1.應盡量避免在 where 子句中對欄位進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num is null
可以在num上設置默認值0,確保表中num列沒有null值,然後這樣查詢:
select id from t where num=0
2.應盡量避免在 where 子句中使用!=或<>操作符,否則將引擎放棄使用索引而進行全表掃描。優化器將無法通過索引來確定將要命中的行數,因此需要搜索該表的所有行。
3.應盡量避免在 where 子句中使用 or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢:
select id from t where num=10
union all
select id from t where num=20
4.in 和 not in 也要慎用,因為IN會使系統無法使用索引,而只能直接搜索表中的數據。如:
select id from t where num in(1,2,3)
對於連續的數值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
5.盡量避免在索引過的字元數據中,使用非打頭字母搜索。這也使得引擎無法利用索引。
見如下例子:
SELECT * FROM T1 WHERE NAME LIKE 『%L%』
SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=』L』
SELECT * FROM T1 WHERE NAME LIKE 『L%』
即使NAME欄位建有索引,前兩個查詢依然無法利用索引完成加快操作,引擎不得不對全表所有數據逐條操作來完成任務。而第三個查詢能夠使用索引來加快操作。
6.必要時強制查詢優化器使用某個索引,如在 where 子句中使用參數,也會導致全表掃描。因為SQL只有在運行時才會解析局部變數,但優化程序不能將訪問計劃的選擇推遲到運行時;它必須在編譯時進行選擇。然而,如果在編譯時建立訪問計劃,變數的值還是未知的,因而無法作為索引選擇的輸入項。如下面語句將進行全表掃描:
select id from t where num=@num
可以改為強制查詢使用索引:
select id from t with(index(索引名)) where num=@num
7.應盡量避免在 where 子句中對欄位進行表達式操作,這將導致引擎放棄使用索引而進行全表掃描。如:
SELECT * FROM T1 WHERE F1/2=100
應改為:
SELECT * FROM T1 WHERE F1=100*2
SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=』5378』
應改為:
SELECT * FROM RECORD WHERE CARD_NO LIKE 『5378%』
SELECT member_number, first_name, last_name FROM members
WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
應改為:
SELECT member_number, first_name, last_name FROM members
WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何對列的操作都將導致表掃描,它包括資料庫函數、計算表達式等等,查詢時要盡可能將操作移至等號右邊。
8.應盡量避免在where子句中對欄位進行函數操作,這將導致引擎放棄使用索引而進行全表掃描。如:
select id from t where substring(name,1,3)='abc'--name以abc開頭的id
select id from t where datediff(day,createdate,'2005-11-30')=0--『2005-11-30』生成的id
應改為:
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
9.不要在 where 子句中的「=」左邊進行函數、算術運算或其他表達式運算,否則系統將可能無法正確使用索引。
10.在使用索引欄位作為條件時,如果該索引是復合索引,那麼必須使用到該索引中的第一個欄位作為條件時才能保證系統使用該索引,否則該索引將不會被使用,並且應盡可能的讓欄位順序與索引順序相一致。
11.很多時候用 exists是一個好的選擇:
elect num from a where num in(select num from b)
用下面的語句替換:
select num from a where exists(select 1 from b where num=a.num)
SELECT SUM(T1.C1)FROM T1 WHERE(
(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)
SELECT SUM(T1.C1) FROM T1WHERE EXISTS(
SELECT * FROM T2 WHERE T2.C2=T1.C2)
兩者產生相同的結果,但是後者的效率顯然要高於前者。因為後者不會產生大量鎖定的表掃描或是索引掃描。
Ⅱ MySQL大數據量分頁查詢方法及其優化
使用子查詢優化大數據量分頁查詢
這種方式的做法是先定位偏移位置的id,然後再往後查詢,適用於id遞增的情況。
使用id限定優化大數據量分頁查詢
使用這種方式需要先假設數據表的id是連續遞增的,我們根據查詢的頁數和查詢的記錄數可以算出查詢的id的范圍,可以使用 id between and 來查詢:
當然了,也可以使用in的方式來進行查詢,這種方式經常用在多表關聯的情況下,使用其他表查詢的id集合來進行查詢:
但是使用這種in查詢方式的時候要注意的是,某些MySQL版本並不支持在in子句中使用limit子句。
參考 sql優化之大數據量分頁查詢(mysql) - yanggb - 博客園 (cnblogs.com)
Ⅲ 資料庫的多表大數據查詢應如何優化
1.應盡量避免在 where 子句中對欄位進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如:x0dx0aselect id from t where num is nullx0dx0a可以在num上設置默認值0,確保表中num列沒有null值,然後這樣查詢:x0dx0aselect id from t where num=0x0dx0a2.應盡量避免在 where 子句中使用!=或<>操作符,否則將引擎放棄使用索引而進行全表掃描。優化器將無法通過索引來確定將要命中的行數,因此需要搜索該表的所有行。x0dx0a3.應盡量避免在 where 子句中使用 or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描,如:x0dx0aselect id from t where num=10 or num=20x0dx0a可以這樣查詢:x0dx0aselect id from t where num=10x0dx0aunion allx0dx0aselect id from t where num=20x0dx0a4.in 和 not in 也要慎用,因為IN會使系統無法使用索引,而只能直接搜索表中的數據。如:x0dx0aselect id from t where num in(1,2,3)x0dx0a對於連續的數值,能用 between 就不要用 in 了:x0dx0aselect id from t where num between 1 and 3x0dx0a5.盡量避免在索引過的字元數據中,使用非打頭字母搜索。這也使得引擎無法利用索引。 x0dx0a見如下例子: x0dx0aSELECT * FROM T1 WHERE NAME LIKE 『%L%』 x0dx0aSELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=』L』 x0dx0aSELECT * FROM T1 WHERE NAME LIKE 『L%』 x0dx0a即使NAME欄位建有索引,前兩個查詢依然無法利用索引完成加快操作,引擎不得不對全表所有數據逐條操作來完成任務。而第三個查詢能夠使用索引來加快操作。x0dx0a6.必要時強制查詢優化器使用某個索引,如在 where 子句中使用參數,也會導致全表掃描。因為SQL只有在運行時才會解析局部變數,但優化程序不能將訪問計劃的選擇推遲到運行時;它必須在編譯時進行選擇。然而,如果在編譯時建立訪問計劃,變數的值還是未知的,因而無法作為索引選擇的輸入項。如下面語句將進行全表掃描:x0dx0aselect id from t where num=@numx0dx0a可以改為強制查詢使用索引:x0dx0aselect id from t with(index(索引名)) where num=@numx0dx0a7.應盡量避免在 where 子句中對欄位進行表達式操作,這將導致引擎放棄使用索引而進行全表掃描。如:x0dx0aSELECT * FROM T1 WHERE F1/2=100 x0dx0a應改為: x0dx0aSELECT * FROM T1 WHERE F1=100*2x0dx0aSELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=』5378』 x0dx0a應改為: x0dx0aSELECT * FROM RECORD WHERE CARD_NO LIKE 『5378%』x0dx0aSELECT member_number, first_name, last_name FROM members x0dx0aWHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21 x0dx0a應改為: x0dx0aSELECT member_number, first_name, last_name FROM members x0dx0aWHERE dateofbirth < DATEADD(yy,-21,GETDATE()) x0dx0a即:任何對列的操作都將導致表掃描,它包括資料庫函數、計算表達式等等,查詢時要盡可能將操作移至等號右邊。x0dx0a8.應盡量避免在where子句中對欄位進行函數操作,這將導致引擎放棄使用索引而進行全表掃描。如:x0dx0aselect id from t where substring(name,1,3)='abc'--name以abc開頭的idx0dx0aselect id from t where datediff(day,createdate,-11-30')=0--『2005-11-30』生成的idx0dx0a應改為:x0dx0aselect id from t where name like 'abc%'x0dx0aselect id from t where createdate>=-11-30' and createdate<-12-1'x0dx0a9.不要在 where 子句中的「=」左邊進行函數、算術運算或其他表達式運算,否則系統將可能無法正確使用索引。x0dx0a10.在使用索引欄位作為條件時,如果該索引是復合索引,那麼必須使用到該索引中的第一個欄位作為條件時才能保證系統使用該索引,否則該索引將不會被使用,並且應盡可能的讓欄位順序與索引順序相一致。x0dx0a11.很多時候用 exists是一個好的選擇:x0dx0aelect num from a where num in(select num from b)x0dx0a用下面的語句替換:x0dx0aselect num from a where exists(select 1 from b where num=a.num)x0dx0aSELECT SUM(T1.C1)FROM T1 WHERE( x0dx0a(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0) x0dx0aSELECT SUM(T1.C1) FROM T1WHERE EXISTS( x0dx0aSELECT * FROM T2 WHERE T2.C2=T1.C2) x0dx0a兩者產生相同的結果,但是後者的效率顯然要高於前者。因為後者不會產生大量鎖定的表掃描或是索引掃描。
Ⅳ 如何利用大數據更好地促進SEO優化服務
所汪高謂的大數據SEO,其實就是找熱點,因為熱點新聞、事件在搜索引擎的搜索量會相當高,在事件發生的那段有效時間內,大量的相關關鍵詞會進入熱搜,你可以把握這些關鍵詞趨勢,做一些半原創的新聞,這樣會讓搜索引擎對你的友好度上升。
如何把握熱點事件呢,可以通過微博輿情大數據,網路搜野運索風雲榜,騰訊輿情,頭條指數,網路指數等綜合頌陵梁分析,取一些跟自己領悟相關的新聞、熱點事件進行聚合創作。長期下去搜索引擎必定給你很高的權重。
Ⅳ 大數據量實時統計排序分頁查詢 優化總結
大數據量實時統計排序分頁查詢 (並發數較小時) 的瓶頸不是函數(count,sum等)執行,
不是having, 也不是order by,甚至不是表join, 導致慢的原因就在於「數據量太大本身」
就是將表劃分為M份相互獨立的部分,可以是分表,也可以是不分表但冗餘一個取模結果欄位
實際結果是不分表比分表更加靈活,只需稍加配置,就可以動態切分大表,隨意更改M的大小。
將1條慢sql(大於30秒)拆分成為N條查詢速度巨快的sql(單條sql執行時間控制在20毫秒以內)
然後再web應用中以適當的線程數去並發查詢這些執行時間快的N條小sql再匯總結果
第一步查詢中去並發執行這N條小sql, 只取排序欄位和標識欄位,其他欄位一律丟棄
匯總結果後定位出當前頁面要顯示的pageNum條數據,再進行第二步查詢,取出頁面上需要展示的所有欄位
PS:這一點是至關重要的,其他幾點都可以不看,這點是最關鍵的。慢慢解釋一下:
a) 第一種方式是把資料庫中所有記錄(只取排序欄位和標識欄位並且不做任何sum,count having order by等操作)
全部拉到web應用中,在web應用中完成所有的計算
b) 第二種方式是把資料庫中所有記錄做sum count having等操作之後的所有行數拉到web應用中,在web應用中完成剩餘計算
c) 第三種方式是把資料庫中所有記錄做sum count having order by等操作之後把limit後的數據拉到web應用中,
在web應用中對limit後的數據再計算
顯然,第一種方式 資料庫什麼活都不做只取數據 是不可行的。以lg_order_count_seller為例,1500萬行,
如果只算id, seller_id和order_count 這三個bigint類型,至少需要拉8*3*1500 0000 = 360000000=340M,
拉到內存中之後存儲需要8*4*15000000= 460M,這還不算List是的2的n次方這個特點和計算排序等的內存開銷,
不僅資料庫與web應用機器IO扛不住,就是應用自身恐怕也要OOM了。
第二種方式,所有記錄做sum count having等操作之後,由於是group by seller_id的,總得數據量變為100萬(就是賣家總數),
這樣子一來,共需要拉8*3*100 0000 = 23M,拉到內存之後,需要8*4*100 0000 = 30M, 再算上List是的2的n次方這個特點和
計算排序等的內存開銷也不會超過100M, IO的時間和內存開銷勉強可以考慮接受。
第三種方式,所有記錄做sum count having order by等操作之後把limit後的數據拉到web應用中,因為做了limit,所以,
數據量很小了,無論是IO還是內存開銷都已經很小了。可以忽略。
綜合以上三種,第三種方式適用於頁面的前n頁和後n頁,因為這個limit的數據量隨著頁數的增大而增大,
當大到每個切分後的小表的數據量時就轉為第二種方式了。
第二種方式適用於頁面的第[n+1, totaoPageNum-n]頁。
切分成N條小sql後並行執行時排序不穩定性的解決辦法
① 問題描述:
優化之前,還是是一條大慢sql查詢時,由於資料庫排序是穩定排序,
所以當兩條記錄排序欄位值相同時他們在頁面上的頁碼位置是固定的。
優化之後,當並行執行這N條小sql時,由於無法控制這些小sql的先後執行順序,
導致在web應用中當兩條記錄的排序欄位值相同時在頁面上的頁碼位置是隨機的。
② 解決辦法:
除了拉標識欄位(seller_id)和排序欄位(order_count_sum)之外,再取一個unique(id)的欄位,當兩條記錄的排序欄位值相同時,再用這個unique的欄位(在賣家監控中這個欄位是id)進行第二次排序.這樣就解決了排序不穩定的問題。
③ 也許,看到這里會有疑問,為什麼不用seller_id?seller_id也是唯一, 這樣子不是少取id這個欄位,減少IO了?
seller_id雖然也是唯一,可以輔助排序,但是不要忘記資料庫的排序規則是:
如果兩列的值相等,那麼序號在前的排在前面,這里的序號就是主鍵(自動生成,autoincrement),
如果用seller_id的話還是不能保證排序的穩定性,只能用主鍵id.
優先載入頁面上的主要元素,然後再去非同步載入次要元素,
反應在賣家監控頁面中,查數據和查頁頁碼的sql語句基本相同,是在競爭同一資源,
所以,需要做一個策略,優先把資源讓給查數,數據查完之後再去查頁碼。
限流
由於多線程取數據並沒有從本質上提高資料庫性能,所以必須針對大數據量實時統計排序分頁查詢做限流
我這里打個比方:食堂有6個窗口,物流團隊吃飯要買6個菜,平均每買1個菜需要1分鍾的時間,
如果派我一個人去一個窗口買的話需要6分鍾的時間
假如派6個人分別去6個窗口買這6個菜,只需要1分鍾的時間
但是,如果除了物流團隊,再來其他5個團隊呢,也就是說6個團隊每個團隊買6個菜共買36個菜,
這樣子有的團隊先買完,有的團隊後買完,但平均時間還是6分鍾。本質上沒有變化。
所以,對於特定的查詢條件,必須進行限流。讓每分鍾至多有6個團隊買菜,這樣子能使得情況變得不至於太糟糕。
從根本上改變現狀
這一點從目前來看只能是展望了,比如mysql資料庫換更為強大的oracle資料庫,
或更換InnoDb引擎為其他,或更換SATA硬碟為SSD 。。。。。。
從實踐效果來看,優化後的效果是很明顯的。
相同的查詢條件,原來一個頁面查詢時間由於超過60秒超時了,根據1-6點建議優化之後,查詢時間變為2秒至3.5秒之間。
Ⅵ 如何優化操作大數據量資料庫
下面以關系資料庫系統Informix為例,介紹改善用戶查詢計劃的方法。
1.合理使用索引
索引是資料庫中重要的數據結構,它的根本目的就是為了提高查詢效率。現在大多數的資料庫產品都採用IBM最先提出的ISAM索引結構。索引的使用要恰到好處,其使用原則如下:
●在經常進行連接,但是沒有指定為外鍵的列上建立索引,而不經常連接的欄位則由優化器自動生成索引。
●在頻繁進行排序或分組(即進行group by或order by操作)的列上建立索引。
●在條件表達式中經常用到的不同值較多的列上建立檢索,在不同值少的列上不要建立索引。比如在雇員表的「性別」列上只有「男」與「女」兩個不同值,因此就無必要建立索引。如果建立索引不但不會提高查詢效率,反而會嚴重降低更新速度。
●如果待排序的列有多個,可以在這些列上建立復合索引(pound index)。
●使用系統工具。如Informix資料庫有一個tbcheck工具,可以在可疑的索引上進行檢查。在一些資料庫伺服器上,索引可能失效或者因為頻繁操作而使得讀取效率降低,如果一個使用索引的查詢不明不白地慢下來,可以試著用tbcheck工具檢查索引的完整性,必要時進行修復。另外,當資料庫表更新大量數據後,刪除並重建索引可以提高查詢速度。
2.避免或簡化排序
應當簡化或避免對大型表進行重復的排序。當能夠利用索引自動以適當的次序產生輸出時,優化器就避免了排序的步驟。以下是一些影響因素:
●索引中不包括一個或幾個待排序的列;
●group by或order by子句中列的次序與索引的次序不一樣;
●排序的列來自不同的表。
為了避免不必要的排序,就要正確地增建索引,合理地合並資料庫表(盡管有時可能影響表的規范化,但相對於效率的提高是值得的)。如果排序不可避免,那麼應當試圖簡化它,如縮小排序的列的范圍等。
3.消除對大型錶行數據的順序存取
在嵌套查詢中,對表的順序存取對查詢效率可能產生致命的影響。比如採用順序存取策略,一個嵌套3層的查詢,如果每層都查詢1000行,那麼這個查詢就要查詢10億行數據。避免這種情況的主要方法就是對連接的列進行索引。例如,兩個表:學生表(學號、姓名、年齡……)和選課表(學號、課程號、成績)。如果兩個表要做連接,就要在「學號」這個連接欄位上建立索引。
還可以使用並集來避免順序存取。盡管在所有的檢查列上都有索引,但某些形式的where子句強迫優化器使用順序存取。下面的查詢將強迫對orders表執行順序操作:
SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008
雖然在customer_num和order_num上建有索引,但是在上面的語句中優化器還是使用順序存取路徑掃描整個表。因為這個語句要檢索的是分離的行的 *** ,所以應該改為如下語句:
SELECT * FROM orders WHERE customer_num=104 AND order_num>1001
UNION
SELECT * FROM orders WHERE order_num=1008
這樣就能利用索引路徑處理查詢。
4.避免相關子查詢
一個列的標簽同時在主查詢和where子句中的查詢中出現,那麼很可能當主查詢中的列值改變之後,子查詢必須重新查詢一次。查詢嵌套層次越多,效率越低,因此應當盡量避免子查詢。如果子查詢不可避免,那麼要在子查詢中過濾掉盡可能多的行。
5.避免困難的正規表達式
MATCHES和LIKE關鍵字支持通配符匹配,技術上叫正規表達式。但這種匹配特別耗費時間。例如:SELECT * FROM customer WHERE zipcode LIKE 「98_ _ _」
即使在zipcode欄位上建立了索引,在這種情況下也還是採用順序掃描的方式。如果把語句改為SELECT * FROM customer WHERE zipcode >「98000」,在執行查詢時就會利用索引來查詢,顯然會大大提高速度。
另外,還要避免非開始的子串。例如語句:SELECT * FROM customer WHERE zipcode[2,3]>「80」,在where子句中採用了非開始子串,因而這個語句也不會使用索引。
6.使用臨時表加速查詢
把表的一個子集進行排序並創建臨時表,有時能加速查詢。它有助於避免多重排序操作,而且在其他方面還能簡化優化器的工作。例如:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
AND cust.postcode>「98000」
ORDER BY cust.name
如果這個查詢要被執行多次而不止一次,可以把所有未付款的客戶找出來放在一個臨時文件中,並按客戶的名字進行排序:
SELECT cust.name,rcvbles.balance,……other columns
FROM cust,rcvbles
WHERE cust.customer_id = rcvlbes.customer_id
AND rcvblls.balance>0
ORDER BY cust.name
INTO TEMP cust_with_balance
然後以下面的方式在臨時表中查詢:
SELECT * FROM cust_with_balance
WHERE postcode>「98000」
臨時表中的行要比主表中的行少,而且物理順序就是所要求的順序,減少了磁碟I/O,所以查詢工作量可以得到大幅減少。
注意:臨時表創建後不會反映主表的修改。在主表中數據頻繁修改的情況下,注意不要丟失數據。
7.用排序來取代非順序存取
非順序磁碟存取是最慢的操作,表現在磁碟存取臂的來回移動。SQL語句隱藏了這一情況,使得我們在寫應用程序時很容易寫出要求存取大量非順序頁的查詢。
有些時候,用資料庫的排序能力來替代非順序的存取能改進查詢。
實例分析
下面我們舉一個製造公司的例子來說明如何進行查詢優化。製造公司資料庫中包括3個表,模式如下所示:
1.part表
零件號?????零件描述????????其他列
(part_num)?(part_desc)??????(other column)
102,032???Seageat 30G disk?????……
500,049???Novel 10M neork card??……
……
2.vendor表
廠商號??????廠商名??????其他列
(vendor _num)?(vendor_name) (other column)
910,257?????Seageat Corp???……
523,045?????IBM Corp?????……
……
3.parven表
零件號?????廠商號?????零件數量
(part_num)?(vendor_num)?(part_amount)
102,032????910,257????3,450,000
234,423????321,001????4,000,000
……
下面的查詢將在這些表上定期運行,並產生關於所有零件數量的報表:
SELECT part_desc,vendor_name,part_amount
FROM part,vendor,parven
WHERE part.part_num=parven.part_num
AND parven.vendor_num = vendor.vendor_num
ORDER BY part.part_num
如果不建立索引,上述查詢代碼的開銷將十分巨大。為此,我們在零件號和廠商號上建立索引。索引的建立避免了在嵌套中反復掃描。關於表與索引的統計信息如下:
表?????行尺寸???行數量?????每頁行數量???數據頁數量
(table)?(row size)?(Row count)?(Rows/Pages)?(Data Pages)
part????150?????10,000????25???????400
Vendor???150?????1,000???? 25???????40
Parven???13????? 15,000????300?????? 50
索引?????鍵尺寸???每頁鍵數量???頁面數量
(Indexes)?(Key Size)?(Keys/Page)???(Leaf Pages)
part?????4??????500???????20
Vendor????4??????500???????2
Parven????8??????250???????60
看起來是個相對簡單的3表連接,但是其查詢開銷是很大的。通過查看系統表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理順序存放的。parven表沒有特定的存放次序。這些表的大小說明從緩沖頁中非順序存取的成功率很小。此語句的優化查詢規劃是:首先從part中順序讀取400頁,然後再對parven表非順序存取1萬次,每次2頁(一個索引頁、一個數據頁),總計2萬個磁碟頁,最後對vendor表非順序存取1.5萬次,合3萬個磁碟頁。可以看出在這個索引好的連接上花費的磁碟存取為5.04萬次。
建議你直接用Jdbc好了,用batch,這樣是最快的。
打開資料庫
con.Open();
讀取數據
OdbcDataReader reader = cmd.ExecuteReader();
把數據載入到臨時表
dt.Load(reader);
在使用完畢之後,一定要關閉,要不然會出問題
reader.Close();
這個問題是這樣的:
首先你要明確你的插入是正常業務需求么?如果是,那麼只能接受這樣的數據插入量。
其次你說資料庫存不下了 那麼你可以讓你的資料庫上限變大 這個你可以在資料庫裡面設置的 裡面有個資料庫文件屬性 maxsize
最後有個方法可以使用,如果你的歷史數據不會對目前業務造成很大影響 可以考慮歸檔處理 定時將不用的數據移入歷史表 或者另外一個資料庫。
注意平時對資料庫的維護 定期整理索引碎片
時間維度分區表,然後定情按照規則將屬於歷史的分區數據遷移到,歷史庫上,寫個存儲自動維護分區表。
一次性插入大量數據,只能使用循環,
如:游標,while 循環語句
下面介紹While 循環插入數據,
SQL 代碼如下:
IF OBJECT_ID('dbo.Nums') IS NOT NULL
DROP TABLE dbo.Nums;
GO
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);
DECLARE @max AS INT, @rc AS INT;
SET @max = 5000000;
SET @rc = 1;
INSERT INTO Nums VALUES(1);
WHILE @rc * 2 <= @max
BEGIN
INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums;
SET @rc = @rc * 2;
END
INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;
--以上函數取自Inside SQL Server 2005: T-SQL Query一書。
INSERT dbo.Sample SELECT n, RAND(CAST(NEWID() AS BINARY(16))) FROM Nums
ini_set('max_execution_time',Ɔ');
$pdo = new PDO("mysql:host=localhost;dbname=test","root","123456");
$sql = "insert into test(name,age,state,created_time) values";
for($i=0; $i<100000; $i++){
$sql .="('zhangsan',21,1,-09-17')";
}
$sql = substr($sql,0,strlen($sql)-1);
var_mp($sql);
if($pdo -> exec($sql)){
echo "插入成功!";
echo $pdo -> lastinsertid();
}
試試吧。10萬條1分鍾多,我覺得還行
就是直接把DataSet 類型作為參數直接傳遞給服務端
WCF默認支持這么做,直接傳Datatable不行。
你看一下 「服務引用設置」中你選的 *** 類型是什麼,我選的是System.Array
字典 *** 類型是默認第一項 System.Collections.Generic.Dictionary
又是一個把自己架在火上烤的需求啊,
如果不考慮傳輸因素,可以調整wcf配置,提升傳遞的容量,如果是對象傳遞可能還要調整對象層次的深度
Ⅶ ES大數據量下的查詢優化
filesystem類似於我們在mysql上建立一層redis緩存;
es的搜索引擎嚴重依賴於底層的filesystem cache,如果給filesystem cache更多的內存,盡量讓內存可以容納所有的indx segment file索引數據文件,那麼你搜索的時候就基本都是走內存的,性能會非常高。
兩者差距非常大,走磁碟和走systenfile cache的讀取的性能差距可以說是秒級和毫秒級的差距了;
要讓es性能要好,最佳的情況下,就是我們的機器的內存,至少可以容納你的數據量的一半
最佳的情況下,是僅僅在es中就存少量的數據,存儲要用來搜索的那些索引,內存留給filesystem cache的,如果就100G,那麼你就控制數據量在100gb以內,相當於是,你的數據幾乎全部走內存來搜索,性能非常之高,一般可以在1秒以內
的少數幾個欄位就可以了,比如說,就寫入es id name age三個欄位就可以了,然後你可以把其他的欄位數據存在mysql裡面,我們一般是建議用 es + hbase 的一個架構。
hbase的特點是適用於海量數據的在線存儲,就是對hbase可以寫入海量數據,不要做復雜的搜索,就是做很簡單的一些根據id或者范圍進行查詢的這么一個操作就可以了
如果確實內存不足,但是我們又存儲了比較多的數據,比如只有30g給systemfile cache,但是存儲了60g數據情況,這種情況可以做數據預熱;
我們可以將一些高頻訪問的熱點數據(比如微博知乎的熱榜榜單數據,電商的熱門商品(旗艦版手機,榜單商品信息)等等)提前預熱,定期訪問刷到我們es里;(比如定期訪問一下當季蘋果旗艦手機關鍵詞,比如現在的iphone12)
對於那些你覺得比較熱的,經常會有人訪問的數據,最好做一個專門的緩存預熱子系統,就是對熱數據,每隔一段時間,提前訪問一下,讓數據進入filesystem cache裡面去。這樣下次別人訪問的時候,一定性能會好一些。
我們可以將冷數據寫入一個索引中,然後熱數據寫入另外一個索引中,這樣可以確保熱數據在被預熱之後,盡量都讓他們留在filesystem os cache里,別讓冷數據給沖刷掉。
盡量做到設計document的時候就把需要數據結構都做好,這樣搜索的數據寫入的時候就完成。對於一些太復雜的操作,比如join,nested,parent-child搜索都要盡量避免,性能都很差的。
es的分頁是較坑的 ,為啥呢?舉個例子吧,假如你每頁是10條數據,你現在要查詢第100頁,實際上是會把 每個shard上存儲的前1000條數據都查到 一個協調節點上,如果你有個5個shard,那麼就有5000條數據,接著 協調節點對這5000條數據進行一些合並、處理,再獲取到最終第100頁的10條數據。
因為他是分布式的,你要查第100頁的10條數據,你是不可能說從5個shard,每個shard就查2條數據?最後到協調節點合並成10條數據?這樣肯定不行,因為我們從單個結點上拿的數據幾乎不可能正好是所需的數據。我們必須得從每個shard都查1000條數據過來,然後根據你的需求進行排序、篩選等等操作,最後再次分頁,拿到裡面第100頁的數據。
你翻頁的時候,翻的越深,每個shard返回的數據就越多,而且協調節點處理的時間越長。非常坑爹。所以用es做分頁的時候,你會發現越翻到後面,就越是慢。
我們之前也是遇到過這個問題,用es作分頁,前幾頁就幾十毫秒,翻到10頁之後,幾十頁的時候,基本上就要5~10秒才能查出來一頁數據了
你系統不允許他翻那麼深的頁,或者產品同意翻的越深,性能就越差
如果是類似於微博中,下拉刷微博,刷出來一頁一頁的,可以用scroll api
scroll api1 scroll api2
scroll會一次性給你生成所有數據的一個快照,然後每次翻頁就是通過游標移動 ,獲取下一頁下一頁這樣子,性能會比上面說的那種分頁性能也高很多很多
scroll的原理實際上是保留一個數據快照,然後在一定時間內,你如果不斷的滑動往後翻頁的時候,類似於你現在在瀏覽微博,不斷往下刷新翻頁。那麼就用scroll不斷通過游標獲取下一頁數據,這個性能是很高的,比es實際翻頁要好的多的多。
缺點:
Ⅷ c# 如何提高大數據量查詢速度
首先要優化查詢語句,用不到的數據列盡量不要查。
然後是優化資料庫,比如多建幾個索引,專序列屬化,應用存儲過程等等。
最後是不要反復查資料庫,會太慢,把查出的數據放到
XML中或是DataTable中,以後再用的時候直接到XML中去查,
這樣會省出大量的時間。。。。。
Ⅸ mysql 大數據量查詢如何優化,沒辦法去掉<>和like
其實你這個需要程序和資料庫有一致的設計。可考慮分區。
通過電話前綴來分區,以下只是一個形式,不推薦用中文命名,
這樣,只要用戶不填寫電話,那麼前三字元就是xxx,自動會放入 ZFU區。
CREATE TABLE Customer
(
ID INT NOT NULL,
Mobile_PerNO CHAR(3) DEFAULT 'xxx',
Mobile VARCHAR(30)
)
PARTITION BY LIST(Mobile_PerNO)
PARTITION 聯通186 VALUES IN (133),
PARTITION 移動139 VALUES IN (139),
PARTITION 電信133 VALUES IN (133),
PARTITION ZFU VALUES IN (xxx)
);
其次你過於依賴資料庫而成形的程序,用點不客氣的話說,那就是耦合極高的設計。
你其實完全可以在注冊時,寫入驗證,一個手機號就能注冊一次。左右打掉空格,這樣手機上就能建立唯一索引。 使用LIKE 『133%』 至少性能上有一定的飛躍。
至於你的第二個SQL, 在時間和發送號碼上可以建立索引,然後條件上寫入時間。
也可以使用hash方式按照年季度分區。
理論上 性能提升百倍還是一點問題都沒有的。
分區資料 看官方文檔。
Ⅹ 如何使用大數據幫助搜索引擎優化
網站進行搜索引擎優化的方法是
1、程序優化。編程者在開發程序的時候,盡量不使用非常用演算法,不要出現代碼錯誤,不要使程序機構混亂不堪。少使用FRAME框架結構,少使用圖片、FLASH表達內容。還有的就是,要在程序源代碼里要有「關鍵字」「描述」功能。語言結構簡化,好使用 CSS+DIV方式,而不是原先老舊的TABLE表格式。
2、網站做成靜態或者偽靜態的。由於搜索引擎對現實存在的網頁內容,容易搜索到,而對於資料庫里的東西,很難搜索到,所以好把頁面做成靜態的。當然,現在的網站很多是偽靜態的,這個我在這里就不多說了。
3、關鍵字詞的密度和出現的位置。你的整體內容內應該包含有你內容關鍵字詞