① 阿里的ai布局主要集中在哪個領域
阿里的ai布局主要集中在人工智慧基礎設施、智能客服、智能物流、智能城市、智能家居、人工智慧應用。
1、人工智慧基礎設施:阿里雲推出了AI平台PAI,提供了包括語音、圖像、自然語言處理等多個領域的AI能力和演算法,幫助企業和開發者快速構建AI應用。
2、智能客服:阿里巴巴的釘釘和淘寶等平台上已經應用了AI客服技術,通過自然語言處理等技術,可以智能識別用戶問題並提供相應的答案。
3、智能物流:阿里的菜鳥網路在物流領域也應用了AI技術,通過大數據和機器學習等技術,提高了物流運營的效率和精度。
4、智能城市:阿里也在智能城市領域布局,與多個城市和政府合作,應用AI技術提高城市管理和運清服務的水平。
5、智能家居:阿里的智能音箱天貓精靈,通螞羨過語音識別和自然語言處理等技術,可以實現控制家電、語音購物等功能。
6、人工智慧應用:阿里旁物前還在人工智慧應用領域進行布局,推出了包括智能翻譯、人臉識別等在內的多個應用,包括阿里雲智能語音交互、人臉識別技術等。
② 阿里巴巴運用大數據包括哪些
大數據計算服務(MaxCompute,原ODPS)
Data IDE(原BASE)
數據集成(原CDP雲道)
大數據基礎服務包括 Maxcompute 分析型資料庫等
大數據分析於展現包括 Date V Quick BI 畫像分析等
大數據應用 包括 推薦引擎 企業圖譜
③ 從IT到DT 阿里大數據背後的商業秘密
從IT到DT:阿里大數據背後的商業秘密
空氣污染究竟在多大程度上影響了人們的網購行為?有多少比重的線上消費屬於新增消費?為什麼中國的「電商百佳縣」中浙江有41個而廣東只有4個?
這些電商的秘密就隱藏在阿里巴巴商業生態的「大數據」中。
「未來製造業的最大能源不是石油,而是數據。」阿里巴巴董事局主席馬雲如此形容「數據」的重要意義。
在他看來,阿里巴巴本質上是一家數據公司,做淘寶的目的是為了獲得零售的數據和製造業的數據;做螞蟻金服的目的是建立信用體系;做物流不是為了送包裹,而是這些數據合在一起,「電腦會比你更了解你」。與此同時,產業的發展也正在從IT時代走向以大數據技術為代表的DT時代。
而在阿里巴巴內部,由電子商務、互聯網金融、電商物流、雲計算與大數據等構成的阿里巴巴互聯網商業生態圈,也正是阿里研究院所紮根的「土壤」。
具體而言,阿里巴巴平台的所有海量數據來自於數百萬充滿活力的小微企業、個人創業者以及數億消費者,阿里研究院通過對他們的商務活動和消費行為等進行研究分析,從某種程度上可以反映出一個地方乃至宏觀經濟的結構和發展趨勢。
而隨著阿里巴巴生態體系的不斷拓展和延伸,阿里巴巴的數據資源一定程度上將能夠有效補充傳統經濟指標在衡量經濟冷暖方面存在的滯後性,幫助政府更全面、及時、准確地掌握微觀經濟的運行情況。
從IT到DT
不同於一些企業以技術研究為導向的研究院,阿里研究院副院長宋斐告訴《第一財經日報》記者,阿里研究院定位於面向研究者和智庫機構,主要的研究方向包括未來研究(如信息經濟)、微觀層面上的模式創新研究(如C2B模式、雲端制組織模式)、中觀層面上的產業互聯網化研究(如電商物流、互聯網金融、農村電商等)、宏觀層面上新經濟與傳統經濟的互動研究(如互聯網與就業、消費、進出口等)、互聯網治理研究(如網規、電商立法)等。
具體到數據領域,就是在阿里巴巴互聯網商業生態基礎上,從企業數據、就業數據、消費數據、商品數據和區域數據等入手,通過大數據挖掘和建模,開發若干數據產品與服務。
例如,將互聯網數據與宏觀經濟統計標准對接的互聯網經濟數據統計標准,包括了中國城市分級標准;網路消費結構分類標准;網上商品與服務分類標准等。
而按經濟主題劃分的經濟信息統計資料庫則包括商品信息統計資料庫;網購用戶消費信息統計資料庫;小企業與就業統計資料庫;區域經濟統計資料庫。
還有反映電商經濟發展的「晴雨表」——阿里巴巴互聯網經濟系列指數。其中包括反映網民消費意願的阿里巴巴消費者信心指數aCCI、反映網購商品價格走勢的阿里巴巴全網網購價格指數aSPI和固定籃子的網購核心價格指數aSPI-core、反映網店經營狀態的阿里巴巴小企業活躍度指數aBAI、反映區域電子商務發展水平的阿里巴巴電子商務發展指數aEDI等等。其中,現有aSPI按月呈報給國家統計局。
而面向地方政府決策與分析部門的數據產品「阿里經濟雲圖」,則將分階段地推出地方經濟總覽、全景分析、監測預警以及知識服務等功能。宋斐告訴記者,其數據可覆蓋全國各省、市、區縣各級行政單位,地方政府用戶經過授權後,可以通過阿里經濟雲圖看到當地在阿里巴巴平台上產生的電子商務交易規模、結構特徵及發展趨勢。
「藉助數據可視化和多維分析功能,用戶可以對當地優勢產業進行挖掘、對消費趨勢與結構變動進行監測、與周邊地區進行對比等等。」宋斐表示,該產品未來還可以提供API服務模式,以整合更多的宏觀經濟數據和社會公開數據,為當地經濟全貌進行畫像,給大數據時代的政府決策體系帶來新的視角和工具。
數據會「說話」
對於如何利用「大數據」,馬雲在公司內部演講中曾提到:「未來幾年內,要把一切業務數據化,一切數據業務化。」
其中,後半句話可以理解為,讓阿里巴巴各項業務所產生、積累的大數據來豐富阿里的生態,同時讓生態蘊含的數據產生新的價值,再反哺生態,這是一個相輔相成的循環邏輯。
宋斐對記者舉例稱,螞蟻金服旗下的芝麻信用已獲得人民銀行個人徵信牌照批准籌備,未來將通過分析大量的網路交易及行為數據,如用戶信用歷史、行為偏好、履約能力、身份特質、人脈等信息,對用戶進行信用評估,這些信用評估可以幫助互聯網金融企業對用戶的還款意願及還款能力做出結論,繼而為用戶提供快速授信及現金分期服務。本質上來說,「芝麻信用」是一套徵信系統,該系統收集來自政府、金融系統的數據,還會充分分析用戶在淘寶、支付寶等平台的行為記錄。
再如,對於如火如荼的農村電商領域,阿里研究院從2010年就已開始對「沙集模式」個案進行研究,後續一系列基於數據和案例調研所驅動的農村電商研究成果,對於地方政府科學決策,推動當地農村電子商務發展、創造就業和發展地方經濟起到了助力作用。到2014年底,全國已經涌現了212個淘寶村,而阿里巴巴也在這一年啟動千縣萬村計劃,將在三至五年內投資100億元,在農村建立起電子商務服務體系。
除了通過數據分析去助力業務外,宋斐告訴記者,有時候大數據報告可能會與傳統的印象結論差異很大。
以區域電子商務為例,在阿里研究院發布的2014年中國電商百強縣排行榜中,浙江有41個縣入圍,福建有16個,而廣東只有4個,這個結果與傳統的印象相差比較大。而事實上,這是因為浙江和廣東兩省電商發展在地理分布、產業結構等方面的明顯不同而帶來的。
再如,外界常常認為網路零售替代了線下零售,但事實上,麥肯錫《中國網路零售革命:線上購物助推經濟增長》的研究報告,通過借鑒阿里研究中心(阿里研究院前身)和淘寶網UED用戶研究團隊的大量報告與數據,最後發現:「約60%的線上消費確實取代了線下零售;但剩餘的40%則是如果沒有網路零售就不會產生的新增消費。」
「這一研究成果,有助於社會各界准確認識網路零售與線下零售的關系,共同探索和建設良好的商業發展環境。」
④ 超級推薦大改版,阿里媽媽引力魔方上線
大家心心念念的超級推薦大改版終於來了!
最近,阿里媽媽核心產品【超級推薦】進行了重大產品升級,升級為【阿里媽媽引力魔方】。
新產品在原有強大信息流資源下,引入了手淘首頁焦點圖等資源位,規模空前,幫助引爆店鋪流量。
同時對於人群/創意/出價等核心能力進行全面升級,極大提升了客戶的投放效率。
引力魔方融合了超級推薦和鑽展兩個功能。現在有部分用戶已經用上了內測版本,後續舊的超級推薦和鑽展極有可能要下線。
近期內測客戶整體表現,相較於舊版超推在CTR效果顯著提升!
01
阿里媽媽引力魔方介紹
阿里媽媽引州顫力魔方,是超級推薦全新升級版本,是融合了猜你喜歡信息流和焦點圖的全新推廣產品。原生的信息流模式是喚醒消費者需求的重要入口, 全面覆蓋了消費者購前、購中、購後的消費全鏈路;焦點圖鎖定了用戶入淘第一視覺,覆蓋了淘系全域人群。
通過兩者的有機結合,同時基於阿里巴巴大數據和智能推薦演算法,幫助店鋪潛在目標消費者,激發消費興趣,高效拉新,強效促轉化,完成營銷閉環,助力提升店鋪整體流量,促進店鋪生意增長。
路徑:進入超級推薦後台首頁,點擊頁面右下角「進入內測版」登錄內測版後台。
PS:新版的開通不影響您的舊版使用,兩個版本可同時運行
報名鏈接:https://survey.taobao.com/apps/liao/Z2inZh3JP
02
新版升級點
覆蓋超過7億用戶,囊括淘系核心渠道:手淘首頁焦點圖、手淘猜你喜歡(首頁、購物車、支付成功)、高德、優酷、支付寶等淘內外核心資源,規模空前,助您引爆店鋪流量。
重磅推出「目標人群拓展」能力,將基於您選定的人群特徵,從廣闊的流量海洋中定位高價值高意向人群,極大的拓展投放規模,助力的您生意持續增長。
阿里大數據+業界領先的深度學習技術,在給定的出價成本及預算下,從pv顆粒度幫您精準篩選出潛在消費者,實現營銷目標最大化。
引入創意組件和智能化創意,在有效降低您投放成本的同時,通過智能演算法,幫助您實現創意的千人千面,與消費者建立有效溝通,引更多目標用戶。
新版後台中打造創意庫能力,實現創意可管理/可沉澱/可復用;自定義報表能力,打破報表常規,由您自由組合,打造最冊棚敗貼合您需求的報表;同時推出多個產品工具,幫助您提升投放效率。
首次推出個性化後台,將根據客戶所在的不同階段匹配不同的產品能力,幫助您有效和虧提升投放效率與操作體驗。
03
新舊版本核心對比
04
常見問題
Q:有什麼方式可以更好的對比新舊版效果嗎??
A:建議在新舊後台分別 新建一個計劃,舊版使用智能定向,新版選用AI優選,並且兩個後台採用同一個商品,相同創意等控制變數方式進行對比。
Q:為什麼我今天早上創建了計劃,下午還沒有流量?
A:計劃存在冷啟動現象,並且新產品下缺乏數據樣本,計劃前期拿量能力較弱,建議您在持續觀測或提升一定的出價和日預算。
Q:為什麼別的商家賬號有的功能我沒有?
A:新版超級推薦推出了了個性化後台,會為在不同階段的客戶提供差異化的產品能力。
Q:為什麼我沒有分時折扣?
A:目前【促進曝光】和【促進點擊】下為手動出價,【促進加購】和【促進成交】下為自動出價,時間折扣僅可在手動出價下生效,所以只能在促進曝光和點擊的計劃中配置。
Q:自動出價有什麼優勢?為什麼我成本設置了1元,但是系統跑出來是2元?
A:在自動出價下,您能夠設定預期控製成本,例如2元/點擊,通過系統出價的方式,幫助您去獲得更高價值人群。對於您來說避免了頻繁的出價調控,同時又高效的幫助您獲取您所需的目標量。
Q:為什麼我點擊新版無法進入新後台?
A:若您的店鋪為天貓國際、貓超賬號,暫無法登錄新版,需在下個版本(9月)上線後才可進行投放
Q:使用新版會對我老版的使用產生影響嗎?
A:不會,系統不會讓您的計劃相互抬價;從競爭角度,在新版新建一條計劃,你可以理解為在舊版新建了一條計劃。
Q:如何使用達摩盤人群?
A:若您具有達摩盤後台許可權,可在達摩盤後台中同步至「超級推薦_內測版」渠道,若未看到該渠道,可聯系小二進行添加。
關注達洱狐電商!
帶你了解更多電商運營知識!
⑤ 大數據是什麼有什麼價值作用
「大數據」是指以多元形式,自許多來源搜集而來的龐大數據組,往往具有實時性。在企業對企業銷售的情況下,這些數據可能得自社交網路、電子商務網站、顧客來訪紀錄,還有許多其他來源。這些數據,並非公司顧客關系管理資料庫的常態數據組。
大數據的應用其實早已滲透到人們生活中的並段廳方方面面:亞馬遜運用大數據為客戶推薦商品信息,阿里用大數據成立了小微金融服務集團,而谷歌更是計劃用大數據接管世界??當下,很多行業都開始增加對大數據的需求。大數據時代不僅處理著海量的數據,同時也加工、傳播、分享它們。不知不覺中,數據可視化已經遍布我們生活的每一個角落,畢竟普通用戶往往更關心結果的展示。伴隨去年底網路地圖採用LBS定位春運的可視化大數據,就引起了學界對新聞創新和大數據可視化的熱議。
1、根據銷售費習慣以及需求為其推薦更加適合的產品,因此相關服務的企業可以利用大數據進行精準營銷,從而實現雙贏互利的作用;
2、當企業遇到瓶頸或者行業遭遇困境的時候,中小微企業可以利用大數據快速反應做好服務轉型;
3、企業戰略布局以及資源配置的環節,可以通過大數據找到更加貼近事實的一句,同時對於面臨互聯網壓力之下必須轉型的傳統企業提供與時俱進的契機。
企業組織利用相關數據和分析,可以幫助它們實現降低成本、提高效率、開發新產品、做出更明智的業務決策等等目標。下面是一些關於大數據應用目前已經可以解決的問題:
1、及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元;
2、為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵;
3、分析所有SKU,以利潤最大化為目標來定價和清理庫存;
4、根據客戶的購買習慣,為其推送他可能感興趣的優惠信息;
5、從大量客戶中快速識別出金牌客戶;
6、使用點擊流分析和數據挖掘來規避欺詐行為。
一、技術價值
大數據,根本上與數學、統計學、計算機學、數據學等基本理論知識無法分割,技術水平突飛猛進給數字領域帶來最直接的躍進。
App研發應用、資料庫編寫應用等促進人類社會技術進步的價值都來源於大數據的發明和運營。
大數據不僅創造了新的計算方式、技術處理方式,更加為其他技術的研發、應用和落地提供基礎,例如人工智慧等。
大數據中客戶與企業進行交易的數據,是大數據技術價值的核心映射。客戶的交易行為通過企業內部系統留存,基本以「事後」數據為主。
交易數據是推進企業數據驅動業務,與客戶聯系溝通、獲得有效和分析數據的初級門檻,無論大數據獲取能力如何發展,直接的交易信息永遠都是第一有效和值得關注的。
淘寶的交易分析報告中提到,大額買單後的重購次單和同店重購次單比例分別為25.0%和16.8%,要明顯高於普通買單的18.8%和10.7%,則表示在首次買單獲取了對賣家服務和商品質量的信任後,次單完全存在放大金額的可能,並且比普通買單的可能要高得多。
由此引導賣家增進服務、堅守質量,並適時推出捆綁推薦,以求同類商品同店大額下單的幾率。
只有有了大數據的處理技術,交易行為才能夠得到記錄分析,企業的大數據技術研發、應用和落地才能擁有基礎,以開發更新更適合時代的企業產業。
目前有很多傳統企業盲目行走大燃嘩數據的道路,但其實大數據技術能力並沒有建立起來,真正獲得了有效數據並得以分析利用的就很少,很多該做的「埋點」沒有做,數據的統計也缺乏技術支撐。
這時大數據的技術價值就會顯得尤為重要,且是所有價值的基礎,一梁塌,全屋倒。
無法自主革新的企業會求助一些以提供大數據服務為產品的新型公司,也就催生了各種大數據公司雨後春筍般的出現,至於這些公司如何為傳統轉型服務在後面會提到。
二、商業價值
在實際的升級運行中,習慣於傳統經營的企業也許經常會為這樣幾個基礎的問題感到困惑:如何提升運營現狀?目標客群是誰?有哪些特點?與競品相比競爭優勢在哪?現有經營問題又是什麼?
而這些看似簡單的問題背後卻隱藏著海量數據的分析挖掘:客流數據、經營數據、以往活動相關數據、場內店鋪絕隱信息、競品數據,類此種種的深入透析才能幫助企業畫像潛客、分析經營、建立會員體系、策劃活動執行。
單就運營而論,數據作為一種度量方式,能夠真實的反映運營狀況,幫助企業進一步了解產品、了解用戶、了解渠道進而優化運營策略。
⑥ 阿里,騰訊和百度的互聯網大數據應用有何不同
網路、阿里巴巴和騰訊三大互聯網企業都擁有大數據,三大互聯網巨頭的數據都用來優化自己業務的運營效果,從這個層面看,其數據價值應用場景比較類似。但由於其業務和商業模式的不同決定了三者數據資產的不同,也決定了三者未來大數據策略的不同,尤其是基於大數據的開放和合作角度看,網路和阿里巴巴相對更加開放。對於重視大數據開放和合作的互聯網企業,他們最為期待的是借著大數據開放的策略,與更多的傳統行業交換更多的數據,從而更好的豐富其在線下數據,形成線上和線下數據的協同,從中拓展新的商業模式,如智能硬體和大數據健康。
從數據類型看,騰訊數據最為全面,這與其互聯網業務全面相關,其最為突出的是社交數據和游戲數據,其中:社交數據最為核心的是關系鏈數據、用戶間的互動數據、用戶產生的文字、圖片和視頻內容;游戲數據主要包括大型網游數據、網頁游戲數據和手機游戲數據,游戲數據中最為核心的是游戲的活躍行為數據和付費行為數據,騰訊的數據最大的特點是基於社交的各種用戶行為和娛樂數據。阿里最為突出的是電商數據,尤其是用戶在淘寶和天貓上的商品瀏覽、搜索、點擊、收藏和購買等數據,其數據最大特點是從瀏覽到支付形成的用戶漏斗式轉化數據。網路的數據以用戶搜索的關鍵詞、爬蟲抓取的網頁、圖片和視頻數據為主,網路的數據特點是通過搜索關鍵詞更直接反映用戶興趣和需求,網路的數據以非結構化數據更多。
網路、阿里巴巴和騰訊的數據應用場景
網路、阿里巴巴和騰訊的數據應用場景都有共同的體系,該體系一共分為七層,代表了企業不同層面的數據價值應用場景,形成了企業運營的數據價值金字塔:
(1)數據基礎平台層。金字塔的最底層也是整個金字塔的基礎層,如果基礎層搭建不好,上面的應用層也很難在企業運營中發揮效果,這一層的技術目標是實現數據的有效存儲、計算和質量管理;業務目標是把企業的所有用戶(客戶)數據用唯一的ID串起來,包括用戶(客戶)的畫像(如性別、年齡等)、行為以及興趣愛好等,以達到全面的了解用戶(客戶)的目的;
(2)業務運營監控層。這一層首要的是搭建業務運營的關鍵數據體系,在此基礎上通過智能化模型開發出來的數據產品,監控關鍵數據的異動,通過各種分析模型等可以快速定位數據異動的原因,輔助運營決策;
(3)用戶/客戶體驗優化層。這一層主要是通過數據來監控和優化用戶/客戶的體驗問題。這裡面既運用了結構化的數據來監控,也運用非結構化的數據(如文本)來監控體驗的問題。前者更多的是應用各種用戶(客戶)體驗監測的模型或者工具來實現,後者更多的是通過監測微博、論壇和企業內部的客戶反饋系統的文本來發現負面的口碑,以及時的優化產品或服務;
(4)精細化運營和營銷層。這一層主要通過數據驅動業務精細化運營和營銷。主要可以分為四方面:第一,構建基於用戶的數據提取和運營工具,以方便運營和營銷人員通過人群定向把客戶提取出來,從而對客戶進行營銷或運營活動;第二方面,通過數據挖掘的手段提升客戶對活動的響應;第三,通過數據挖掘的手段進行客戶生命周期管理;第四,主要是用個性化推薦演算法基於用戶不同的興趣和需求推薦不同的商品或者產品,以實現推廣資源效率和效果最大化,如淘寶商品的個性化推薦;
(5)數據對外服務和市場傳播層面。數據對外服務一般為服務該互聯網企業的客戶或用戶,如網路通過提供網路輿情、網路代言人、網路指數等服務其廣告主客戶;淘寶通過數據魔方、淘寶情報和在雲端等產品服務其客戶;騰訊通過騰訊分析和騰訊雲分析等服務其開放商客戶。在市場傳播層面,主要通過有趣的數據信息圖譜和數據可視化產品來實現(如淘寶指數、網路指數、網路春節遷徙地圖)。
(6)經營分析層面。主要通過分析師對大數據進行統計,形成經驗分析周報、月報和季度報告等,對用戶經營情況和收入完成等情況進行分析,發現問題,優化經營策略。
(7)戰略分析層面。這方面既要結合內部的大數據形成決策層的數據視圖,也要結合外部數據尤其是各種競爭情報監控數據、國外趨勢研究數據來輔助決策層進行戰略分析。
雖然網路、阿里巴巴和騰訊在企業運營的數據價值的應用體繫上有共同的特點,但由於企業的商業模式以及數據資產不同,他們在整體的大數據發展策略也有顯著的不同。
網路大數據策略
網路大數據最重要的是來源是通過爬蟲搜集的100多個國家的近萬億網頁數據,數據量是在EB級的規模。網路的數據非常多樣化,其收集的數據既有為非結構化的或者半結構化的數據,包括網頁數據、視頻和圖片等數據,也有結構化的數據,如用戶的點擊行為數據,廣告客戶的付費行為數據等。
網路大數據主要服務三類人群:一類是互聯網網民,通過大數據和自然語言處理技術讓網民的搜索更加准確;第二類是廣告主,通過大數據讓廣告主的廣告和搜索關鍵詞的匹配度更高,或者和網民正在看的網頁內容匹配度更高;第三類是,也是在重點推進的網路大數據引擎,重點是服務傳統行業擁有一定規模數據的企業。
網路大數據引擎代表了互聯網企業數據服務能力開放和合作的趨勢,網路大數據引擎由以下三方面構成:
開放雲:網路的大規模分布式計算和超大規模存儲雲,開放雲大數據開放的是基礎設施和硬體能力。過去的網路雲主要面向開發者,大數據引擎的開放雲則是面向有大數據存儲和處理需求的「大開發者」。據網路相關人員稱,網路開放雲還擁有CPU利用率高、彈性高、成本低等特點。網路是全球首家大規模商用ARM伺服器的公司,而ARM架構的特徵是能耗小和存儲密度大,同時網路還是首家將GPU(圖形處理器)應用在機器學習領域的公司,實現了能耗節省的目的。
數據工廠:數據工廠為網路將海量數據組織起來的軟體能力,與資料庫軟體的作用類似,不同的是數據工廠是被用作處理TB級甚至更大的數據。網路數據工廠支持超大規模異構數據查詢,支持SQL-like以及更復雜的查詢語句,支持各種查詢業務場景。同時網路數據工廠還將承載對於TB級別大表的並發查詢和掃描,大查詢、低並發時每秒可達百GB。
網路大腦:網路大腦將網路此前在人工智慧方面的能力開放出來,主要是大規模機器學習能力和深度學習能力。此前它們被應用在語音、圖像、文本識別,以及自然語言和語義理解方面,並通過網路Inside等平台開放給了智能硬體。現在這些能力將被用來對大數據進行智能化的分析、學習、處理、利用,並對外開放。
網路將基礎設施能力、軟體系統能力以及智能演算法技術打包在一起,通過大數據引擎開放出來之後,擁有大數據的行業可以將自己的數據接入到這個引擎進行處理。從架構來看,企業或組織也可以只選擇三件套中的一種來使用,例如數據存放在自己的雲,但要運用網路大腦的一些智能演算法或者數據存放在網路雲,自己寫演算法。
網路大數據引擎的作用
我們可以從兩方面來具體看網路大數據引擎的作用:
(1)對於 *** 機構:如交通部門有車聯網、物聯網、路網監控、船聯網、碼頭車站監控等地方的大數據,如果這些數據與網路的搜索記錄、全網數據、LBS數據結合,在利用網路大數據引擎的大數據能力,則可以實現智能路徑規劃和運力管理;衛生部門擁有流感法定報告數據、全國流感樣病例哨點監測和病原學監測數據,如果和網路的搜索記錄及全網數據結合,便可進行流感預測、疫苗接種指導。
(2)對於企業:很多企業也擁有海量大數據,不過很多企業的大數據處理和挖掘能力比較弱,如果應用網路大數據引擎,則可以對海量數據進行可靠低成本的存儲,進行智能化的由淺入深的價值挖掘。如在2014年4月的網路技術開放日上,中國平安便介紹了如何利用網路的大數據能力加強消費者理解和預測,細分客戶群制定個性化產品和營銷方案。
阿里巴巴大數據策略
阿里巴巴大數據整體發展方向是以激活生產力為目的的DT(data technology,數據技術驅動)數據時代發展。阿里巴巴大數據未來將由「基於雲計算的數據開放+大數據工具化應用」組成:
(1)基於雲計算的數據開放。雲計算使中小企業可以在阿里雲上獲得數據存儲、數據處理服務,也可以構建自己的數據應用。雲計算是數據開放的基礎,雲計算可以為全球的數據開發者提供數據工作平台,阿里分布式的存儲平台和在這個平台上的演算法工具,可以更好的為數據開發者所用;同時,阿里巴巴還需要做好數據的脫敏,把數據的商業定義,每個標簽打得足夠清晰,能夠讓全球的數據開發者在阿里巴巴平台展開數據思維,讓數據為 *** 所用、消費者所用以及行業所用。阿里的大數據開放之後,線上線下的數據能夠串聯起來,所有人都是數據提供方,也是數據的使用者。
(2)在大數據應用上,馬雲已經在整個數據應用上確定了兩個方針:
第一個方針:從IT到DT(數據技術),DT就是點燃整個數據和激發整個數據的力量,被管理所用,被社會所用,被銷售所用,為製造業所用,為消費者信用所用。前文已經分析道,阿里巴巴的數據資產是以電商為主,其中,淘寶和天貓每天會產生豐富多樣的數據,阿里巴巴已經沉澱了包括交易、金融、生活服務等多種類型的數據。這些數據能夠幫助阿里巴巴進行數據化運營(如下圖)。
另外一個其最為重要的應用是金融領域——小微金融。在小微金融企業融資領域。由於銀行無法掌握小微企業真實的經營數據,不僅導致很多企業無法拿到貸款,還因為數據類型的不足導致整個判斷流程過長,阿里已經通過其電商數據中的交易、信用、SNS等多種數據來決定是否可以發放貸款以及放貸的額度。
第二個方針:讓阿里巴巴的數據、讓阿里巴巴的工具能夠成為中國商業的基礎設施。阿里巴巴已經開始在轉型,阿里將由自己直接面對消費者變成支持網商面對消費者,阿里會根據其已有的運營和數據經驗,開發更多的工具,幫助網商成長,讓網商們更懂得用最好的工具、服務去服務好消費者。正如馬雲所言「我相信沒有一個網商不希望擁有自己的客戶,沒有一個網商不希望知道客戶對自己的體驗到底好還是壞,如何持久的擁有這些客戶,我們覺得一個國家的經濟,應該讓給企業家群體去做,我們覺得淘寶網商未來的經濟,是應該留給網商們去決定,而不是我們去做決定」。
騰訊大數據策略
騰訊的大數據目前更多的是為騰訊企業內部運營服務,相對於阿里和網路,數據開放程度並不高。因此,對於騰訊我們主要重點介紹騰訊大數據在服務企業內部的應用場景和服務。
騰訊90%以上的數據已經實現集中化管理,數據集中在數據平台部,有超過100多個產品的數據已經集中管理起來,而且是集中存儲在騰訊自研數據倉庫(TDW)。騰訊大數據從數據應用的不同環節可以分為四個層面,包括數據分析、數據挖掘、數據管理和數據可視化:
(1)數據分析層有四個產品:自助分析、用戶畫像、實時多維度分析和異動智能定位工具。自助分析可以幫助非技術人員通過簡單的條件配置實現數據的統計和展示功能;用戶畫像則是對某一群用戶或者某一業務的用戶實現自動化的人群畫像;實時多維度分析工具則是可以對某一指標可以實現實時的多個維度的切分,方便分析人員從不同角度對某一指標進行多維度分析;異動智能定位工具則實現數據異動問題的智能化定位。
(2)數據挖掘層面的產品應用有:精準廣告系統、用戶個性化推薦引擎和客戶生命周期管理。精準廣告系統如廣點通,是基於騰訊大社交平台的海量數據為基礎,通過精準推薦演算法,以智能定向推廣位導向實現廣告精準投放;用戶個性化推薦引擎根據每位用戶的興趣和喜好,通過個性化推薦演算法(協同過濾、基於內容推薦、圖演算法、貝葉斯等),實現產品的個性化推薦需求;客戶生命周期管理系統,則是基於大數據,根據用戶/客戶的所處的不同生命周期進行數據挖掘,建立預測、預警和用戶特徵模型,以根據用戶/客戶所處的不同生命周期特點進行精細化運營和營銷。
(3)在數據管理層面則有:TDW(騰訊數據倉庫)、TDBank(數據銀行)、元數據管理平台和任務調度系統和數據監控。這一層面主要是實現數據的高效集中存儲、數據的業務指標定義管理、數據質量管理、計算任務的及時調度和計算以及數據問題的監控和告警。
(4)在數據可視化層面有:自助報表工具、騰訊羅盤、騰訊分析和騰訊雲分析等工具。自助報表工具可以自助化的實現結構相對簡單和邏輯相對簡單的報表。騰訊羅盤分為內部版和外部版,內部版則是服務於騰訊內部用戶(產品經理、運營人員和技術人員等)的高效報表工具,外部版則是服務於騰訊合作夥伴如開發商的報表工具。騰訊分析是網站分析工具,幫助網站主進行網站的全方位分析。騰訊雲分析則是幫助應用開發商決策和運營優化的分析工具。
總的來看,網路、阿里巴巴和騰訊三大互聯網企業都擁有大數據,三大互聯網巨頭的數據都用來優化自己業務的運營效果,從這個層面看,其數據價值應用場景比較類似。但由於其業務和商業模式的不同決定了三者數據資產的不同,也決定了三者未來大數據策略的不同,尤其是基於大數據的開放和合作角度看,網路和阿里巴巴相對更加開放。對於重視大數據開放和合作的互聯網企業,他們最為期待的是借著大數據開放的策略,與更多的傳統行業交換更多的數據,從而更好的豐富其在線下數據,形成線上和線下數據的協同,從中拓展新的商業模式,如智能硬體和大數據健康。
這個得從BAT各自的基因來分析。網路主要是以搜索產品,所以大數據對於網路來說主要用於搜索方面,使搜索更加的精準和匹配;阿里巴巴以電子商務為主,所以大數據對於阿里巴巴來說會主要用戶商品方面;騰訊主要是社交,所以大數據對於騰訊來說可能更多的應用於社會網路分析。大數據的主要用途為預測,所以BAT對於大數據的共同點都是為了通過對用戶的分析,進行更加准確的服務和營銷。
阿里有數據魔方,為賣家提供收費服務。
「互聯網」
和
「所有空間」
互聯網 就是指Inter上所有的信息
對網路來說
主要就是中文信息
所有空間
就是指網路中的所有用戶
建了網路空間
(博客+相冊+留言板)
顯然搜索後者
是不包括網路空間 以外的博客的
大數據是大量、高速、多變的信息,它需要新型的處理方式去促成更強的決策能力、洞察力與最佳化處理。大數據為企業獲得更為深刻、全面的洞察能力提供了前所未有的空間與潛力。
藉助大數據及相關技術,我們可針對不同行為特徵的客戶進行針對性營銷,甚至能從「將一個產品推薦給一些合適的客戶」到「將一些合適的產品推薦給一個客戶」,得以更聚焦客戶,進行個性化精準營銷。
大數據時代下的精準營銷是指通過大數據獲取對象的喜好,行為偏好,對不同對象進行不同營銷。大數據精準營銷的核心可以概括為幾大關鍵詞:用戶、需求、識別、體驗。
億美軟通推出數據雲服務,延續億美的客戶服務、客戶營銷、客戶管理的公司經營理念,通過龐大的消費數據資源,為客戶提供數據驗證,精準營銷等數據級服務。簡單說就是為企業提供數據驗證和數據篩選業務。
-
不用擔心,學好了就會有好的前景。{變數9}
1.大數據重預測,小數據重解釋;2.大數據重發現,而小數據重實證;3.大數據重相關,小數據重因果;4.大數據重全體,小數據重抽樣;5.大數據重感知,小數據重精確。
DCCI互聯網數據中心(DCCI DATA CENTER OF CHINA INTERNET,簡稱DCCI),互聯網監測研究權威機構&數據平台,互動營銷之測量、分析、優化服務提供者。以Panel軟體、代碼嵌入、海量數據挖掘、語義信息處理等多種領先技術手段為基礎,進行網站、用...
互聯網數據中心:是idc 他是主要存放網路數據的(網站+數據+下載站點等)囊括比較廣泛,任何的正規企業或者是中小型站長都是可以進行選擇的。
企業數據中心:它的更加具有針對性,它可以隸屬於互聯網數據中心的一部分的。
⑦ 阿里怎麼看到別人每天的數據
阿里可以通過多種方式來查看別人每天的數據。首先,阿里孫敗知可以通過其自有的數據分析平台來獲取每天的數據,這個平台可以收集、匯總、分析多種格式的數據,比如網站流量、移動端流量、用戶行為等,可以提供實時分析結果,從而幫助企業進行數據分析。其次,阿里也可以通過第三方數據分析平台來獲取每天的數則消據,這些平台可以收集、匯總、分析各種社交媒體的數據,從而提供准確的每天的數據分析結果。最後,阿里也可以通過與合作夥伴的數據共享系統枯氏獲取每天的數據,這些系統可以收集、匯總、分析各種類型的數據,從而為企業提供准確的數據分析結果。
⑧ 阿里大數據營銷存在哪些問題
問題有如下幾點:
1、數據存在失真情況。數據的失真主要體現在兩個方面:一方面,消費者在注冊時可能會輸入虛假的個人信息或者是一人使用多個賬戶、使用他人賬戶等,其在網路操作過程中產生的數據信息本身就不真實,另一方面,由於網路技術的發展和消費者的個性化需求促使阿里巴巴每隔一段時間就要進行網站維護與更新,在這個過程中,會有不少用戶因為不熟悉新的界面而進行錯誤的操作,這些錯誤的操作信息也被阿里巴巴記錄,造成資料庫中真假信息混雜,嚴重影響了大數據的質量。
2、消費者的個人權益難以保障。直至目前,阿里巴巴仍沒有提出有效預防用戶信息泄露的方法或是用戶信息泄露之後的維護方法。
3、大數據營銷效果易出現兩極化。用戶在使用淘寶的過程中會將自己的手機號碼、郵箱等聯系方式提供給阿里巴巴,為了擴大經營,阿里巴巴會進一步分析資料庫中的客戶需求,針對不同的客戶,通過簡訊、郵件等形式向客戶推銷產品,這在某些方面增加了客戶,然而大多情況下這些信息會被消費者無視,更有甚者,會引起消費者的反感,因此,大數據營銷的效果如何,仍存在極大的不確定性,效果難以預料。
⑨ 阿里巴巴大數據技術與產品部怎麼樣
阿里巴巴在08年就把大數據作為一項公司基本戰略,要知道那個時候甚至版還沒幾個人開始談論「大權數據」,可以說在大數據方面相比於國內其他互聯網公司,阿里是走在前面的。
按馬雲的話講,我們正從information technology轉向data technology。數據是靈魂。也許並不能保證大數據能給阿里巴巴賺很多錢,但是阿里認為數據對人類有用,所以他們做了。
舉一個阿里CTO認為大數據應用和價值的例子:淘寶小貸團隊,很小的隊伍,完全依賴數據對客戶的信用程度作分析,將數據轉化為信用,將信用轉化為財富,這是傳統商業銀行冗雜的審核程序,低效和高成本所不能比的。更重要的是,這個項目給近百萬的小商戶提供了生命線,哪怕只貸一元錢。沒有哪個銀行會這么做。
我認為阿里巴巴已經是國內互聯網大數據的先驅,他們在做有意義的事情。
⑩ 對話阿里副總裁賈揚清:阿里技術體系的開源策略與思路
賈揚清談道,阿里雲的開源策略將沿著共存、共生、共贏的路徑發展。
據 GitHub 數據顯示,2018 年全球新增開源社區用戶達到 3100 萬用戶,大於前六年新增總和;新增 9600 萬個開源項目,占總開源項目的三分之一。
1)大數據層面的實時計昌姿算,基於 Apache Flink 深度優化,支撐阿里在雙 11 期間等海量的實時計算和分析任務;
2)集團內和阿里雲上共用的深度學習平台 PAI。這是一個基於開源深度學習框架進行深度優化和整合的平台,關鍵性能比 TensorFlow 快 3 倍,完全兼容 Tesorflow、Caffe 語法,並通過底層的優化,比如通訊庫優化,底層跟 CPU、GPU 跟體系結構相關優化等,實現更快的分布式模型訓練和部署;
以下為機器之心針對問答環節的整理內容。
問: 我們都知道,阿里在今年 2019 年 4 月份前後正式上線了開發者社區,將包括 MVP 之類的產品都投了進去,也正好在這個時間點我們做了開發者大會,所以您怎麼看大會與您這塊的結合?未來計劃怎麼樣去做開發者的生態建設和賦能呢?
賈揚清: 我們從開發者社區中發現到一點,就是就技術領域而言,開發者基本上是排在第一位的,很多創新工作都是從開發者群體這里首先建構起來的。從大數據跟人工智慧的角度來說,我們首先希望與開發者建立起一個互助的環境,我們看見很多開發者在做大數據或者人工智慧相關的應用時,很多時間都花在怎麼搭建環境,比如今天做人工智慧研究,首先得要買一個 GPU 等等,都是一些很麻煩的事情,我們希望能從這方面給開發者提供價值,使其具備一個良好的開發環境。
另外,無論是在開發習慣還是效率上,雲是可以把這些方法沉澱下來的平台。今天我們回過頭去看一些成熟的開源開發者社區,與我國的開發者社區相比還是存在一定習慣上的差異。打個比方,矽谷的社區更願意利用代碼的及時測試等類似環境,而這些環境恰恰斗謹需要通過雲才能取得較好的效果,我們希望能夠幫助開發者們逐漸把這些工具搭耐銷絕建起來;第二是把相關的使用行為、習慣、心態建立起來,使大家在開發效率與最終的應用效率上都能有一個質的提高。