① 大數據定義、思維方式及架構模式
大數據定義、思維方式及架構模式
一、大數據何以為大
數據現在是個熱點詞彙,關於有了大數據,如何發揮大數據的價值,議論紛紛,而筆者以為,似乎這有點搞錯了原因與結果,就象關聯關系,有A的時候,B與之關聯,而有B的時候,A卻未必關聯,筆者還是從通常的4個V來描述一下我所認為的大數據思維。
1、大數據的量,數據量足夠大,達到了統計性意義,才有價值。筆者看過的一個典型的案例就是,例如傳統的,收集幾千條數據,很難發現血緣關系對遺傳病的影響,而一旦達到2萬條以上,那麼發現這種影響就會非常明顯。那麼對於我們在收集問題時,是為了發現隱藏的知識去收集數據,還是不管有沒有價值地收集,這還是值得商榷的。其實收集數據,對於數據本身,還是可以劃分出一些標准,確立出層級,結合需求、目標來收集,當然有人會說,這樣的話,將會導致巨大的偏差,例如說喪失了數據的完整性,有一定的主觀偏向,但是筆者以為,這樣至少可以讓收集到的數據的價值相對較高。
2、大數據的種類,也可以說成數據的維度,對於一個對象,採取標簽化的方式,進行標記,針對需求進行種類的擴充,和數據的量一樣,筆者認為同樣是建議根據需求來確立,但是對於標簽,有一個通常採取的策略,那就是推薦標簽和自定義標簽的問題,分類法其實是人類文明的一大創舉,採取推薦標簽的方式,可以大幅度降低標簽的總量,而減少後期的規約工作,數據收集時擴充量、擴充維度,但是在數據進入應用狀態時,我們是希望處理的是小數據、少維度,而通過這種推薦、可選擇的方式,可以在標准化基礎上的自定義,而不是毫無規則的擴展,甚至用戶的自定義標簽給予一定的限制,這樣可以使維度的價值更為顯現。
3、關於時效性,現在進入了讀秒時代,那麼在很短的時間進行問題分析、關聯推薦、決策等等,需要的數據量和數據種類相比以前,往往更多,換個說法,因為現在時效性要求高了,所以處理數據的方式變了,以前可能多人處理,多次處理,現在必須變得單人處理、單次處理,那麼相應的信息系統、工作方式、甚至企業的組織模式,管理績效都需要改變,例如筆者曾經工作的企業,上了ERP系統,設計師意見很大,說一個典型案例,以往發一張變更單,發出去工作結束,而上了ERP系統以後,就必須為這張變更單設定物料代碼,設置需要查詢物料的存儲,而這些是以前設計師不管的,又沒有為設計師為這些增加的工作支付獎勵,甚至因為物料的缺少而導致變更單不能發出,以至於設計師工作沒有完成,導致被處罰。但是我們從把工作一次就做完,提升企業的工作效率角度,這樣的設計變更與物料集成的方式顯然是必須的。那麼作為一個工作人員,如何讓自己的工作更全面,更完整,避免王府,讓整個企業工作更具有時間的競爭力,提高數據的數量、種類、處理能力是必須的。
4、關於大數據價值,一種說法是大數據有大價值,還有一種是相對於以往的結構化數據、少量數據,現在是大數據了,所以大數據的單位價值下降。筆者以為這兩種說法都正確,這是一個從總體價值來看,一個從單元數據價值來看的問題。而筆者提出一個新的關於大數據價值的觀點,那就是真正發揮大數據的價值的另外一個思路。這個思路就是針對企業的問題,首先要說什麼是問題,筆者說的問題不是一般意義上的問題,因為一說問題,大家都以為不好、錯誤等等,而筆者的問題的定義是指狀態與其期望狀態的差異,包括三種模式,
1)通常意義的問題,例如失火了,必須立即撲救,其實這是三種模式中最少的一種;
2)希望保持狀態,
3)期望的狀態,這是比原來的狀態高一個層級的。
我們針對問題,提出一系列解決方案,這些解決方案往往有多種,例如員工的培訓,例如設備的改進,例如組織的方式的變化,當然解決方案包括信息化手段、大數據手段,我們一樣需要權衡大數據的方法是不是一種相對較優的方法,如果是,那麼用這種手段去解決,那麼也就是有價值了。例如筆者知道的一個案例,一個企業某產品部件偶爾會出現問題,企業經歷數次後決定針對設備上了一套工控系統,記錄材料的溫度,結果又一次出現問題時,進行分析認為,如果工人正常上班操作,不應該有這樣的數據記錄,而經過與值班工人的質詢,值班工人承認其上晚班時睡覺,沒有及時處理。再往後,同樣的問題再沒有再次發生。
總結起來,筆者以為大數據思維的核心還是要落實到價值上,面向問題,收集足夠量的數據,足夠維度的數據,達到具有統計學意義,也可以滿足企業生產、客戶需求、甚至競爭的時效要求,而不是一味為了大數據而大數據,這樣才是一種務實、有效的正確思維方式,是一線大數據的有效的項目推進方式,在這樣的思維模式基礎上,採取滾雪球方式,把大數據逐步展開,才真正贏來大數據百花齊放的春天。
二、大數據思維方式
大數據研究專家舍恩伯格指出,大數據時代,人們對待數據的思維方式會發生如下三個變化:
1)人們處理的數據從樣本數據變成全部數據;
2)由於是全樣本數據,人們不得不接受數據的混雜性,而放棄對精確性的追求;
3)人類通過對大數據的處理,放棄對因果關系的渴求,轉而關注相關關系。
事實上,大數據時代帶給人們的思維方式的深刻轉變遠不止上述三個方面。筆者認為,大數據思維最關鍵的轉變在於從自然思維轉向智能思維,使得大數據像具有生命力一樣,獲得類似於「人腦」的智能,甚至智慧。
1、總體思維
社會科學研究社會現象的總體特徵,以往采樣一直是主要數據獲取手段,這是人類在無法獲得總體數據信息條件下的無奈選擇。在大數據時代,人們可以獲得與分析更多的數據,甚至是與之相關的所有數據,而不再依賴於采樣,從而可以帶來更全面的認識,可以更清楚地發現樣本無法揭示的細節信息。
正如舍恩伯格總結道:「我們總是習慣把統計抽樣看作文明得以建立的牢固基石,就如同幾何學定理和萬有引力定律一樣。但是,統計抽樣其實只是為了在技術受限的特定時期,解決當時存在的一些特定問題而產生的,其歷史不足一百年。如今,技術環境已經有了很大的改善。在大數據時代進行抽樣分析就像是在汽車時代騎馬一樣。
在某些特定的情況下,我們依然可以使用樣本分析法,但這不再是我們分析數據的主要方式。」也就是說,在大數據時代,隨著數據收集、存儲、分析技術的突破性發展,我們可以更加方便、快捷、動態地獲得研究對象有關的所有數據,而不再因諸多限制不得不採用樣本研究方法,相應地,思維方式也應該從樣本思維轉向總體思維,從而能夠更加全面、立體、系統地認識總體狀況。
2、容錯思維
在小數據時代,由於收集的樣本信息量比較少,所以必須確保記錄下來的數據盡量結構化、精確化,否則,分析得出的結論在推及總體上就會「南轅北轍」,因此,就必須十分注重精確思維。然而,在大數據時代,得益於大數據技術的突破,大量的非結構化、異構化的數據能夠得到儲存和分析,這一方面提升了我們從數據中獲取知識和洞見的能力,另一方面也對傳統的精確思維造成了挑戰。
舍恩伯格指出,「執迷於精確性是信息缺乏時代和模擬時代的產物。只有5%的數據是結構化且能適用於傳統資料庫的。如果不接受混亂,剩下95%的非結構化數據都無法利用,只有接受不精確性,我們才能打開一扇從未涉足的世界的窗戶」。也就是說,在大數據時代,思維方式要從精確思維轉向容錯思維,當擁有海量即時數據時,絕對的精準不再是追求的主要目標,適當忽略微觀層面上的精確度,容許一定程度的錯誤與混雜,反而可以在宏觀層面擁有更好的知識和洞察力。
3、相關思維
在小數據世界中,人們往往執著於現象背後的因果關系,試圖通過有限樣本數據來剖析其中的內在機理。小數據的另一個缺陷就是有限的樣本數據無法反映出事物之間的普遍性的相關關系。而在大數據時代,人們可以通過大數據技術挖掘出事物之間隱蔽的相關關系,獲得更多的認知與洞見,運用這些認知與洞見就可以幫助我們捕捉現在和預測未來,而建立在相關關系分析基礎上的預測正是大數據的核心議題。
通過關注線性的相關關系,以及復雜的非線性相關關系,可以幫助人們看到很多以前不曾注意的聯系,還可以掌握以前無法理解的復雜技術和社會動態,相關關系甚至可以超越因果關系,成為我們了解這個世界的更好視角。舍恩伯格指出,大數據的出現讓人們放棄了對因果關系的渴求,轉而關注相關關系,人們只需知道「是什麼」,而不用知道「為什麼」。我們不必非得知道事物或現象背後的復雜深層原因,而只需要通過大數據分析獲知「是什麼」就意義非凡,這會給我們提供非常新穎且有價值的觀點、信息和知識。也就是說,在大數據時代,思維方式要從因果思維轉向相關思維,努力顛覆千百年來人類形成的傳統思維模式和固有偏見,才能更好地分享大數據帶來的深刻洞見。
4、智能思維
不斷提高機器的自動化、智能化水平始終是人類社會長期不懈努力的方向。計算機的出現極大地推動了自動控制、人工智慧和機器學習等新技術的發展,「機器人」研發也取得了突飛猛進的成果並開始一定應用。應該說,自進入到信息社會以來,人類社會的自動化、智能化水平已得到明顯提升,但始終面臨瓶頸而無法取得突破性進展,機器的思維方式仍屬於線性、簡單、物理的自然思維,智能水平仍不盡如人意。
但是,大數據時代的到來,可以為提升機器智能帶來契機,因為大數據將有效推進機器思維方式由自然思維轉向智能思維,這才是大數據思維轉變的關鍵所在、核心內容。眾所周知,人腦之所以具有智能、智慧,就在於它能夠對周遭的數據信息進行全面收集、邏輯判斷和歸納總結,獲得有關事物或現象的認識與見解。同樣,在大數據時代,隨著物聯網、雲計算、社會計算、可視技術等的突破發展,大數據系統也能夠自動地搜索所有相關的數據信息,並進而類似「人腦」一樣主動、立體、邏輯地分析數據、做出判斷、提供洞見,那麼,無疑也就具有了類似人類的智能思維能力和預測未來的能力。
「智能、智慧」是大數據時代的顯著特徵,大數據時代的思維方式也要求從自然思維轉向智能思維,不斷提升機器或系統的社會計算能力和智能化水平,從而獲得具有洞察力和新價值的東西,甚至類似於人類的「智慧」。
舍恩伯格指出,「大數據開啟了一個重大的時代轉型。就像望遠鏡讓我們感受宇宙,顯微鏡讓我們能夠觀測到微生物一樣,大數據正在改變我們的生活以及理解世界的方式,成為新發明和新服務的源泉,而更多的改變正蓄勢待發」。
大數據時代將帶來深刻的思維轉變,大數據不僅將改變每個人的日常生活和工作方式,改變商業組織和社會組織的運行方式,而且將從根本上奠定國家和社會治理的基礎數據,徹底改變長期以來國家與社會諸多領域存在的「不可治理」狀況,使得國家和社會治理更加透明、有效和智慧。
② 大數據營銷說法正確的是
大數據營銷說法正確的是大數據服務商不是萬能的。
大數據營銷是指通過互聯網採集大量的行為數據,首先幫助廣告主找出目標受眾,以此對廣告投放的內容、時間、形式等進行預判與調配,並最終完成廣告投放的營銷過程。
大數據營銷,隨著數字生活空間的普及,全球的信息總量正呈現爆炸式增長。基於這個趨勢之上的,是大數據、雲計算等新姿謹陸概念和新範式的廣泛興起,它們無疑正引領著新一輪的互聯網風潮。
但是在專屬平台越來越成熟的同時,這個平台本身的專注度越高,它本身的用戶群體就會因為受到局限而變少,這樣的話,跟綜合服務類的平台相比,新平台的活躍度就會很快到達瓶頸。
到了這個階段,平台想要再次獲得競爭力,就不能單單地依賴傳統的「流量效益」,而是要更加側重轉化,也就是對平晌棗台上的商家和廣告主來說,從以前的純粹看重大數據,到看重營銷的精準轉化,這就是「大數據營銷」的概念來源,我們也可以把它叫做「精準營銷」。
③ 有關大數據的說法正確的是:()
有關埋賣芹大配察數據的說法正確的是:()
A.大數據是巨量數據集合
B.可使用傳統關系型資料庫進行有效處理
C.至少需要達到彎畢TB以上的數據量
D.物聯網和雲計算可提供大數據
正確答案:AD
④ 如何正確認識大數據技術
一、數據倉庫不需要大數據
數據倉庫是一種架構,而大數據純粹是一種技術。因此,人們不能在技術上取代其他人。像大數據這樣的技術可以存儲和管理大量數據,以合理的低成本將它們用於不同的大數據解決方案。
二、大數據技術將消除數據集成的必要性
大數據技術使用“讀取模式”方法來處理信息。這使組織可以使用多個數據模型來讀取相同的源。人們普遍認為,它可以靈活地允許終用戶確定如何按需解釋數據資產。此外,假設大數據提供針對各個用戶定製的數據訪問。
三、大數據總是質量數據
大數據並不一定意味著它包含干凈和高質量的數據。相反,在大多數情況下,大數據包括數據質量錯誤。此外,為了從收集的大數據中利用更好和正確的見解,有必要對它們進行清理。因此,錯誤的假設是不需要數據清理,收集或分析大數據。
四、大數據只用於分析
您將從各種來源獲得至少12種不同的大數據定義。在某個地方,它被定義為5V,在某個地方作為海量數據集,在某個地方它與分析相交。因此,每個人都有不同的方法來定義。
此外,大數據是一種除了數據分析之外還具有許多功能的技術。因此,大數據事實在許多場景中,它用於分析復雜的用例模式,以獲得更好的洞察力來解決問題。
五、Hadoop是內存技術的替代品
Hadoop是受歡迎的大數據工具。內存技術與Hadoop底層架構集成,有助於實時集成來自各種源的大量數據。因此,內存是Hadoop的理想平台及其技術基礎。
關於如何正確認識大數據技術,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑤ 關於大數據的特徵以下理解正確的是什麼
大數據技術(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
特點:
1.數據量大;
2.數據類型多;
3.數據處理實時性強;
4.數據真實性。
意義:大數據的意義在於通過對大量數據進行分析從而對核心價值進行預測。
缺陷:對處理能力要求高,存在隱私安全問題。
⑥ 下列關於大數據分析和傳統數據分析的區別中,說法正確的有( )。
【答案】:A、B、C、D
傳統的數據分析是「鉛鍵向後分析」,分析的是已經發生的情況。而在大數據時代,數據分析是「向前分析」,具有預測性。傳統的數據分析主要針對結構化數據。大數據不僅包括傳統的以文本資料為主的結構化數據,還包括信息化時代所有的文本、圖片、音頻、視頻等半結構數據和非結構化數據,且以半結構化和非結構化數據為主。大數據分析建立在海量原始數據基礎上,不需要預先設定研究目的和方法,而要從大量數據中通過數據挖掘技術找到數據之間的關系並建立模型,尋找導致現實情況的根源因凱激橡素,甚至形成理論和新的認知,在此基礎上對未來進行預測和優化,以實現社會運行中各個領域的持盯旁續改善與創新,選項A、B、C、D均正確。
⑦ 大數據就是很大的數據,這個說法對么
國內所言的大數據是對海量信息的一種通俗說法,即數據信息量多(大),並非指數據、數值大。
⑧ 對大數據的理解,哪些是正確的
「大數據」是近年來IT行業的熱詞,大數據在各個行業的應用逐漸變得廣泛起來,如2014年的兩會,我們聽得最多的也是大數據分析,那麼,什麼是大數據呢,大數據時代怎麼理解呢,一起來看看吧。
互聯網時代的大數據
大數據的定義。大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
大數據的特點。數據量大、數據種類多、 要求實時性強、數據所蘊藏的價值大。在各行各業均存在大數據,但是眾多的信息和咨詢是紛繁復雜的,我們需要搜索、處理、分析、歸納、總結其深層次的規律。
大數據的採集。科學技術及互聯網的發展,推動著大數據時代的來臨,各行各業每天都在產生數量巨大的數據碎片,數據計量單位已從從Byte、KB、MB、GB、TB發展到PB、EB、ZB、YB甚至BB、NB、DB來衡量。大數據時代數據的採集也不再是技術問題,只是面對如此眾多的數據,我們怎樣才能找到其內在規律。
大數據的挖掘和處理。大數據必然無法用人腦來推算、估測,或者用單台的計算機進行處理,必須採用分布式計算架構,依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術,因此,大數據的挖掘和處理必須用到雲技術。
大數據的應用。大數據可應用於各行各業,將人們收集到的龐大數據進行分析整理,實現資訊的有效利用。舉個本專業的例子,比如在奶牛基因層面尋找與產奶量相關的主效基因,我們可以首先對奶牛全基因組進行掃描,盡管我們獲得了所有表型信息和基因信息,但是由於數據量龐大,這就需要採用大數據技術,進行分析比對,挖掘主效基因。例子還有很多。
大數據的意義和前景。總的來說,大數據是對大量、動態、能持續的數據,通過運用新系統、新工具、新模型的挖掘,從而獲得具有洞察力和新價值的東西。以前,面對龐大的數據,我們可能會一葉障目、可見一斑,因此不能了解到事物的真正本質,從而在科學工作中得到錯誤的推斷,而大數據時代的來臨,一切真相將會展現在我么面前。
⑨ 大數據是什麼意思
問題一:大數據是什麼意思 大數據是指整個分析運營的各個方面的數據整合。特別是指互聯網帶來的整個方方面的物流 信息流 資金流都在數據分析下整合
希望你能接受這個答案。
問題二:大數據是什麼意思? 大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的加工能力,通過加工實現數據的增值。
問題三:現在說的大數據是什麼意思 最早提出「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。大數據作為雲計算、物聯網之後IT行業又一大顛覆性的技術革命。雲計算主要為數據資產提供了保管、訪問的場所和渠道,而數據才是真正有價值的資產。企業內部的經營交易信息、互聯網世界中的商品物流信息,互聯網世界中的人與人交互信息、位置信息等,其數量將遠遠超越現有企業IT架構和基礎設施的承載能力,實時性要求也將大大超越現有的計算能力。如何盤活這些數據資產,使其為國家治理、企業決策乃至個人生活服務,是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向。
中文名:大數據時代
外文名:Big data
問題四:什麼是大數據,大數據的意義是什麼? 大數據的意思就是數據要在線,這樣你的數據才能有價值,用於分析或者處理。大量的數據在線後的分析才有意義。可能得到你想要的數據,電影里好多這種素材,比如人臉的搜索,人員的定位,人流的分析,運行的狀態等等都有使用。現在做這些應用的也很多,只是落地的還稍微少一點。還是為了創造價值。
問題五:移動大數據是什麼意思 從海量的數據里進行擷取、管理、處理、並整理之後,獲得你需要的資訊
電影《紙牌屋》的成功就是其中一個例子,Netflix(引進紙牌屋的公司)作為世界上最大的在線影片租恁服務商,從其網站點擊率、下載量、搜索請求和評論等眾多海量數據中進行分析與預測後,認為紙牌屋能火,因此選擇引進《紙牌屋》
問題六:什麼是大數據 大數據是什麼意思 「大數據」不是「數據分析」的另一種說法!大數據具有規模性、高速性、多樣性、而且無處不在等全新特點,具體地說,是指需要通過快速獲取、處理、分析和提取有價值的、海量、多樣化的交易數據、交互數據為基礎,針對企業的運作模式提出有針對性的方案。由於物聯網和智能可穿戴的普及帶來的,生產線上普通的藍領員工,前台電話員,等企業內的低階員工也成為產生大數據的數據內容的一部分,數據的產生除了來自社交網路,網站,電子商務網站,郵箱外,智能手機,各種感測器,和物聯網,智能可穿戴設備。
大數據營銷與傳統營銷最顯著的區別是大數據可以深入到營銷的各個環節,使營銷無處不在。如用戶的偏好?上網的時間段?上網主要瀏覽頁?對頁面和產品的點擊次數?網站上的用戶評價對他的影響?他會在哪些地方分享對產品和購物過程的體驗?這些都是對用戶網上消費和品牌關注度的深入分析,可以直接影響用戶消費的傾向等商業效果。
大數據徹底改變企業內部運作模式,以往的管理是「領導怎麼說?」現在變成「大數據的分析結果」,這是對傳統領導力的挑戰,也推動企業管理崗位人才的定義。不僅懂企業的業務流程,還要成為數據專家,跨專業的要求改變過去領導力主要體現在經驗和過往業績上,如今熟練掌握大數據分析工具,善於運用大數據分析結果結合企業的銷售和運營管理實踐是新的要求。
當然大數據對企業的作用一個不可迴避的關鍵因素是數據的質量,有句話叫「垃圾進,垃圾出」指的是如果採集的是大量垃圾數據會導致出來的分析結果也是毫無意義的垃圾。此外,企業內部是否會形成一個個孤立的數據孤島,數據是否會成就企業內某些人或團隊新的權力,導致數據不能得到實時有效地分享,這些都會是阻礙大數據在企業中有效應用的因素。
而隨著大數據時代的到來,對大數據商業價值的挖掘和利用逐漸成為行業人士爭相追捧的利潤焦點。業內人士稱,電商企業通過大數據應用,可以探索個人化、個性 化、精確化和智能化地進行廣告推送和推廣服務,創立比現有廣告和產品推廣形式性價比更高的全新商業模式。同時,電商企業也可以通過對大數據的把握,尋找更 多更好地增加用戶粘性,開發新產品和新服務,降低運營成本的方法和途徑。
問題七:什麼是大數據時代 世界包含的多得難以想像的數字化信息變得更多更快……從商業到科學,從 *** 到藝術,這種影響無處不在。科學家和計算機工程師們給這種現象創造了一個新名詞:「大數據」。大數據時代什麼意思?大數據概念什麼意思?大數據分析什麼意思?所謂大數據,那到底什麼是大數據,他的來源在哪裡,定義究竟是什麼呢?
一:大數據的定義。
1、大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
2、大數據技術,是指從各種各樣類型的大數據中,快速獲得有價值信息的技術的能力,包括數據採集、存儲、管理、分析挖掘、可視化等技術及其集成。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
互聯網是個神奇的大網,大數據開發也是一種模式,你如果真想了解大數據,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
3、大數據應用,是 指對特定的大數據 *** ,集成應用大數據技術,獲得有價值信息的行為。對於不同領域、不同企業的不同業務,甚至同一領域不同企業的相同業務來說,由於其業務需求、數據 *** 和分析挖掘目標存在差異,所運用的大數據技術和大數據信息系統也可能有著相當大的不同。惟有堅持「對象、技術、應用」三位一體同步發展,才能充分實現大數據的價值。
當你的技術達到極限時,也就是數據的極限」。大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。
二:大數據的類型和價值挖掘方法
1、大數據的類型大致可分為三類:
1)傳統企業數據(Traditionalenterprisedata):包括 CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。
2)機器和感測器數據(Machine-generated/sensor data):包括呼叫記錄(CallDetail Records),智能儀表,工業設備感測器,設備日誌(通常是Digital exhaust),交易數據等。
3)社交數據(Socialdata):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平台。
2、大數據挖掘商業價值的方法主要分為四種:
1)客戶群體細分,然後為每個群體量定製特別的服務。
2)模擬現實環境,發掘新的需求同時提高投資的回報率。
3)加強部門聯系,提高整條管理鏈條和產業鏈條的效率。
4)降低服務成本,發現隱藏線索進行產品和服務的創新。
三:大數據的特點
業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。具體來說,大數據具有4個基本特徵:
1、是數據體量巨大
數據體量(volumes)大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;網路資料表明,其新......>>
問題八:大數據,是指什麼?_?怎麼解釋 大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
問題九:徵信大數據是什麼意思? 大數據是指所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、處理、並整理成為服務於 經營決策的資訊。大數據徵信是指什麼呢?簡單的說,例如電商行業京東做出判斷的消費數據信息就是大數據徵信。大數據征 信是伴隨互聯網金融發展起來的。目前徵信機構有很多,不乏後起之秀如立木徵信,使用互聯網技術抓取或介面合作獲取徵信 數據,並且可以接入央行徵信。隨著互聯網金融的發展,大數據徵信與央行徵信會不斷融合直至融為一體,真正的滿足數據的 完整性,可以更加全面地評估信用,為企業或個人提供決策分析、風險評估以及生活場景的應用。
⑩ 什麼是大數據,通俗的講
有人說大數據技術是第四次技術革命,這個說法其實不為過。
很多人只是聽過大數據這個詞或者是簡單知道它是什麼,那麼它是什麼呢,在這里就通俗點來說一下個人對大數據的理解。
大數據,很明顯從字面上理解就是大量的數據,海量的數據。大,意思就是數據的量級很大,不上TB都不好意思說是大數據。數據,狹義上理解就是12345那麼些數據,畢竟計算機底層是二進制來存的,那麼在大數據領域,數據就不僅僅包括數字這些,它可以是所有格式的東西,比如日誌,音頻視頻,文件等等。
所以,大數據從字面上理解就是海量的數據,技術上它包括這些海量數據的採集,過濾,清洗,存儲,處理,查看等等部分,每一個部分包括一些大數據的相關技術框架來支持。
舉個例子,淘寶雙十一的總交易額的顯示,後面就是大數據技術的支持,全國那麼多淘寶用戶的交易記錄匯聚到一起,數據量很大,而且要做到實時的展現,就需要強有力的大數據技術來處理了。
數據量一大,那麼得找地方來存,一個伺服器硬碟可以掛多少,肯定滿足不了這么大的數據量存儲啊,所以,分布式的存儲系統應運而生,那就是HDFS分布式文件系統。簡單的說,就是把這么大的數據分開存在甚至幾百甚至幾千台伺服器上,那麼管理他們的系統就是HDFS文件系統,也是大數據技術的最基本的組件。
有地方存了,需要一些分布式的資料庫來管理查詢啊,那就有了Hbase等,還需要一些組件來計算分析這些數據啊,maprece是最基本的計算框架,其他的計算框架Spark和Storm可以完成實時的處理,其中HDFS和MapRece組成了Hadoop1.
總之,一切都是數據。我們的歷史,是不是都是大量的數據保存下來的,現在我們也是大數據的生活,天天有沒有接到騷擾電話還知道你姓什麼,你查話費什麼的從幾億人的數據中查到你的信息,大數據生活。未來,大數據將更深刻的滲透到生活中。