士學位,是一名天體物理學家和空間科學家,不愧為一個全能王。塔尖人物:馬克·范·雷蒙南(Mark van Rijmenam)全球十大頂尖大數據影響人物之一、知名大數據網站Datafloq創始人馬克·范·雷蒙南,全球十大頂尖大數據影響人物之一、著名演講家、博士。在大數據、數據區塊鏈、物聯網和顛覆性創新方面有很高的建樹:知名大數據網站Datafloq創始人、數字化領導力實驗室創建合夥人、荷蘭Data Donderdag大數據論壇聯合創始人,著有《Think Bigger: Developing a Successful Big Data Strategy for YourBusiness》。前瞻:傑克·肖(Jack Shaw)美國BBT公司總裁,美國數據區塊鏈委員會高級負責人、全球區塊鏈委員會高級顧問、高級戰略咨詢專家傑克·肖,作為當今世界極具前瞻性的世界著名未來學專家,傑克•肖致力於通過定量、定時、定性和其他科學方法,探討現代工業和科學技術的發展對人類社會的影響,擁有超過30年探索未來社會發展預測的研究經驗,專注領域包括新生技術,如大數據、AI、物聯網、3D列印技術、移動商務、數據分析等等,是世界5大頂尖科技未來學專家之一。

C. 安徽蘭智大數據科技有限公司怎麼樣

安徽蘭智大數據科技有限公司是2017-12-20在安徽省合肥市蜀山區注冊成立的有限責任公司(自然人獨資),注冊地址位於安徽省合肥市蜀山區金寨南路289號科碩創業園B座205室。

安徽蘭智大數據科技有限公司的統一社會信用代碼/注冊號是91340100MA2RCC5T2E,企業法人張欣欣,目前企業處於開業狀態。

安徽蘭智大數據科技有限公司的經營范圍是:人工智慧、雲計算、大數據產品的銷售與咨詢、服務;軟體開發與外包服務;信息系統的規劃、咨詢設計、集成實施、技術服務及運維服務;信息安全等級保護系統的測評、整改、建設與服務計算機軟硬體、通信及相關新技術的開發;成果轉讓及產品銷售;城市工程建設與運營服務;建築智能化系統工程的設計、安裝、施工與維保;消防報警、防盜監控、安全技術防範的工程;機房的裝飾、環境、配電、防雷工程;電子信息產品、實驗實訓設備、電梯設備、空調設備的銷售與安裝;實驗儀器設備銷售(依法須經批準的項目,經相關部門批准後方可開展經營活動。(依法須經批準的項目,經相關部門批准後方可開展經營活動)。

通過愛企查查看安徽蘭智大數據科技有限公司更多信息和資訊。

D. 大數據挖掘為電商市場保駕護航

大數據挖掘為電商市場保駕護航


隨著我國電子商務的高速發展,越來越多的人注意到數據信息對於電商市場的助推作用。基於數據分析的精準營銷方式,可以最大限度地挖出並留住潛在客戶,數據統計與分析為電商市場帶來的突破不可估量——在大數據時代,一切皆可「量化」,數據挖掘與服務成為繼雲計算之後一大熱點,看似普通的小小數字背後,蘊藏著無限商機。
數據挖掘是什麼?
數據挖掘也可稱為資料探勘、數據采礦,一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性的信息的過程。數據挖掘是一種決策支持過程,它主要基於人工智慧、機器學習、模式識別、統計學、資料庫、可視化技術等,高度自動化地分析企業的數據,做出歸納性的推理,從中挖掘出潛在的模式,幫助決策者調整市場策略,減少風險,做出正確的決策。
大數據背後的商機
記者從全程電子商務366ec開發部蘭先生處了解到大數據挖掘對電子商務的實際意義。他說:「對海量數據進行挖掘與分析,可以幫助我們的客戶多維度統計自己網站用戶的使用習慣與心理變化,為客戶實施有針對性的促銷戰略提供依據,幫助客戶與消費者之間進行有效的溝通和互動。」蘭先生還用京東和亞馬遜的盈利增長對比數據向記者展示大數據挖掘對亞馬遜穩定的爆發式增長的影響,「京東商城近年來的銷售額增長迅猛,但純利潤卻在不斷下滑,甚至呈負增長,而亞馬遜依託精準的數據統計與分析,不斷開發隱藏的消費者需求信息,在20%的消費者群體上就達成了80%的盈利。」
電商時代數據至上
相比shopex和hishop,366ec雖然是新起之秀,但管家婆作為中小企業管理軟體的NO.1,為366ec商城系統的科學化管理奠定了基石,商城系統的同質化可以說是目前電子商務服務市場比較嚴重的問題,但同質化本就是各行各業不可能擺脫的困境。但記者從366ec開發部經理謝先生處了解到,「盡管當下電商市場的繁榮隱藏著同質化的危機,但只要注重細節,重視數據信息的挖掘,成為電商市場的黑馬還是有可能的。」
他還說:「知識經濟時代,消費者已經不再那麼好糊弄,電子商務雖然提供了便捷快速便宜的消費方式,但經過多次信用危機的傷痛之後,現代消費者很難再輕易上鉤,只有有數據支撐的營銷,針對消費者量身打造的消費模式才有可能解決這種困局。」
「不管是哪種商業運營模式,擁有龐大的資料庫是根本。只有擁有了大而全的數據,才能使數據挖掘公司為多個領域提供數據。」南開大學商學院教授安利平介紹說,有了資料庫基礎,商城系統要考慮的便是不斷完善和更新自己的數據挖掘工具,包括數據分析流程、技術等。
電子商務時代,商城系統的數據挖掘功能應該可以是實現開拓市場,擴大客戶群體,提供技術、運營、經營方案等方向拓展,只有在數據挖掘上下足功夫,才能在同質化的電商服務市場占據一席之地。

以上是小編為大家分享的關於大數據挖掘為電商市場保駕護航的相關內容,更多信息可以關注環球青藤分享更多干貨

E. 歐洲失業率為什麼高特別 是西班牙。

網路【移民波蘭吧】

上圖為2017年11月30日,歐洲統計局公布的歐洲各國最新失業率數據:

歐元區(19個國家)2017年10月的失業率為8.8%,約1824萬人口,去年同期水平為9.8%

歐盟28國2017年10月的失業率為7

.4%,約1434萬人口,去年同期水平為8.3%

失業率最低的三個國家分別是捷克、馬爾他和德國,而排名最高的是希臘和西班牙

波蘭2017年10月的失業率為4.6%,排名第七,總人數約79.6萬人,去年同期水平為5.8%,降低1.2個百分點

上圖為從2000年開始,一直到當前的歐盟/歐元區失業率曲線圖,受歐債危機,2013年失業率達到了最大值,而當前是最好的時刻。

近年來,波蘭的各方面經濟數據一直在逐步走強,這和當前執政黨的一些經濟舉措有著非常大的關系,雖然其在一些性質措施上遭受了各種各樣的質疑和指責,但實際經濟數據卻給予了最強支撐,一些批評家不得不啞然。對於失業率,在萃歐前期發布的波蘭大數據文章中也有體現,總的看來,當前的失業率是近8年來最好的數據。但深入分析,可以發現對於25歲以下的年輕人,其失業率達到了14.4%,人數約19.2萬人,從這一點上,可以看出,年輕人如果想找到一份穩定的工作相對來說,還是比較困難,波蘭的企業一般都願意僱傭有經驗的人員。

希臘和西班牙是移民的熱點國家,從失業率數據,也就基本能看出這兩個國家為何會推出購房移民這樣的政策了。在歐洲,政府90%的收入來源主要靠稅收,當經濟不好時,政府的收入就會非常困難,因為窮,所以不得不通過一些旁門左道(比如:移民)來增加稅收。在做移民規劃時,不僅要考慮移民成本、申請時長等因素,更需要考慮移民後的生計,假如是土豪,那無所謂,但是移民後如果仍需要考慮在本地進一步發展,那必須要權衡所在國的宏觀經濟環境,這在很大程度上會影響後期的發展。

歐凡旅行丨移民

瑞士根生國際

F. 大數據在金融行業的應用與挑戰

大數據在金融行業的應用與挑戰
A 具有四大基本特徵
金融業基本是全世界各個行業中最依賴於數據的,而且最容易實現數據的變現。全球最大的金融數據公司Bloomberg在1981年成立時「大數據」概念還沒有出現。Bloomberg的最初產品是投資市場系統(IMS),主要向各類投資者提供實時數據、財務分析等。
隨著信息時代降臨,1983年估值僅1億美元的Bloomberg以30%股份的代價換取美林3000萬美元投資,先後推出Bloomberg Terminal、News、Radio、TV等各類產品。1996年Bloomberg身價已達20億美元,並以2億美元從美林回購了10%的股份。2004年Bloomberg在紐約曼哈頓中心建成246米摩天高樓。到2008年次貸危機,美林面臨崩盤,其剩餘20%的Bloomberg股份成為救命稻草。Bloomberg趁美林之危贖回所有股份,估值躍升至225億美元。2016年Bloomberg全球布局192個辦公室,擁有1.5萬名員工,年收入約100億美元,估值約1000億美元,超過同年市值為650億美元的華爾街標桿高盛。
大數據概念形成於2000年前後,最初被定義為海量數據的集合。2011年,美國麥肯錫公司在《大數據的下一個前沿:創新、競爭和生產力》報告中最早提出:大數據指大小超出典型資料庫軟體工具收集、存儲、管理和分析能力的數據集。
具體來說,大數據具有四大基本特徵:
一是數據體量大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量。
二是數據類別大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據。
三是處理速度快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。
四是數據的真實性高,隨著社交數據、企業內容、交易與應用數據等新數據源的興起,傳統數據源的局限被打破,信息的真實性和安全性顯得極其重要。
而相比其他行業,金融數據邏輯關系緊密,安全性、穩定性和實時性要求更高,通常包含以下關鍵技術:數據分析,包括數據挖掘、機器學習、人工智慧等,主要用於客戶信用、聚類、特徵、營銷、產品關聯分析等;數據管理,包括關系型和非關系型數據、融合集成、數據抽取、數據清洗和轉換等;數據使用,包括分布式計算、內存計算、雲計算、流處理、任務配置等;數據展示,包括可視化、歷史流及空間信息流展示等,主要應用於對金融產品健康度、產品發展趨勢、客戶價值變化、反洗錢反欺詐等監控和預警。
B 重塑金融行業競爭新格局
「互聯網+」之後,隨著世界正快速興起「大數據+」,金融行業悄然出現以下變化:
大數據特徵從傳統數據的「3個V」增加到「5個V」。在數量(Volume)、速度(Velocity)、種類(Variety)基礎上,進一步完善了價值(Value)和真實性(Veracity),真實性包括數據的可信性、來源和信譽、有效性和可審計性等。
金融業按經營產品分類變為按運營模式分類。傳統金融業按經營產品劃分為銀行、證券、期貨、保險、基金五類,隨著大數據產業興起和混業經營的發展,現代金融業按運營模式劃分為存貸款類、投資類、保險類三大類別。
大數據市場從壟斷演變為充分市場競爭。全球大數據市場企業數量迅速增多,產品和服務的差異增大,技術門檻逐步降低,市場競爭日益激烈。行業解決方案、計算分析服務、存儲服務、資料庫服務和大數據應用成為市場份額排名最靠前的五大細分市場。
大數據形成新的經濟增長點。Wikibon數據顯示,2016年,全球大數據硬體、軟體和服務整體市場增長22%達到281億美元,預計到2027年,全球在大數據硬體、軟體和服務上的整體開支的復合年增長率為12%,將達到大約970億美元。
數據和IT技術替代「重復性」業務崗位。數據服務公司Eurekahedge通過追蹤23家對沖基金,發現5位對沖基金經理薪金總額為10億美元甚至更高。過去10年,靠數學模型分析金融市場的物理學家和數學家「寬客」一直是對沖基金的寵兒,其實大數據+人工智慧更精於此道。高盛的紐約股票現金交易部門2000年有600名交易員而如今只剩兩人,其任務全由機器包辦,專家稱10年後高盛員工肯定比今天還要少。
美國大數據發展走在全球前列。美國政府宣稱:「數據是一項有價值的國家資本,應對公眾開放,而不是將其禁錮在政府體制內。」作為大數據的策源地和創新引領者,美國大數據發展一直走在全球最前列。自20世紀以來,美國先後出台系列法規,對數據的收集、發布、使用和管理等做出具體的規定。2009年,美國政府推出Data.gov政府數據開放平台,方便應用領域的開發者利用平台開發應用程序,滿足公共需求或創新創業。2010年,美國國會通過更新法案,進一步提高了數據採集精度和上報頻度。2012年3月,奧巴馬政府推出《大數據研究與開發計劃》,大數據迎來新一輪高速發展。
英國是歐洲金融中心,大數據成為其領先科技之一。2013年,英國投資1.89億英鎊發展大數據。2015年,新增7300萬英鎊,創建了「英國數據銀行」data.gov.uk網站。2016年,倫敦舉辦了超過22000場科技活動,同年,英國數字科技投資逾68億英鎊,而收入則超過1700億英鎊。另外,英國統計局利用政府資源開展「虛擬人口普查」,僅此一項每年節省5億英鎊經費。
C 打造高效金融監管體系
大數據用已發生的總體行為模式和關聯邏輯預測未來,決策未來,作為現代數字科技的核心,其靈魂就是——預測。
偵測、打擊逃稅、洗錢與金融詐騙
全球每年因欺詐造成的經濟損失約3.7萬億美元,企業因欺詐受損通常為年營收額的5%。全球最大軟體公司之一美國SAS公司與稅務、海關等政府部門和全球各國銀行、保險、醫療保健等機構合作,有效應對日益復雜化的金融犯罪行為。如在發放許可之前,通過預先的數據分析檢測客戶是否有過行受賄、欺詐等前科,再確定是否發放借貸或海關通關。SAS開發的系統已被國際公認為統計分析的標准軟體,在各領域廣泛應用。英國政府利用大數據檢測行為模式檢索出200億英鎊的逃稅與詐騙,追回了數十億美元損失。被福布斯評為美國最佳銀行的德克薩斯資本銀行(TCBank),不斷投資大數據技術,反金融犯罪系統與銀行發展同步,近3年資產從90億美元增至210億美元。荷蘭第三大人壽保險公司CZ依靠大數據對騙保和虛假索賠行為進行偵測,在支付賠償金之前先期阻斷,有效減少了欺詐發生後的司法補救。
大數據風控建立客戶信用評分、監測對照體系
美國注冊舞弊審核師協會(ACFE)統計發現,缺乏反欺詐控制的企業會遭受高額損失。美國主流個人信用評分工具FICO能自動將借款人的歷史資料與資料庫中全體借款人總體信用習慣相比較,預測借款人行為趨勢,評估其與各類不良借款人之間的相似度。美國SAS公司則通過集中瀏覽和分析評估客戶銀行賬戶的基本信息、歷史行為模式、正在發生行為模式(如轉賬)等,結合智能規則引擎(如搜索到該客戶從新出現的國家為特有用戶轉賬,或在新位置在線交易等),進行實時反欺詐分析。
美國一家互聯網信用評估機構通過分析客戶在Facebook、Twitter等社交平台留下的信息,對銀行的信貸和投保申請客戶進行風險評估,並將結果出售給銀行、保險公司等,成為多家金融機構的合作夥伴。
D 數據整合困難
應用經濟指標預測系統分析市場走勢
IBM使用大數據信息技術成功開發了「經濟指標預測系統」,該系統基於單體數據進行提煉整合,通過搜索、統計、分析新聞中出現的「新訂單」等與股價指標有關的單詞來預測走勢,然後結合其他相關經濟數據、歷史數據分析其與股價的關系,從而得出行情預測結果。
追蹤社交媒體上的海量信息評估行情變化
當今搜索引擎、社交網路和智能手機上的微博、微信、論壇、新聞評論、電商平台等每天生成幾百億甚至千億條文本、音像、視頻、數據等,涵蓋廠商動態、個人情緒、行業資訊、產品體驗、商品瀏覽和成交記錄、價格走勢等,蘊含巨大財富價值。
2011年5月,規模為4000萬美元的英國對沖基金DC Markets,通過大數據分析Twitter的信息內容來感知市場情緒指導投資,首月盈利並以1.85%的收益率一舉戰勝其他對沖基金僅0.76%的平均收益率。
美國佩斯大學一位博士則利用大數據追蹤星巴克、可口可樂和耐克公司在社交媒體的圍觀程度對比其股價,證明Facebook、Twitter和 Youtube上的粉絲數與股價密切相關。
提供廣泛的投資選擇和交易切換
日本個人投資理財產品Money Design在應用程序Theo中使用演算法+人工智慧,最低門檻924美元,用戶只需回答風險承受水平、退休計劃等9個問題,就可使用35種不同貨幣對65個國家的1.19萬只股票進行交易和切換,年度管理費僅1%。Money Design還能根據用戶投資目標自動平衡其賬戶金額,預計2020年將超過2萬億美元投資該類產品。
利用雲端資料庫為客戶提供記賬服務
日本財富管理工具商Money Forward提供雲基礎記賬服務,可管理工資、收付款、寄送發票賬單、針對性推送理財新項目等,其軟體系統連接並整合了2580家各類金融機構的各類型帳戶,運用大數據分析的智能儀表盤顯示用戶當前財富狀況,還能分析用戶以往的數據以預測未來的金融軌跡。目前其已擁有50萬商家和350萬個體用戶,並與市值2.5萬億美元的山口金融集團聯合開發新一款APP。
為客戶定製差異化產品和營銷方案
金融機構迫切需要掌握更多用戶信息,繼而構建用戶360度立體畫像,從而對細分客戶進行精準營銷、實時營銷、智慧營銷。
一些海外銀行圍繞客戶「人生大事」,分析推算出大致生活節點,有效激發其對高價值金融產品的購買意願。如一家澳大利亞銀行通過大數據分析發現,家中即將誕生嬰兒的客戶對壽險產品的潛在需求最大,於是通過銀行卡數據監控准媽媽開始購買保胎葯品和嬰兒相關產品等現象,識別出即將添丁的家庭,精準推出定製化金融產品套餐,受到了客戶的積極響應,相比傳統的簡訊群發模式大幅提高了成功率。
催生並支撐人工智慧交易
「量化投資之王」西蒙斯被公認為是最能賺錢的基金經理人,自1988年創立文藝復興科技公司的旗艦產品——大獎章基金以來,其憑借不斷更新完善的大數據分析系統,20年中創造出35%的年均凈回報率,比索羅斯同期高10%,比股神巴菲特同期高18%,成為有史以來最成功的對沖基金,並於1993年基金規模達2.7億美元時停止接受新投資。在美國《Alpha》雜志每年公布的對沖基金經理排行榜上,西蒙斯2005年、2006年分別以15億美元、17億美元凈收入穩居全球之冠,2007年以13億美元位列第五,2008年再以25億美元重返榜首。
推動金融產品和服務創新
E 面臨三大挑戰
目前,全球各行業數據量的增長速度驚人,在我國尤其集中在金融、交通、電信、製造業等重點行業,信息化的不斷深入正在進一步催生更多新的海量數據。
據統計,2015年中國的數據總量達到1700EB以上,同比增長90%,預計到2020年這一數值將超過8000EB。以銀行業為例,每創收100萬元,銀行業平均產生130GB的數據,數據強度高踞各行業之首。但在金融企業內部數據處於割裂狀態,業務條線、職能部門、渠道部門、風險部門等各個分支機構往往是數據的真正擁有者,缺乏順暢的共享機制,導致海量數據往往處於分散和「睡眠」狀態,雖然金融行業擁有的數據量「富可敵國」,但真正利用時卻「捉襟見肘」。
數據安全暗藏隱患
大數據本質是開放與共享,但如何界定、保護個人隱私權卻成為法律難題。大數據存儲、處理、傳輸、共享過程中也存在多種風險,不僅需要技術手段保護,還需相關法律法規規范和金融機構自律。多項實際案例表明,即使無害的數據大量囤積也會滋生各種隱患。安全保護對象不僅包括大數據自身,也包含通過大數據分析得出的知識和結論。在線市場平台英國Handshake.uk.com就嘗試允許用戶協商個人數據被品牌分享所得的報酬。
人才梯隊建設任重道遠
人才是大數據之本。與信息技術其他細分領域人才相比,大數據發展對人才的復合型能力要求更高,需要掌握計算機軟體技術,並具備數學、統計學等方面知識以及應用領域的專業知識。

閱讀全文

與筡蘭大數據相關的資料

熱點內容
如何數據傳輸與充電三合一 瀏覽:757
軟體編程是大學的哪個專業 瀏覽:600
tex壓縮文件如何解壓 瀏覽:599
資料庫如何查看前10行的內容 瀏覽:109
在線看小說哪個網站好 瀏覽:364
德陽哪個app好 瀏覽:184
齊天大聖網路怎麼樣 瀏覽:771
電腦重設時間提示找不到文件 瀏覽:914
win10myeclipse2013 瀏覽:456
蘋果吃到中間是灰色 瀏覽:967
ipad上的excel文件可以用嗎 瀏覽:361
word2003橫版變豎版 瀏覽:34
搜狗輸入法78版本 瀏覽:792
iphone5s文件 瀏覽:68
win10共享xp列印機許可權設置 瀏覽:426
點開app時怎麼設置密碼 瀏覽:55
iphone怎麼設置個人熱點 瀏覽:372
夜神模擬器的文件夾 瀏覽:674
iphone管理存儲空間 瀏覽:735
cad文件過大打開一直轉圈 瀏覽:825

友情鏈接