1、HDFS
Hadoop分布式文件體系(Hadoop Distributed File System,HDFS)現在是Apache Hadoop項目的一個子項目,與已有的分布式文件體系有許多相似之處。
此外,作為專門針對商業化硬體(commodity hardware)規劃的文件體系,HDFS的獨特之處也很明顯:首要其具有很高的容錯性,其次能夠布置在較為廉價的硬體上,最後能夠供給高吞吐量的應用數據拜訪能力。
2、Sqoop
Sqoop是一個在Hadoop和聯系資料庫伺服器之間傳送數據的東西,便利大量數據的導入導出工作,其支持多種類型的數據存儲軟體。
Sqoop的中心功能為數據的導入和導出。
導入數據:從諸如MySQL、SQL Server和Oracle等聯系資料庫將數據導入到Hadoop下的HDFS、Hive和HBase等數據存儲體系。 導出數據:從Hadoop的文件體系中將數據導出至聯系資料庫。
3、Flume
Flume是由Hadoop生態體系中聞名的軟體公司Cloudera於2011年發布,該軟體能夠支持分布式海量日誌的採集、集成與傳輸,以實時的方式從數據發送方獲取數據,並傳輸給數據接收方。
Flume具有兩個顯著的特點:可靠性和可擴展性。
針對可靠性,其供給了從強到弱的三級保障,即End-to-end、Store on failure和Best effort。 針對可擴展性,其選用三層的體系結構,即Agent、Collector和Storage,每層都能夠在水平方向上進行擴展。
4、Scribe
Scribe是由Facebook開發的分布式日誌體系,在Facebook內部現已得到了廣泛的應用。Scribe能夠針對坐落不同數據源的日誌信息進行收集,然後存儲至某個一致的存儲體系,這個存儲體系可所以網路文件體系(Network File System,NFS),也可所以分布式文件體系。
5、HBase
HBase的全稱為Hadoop Database,是基於谷歌BigTable的開源實現,其運用Hadoop體系結構中的HDFS作為根本的文件體系。谷歌根據BigTable的理念規劃實現了谷歌文件體系GFS,可是該計劃未開源。HBase能夠稱為BigTable的山寨版,是開源的。
關於盤點5種大數據處理的典型工具,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
Ⅱ 盤點政府推動大數據應用及發展的舉措
盤點政府推動大數據應用及發展的舉措
一、政府:推動大數據應用的最關鍵力量
(一)政府掌握大量最具應用價值的核心數據,是推動大數據應用的最關鍵力量
根據麥肯錫大數據研究報告指出, 各個行業利用大數據價值的難易度以及發展潛力 對比下,政府利用大數據難度最低而潛力最大。
大數據
另一方面政府開放大數據運用已經是大勢所趨:
1、 政府掌握了大量最具應用價值的核心數據。 過去十多年來政府投資進行了大量電子政務或者稱為政府信息化的工作,後台積累了大量的數據,而這些數據和公眾的生產生活息息相關。有研究表明政府所掌握的數據使政府成為了一個國家最重要的信息保有者,有百分之七十到八十的核心數據存在於政府的後台 。
2、 開放數據本身就是政府在大數據時代提供的一項公共服務。 政府數據本質上是國家機關在履行職責時所獲取的數據,採集這些數據的經費來自於公共財政,因而這些數據是公共產品,歸全社會所有,應取之於民,用之於民。
3、 政府開放數據供社會進行增值開放和創新應用,推動經濟增長乃至整個經濟增長方式的轉型。 數據是互聯網創新的重要基礎,如果政府不開放這一部分數據,很多創新應用沒有數據作為支持,數據開發者能利用政府開放的數據,提供更好的服務,創造更多的價值, 這個過程能夠提高整個國家在大數據時代的競爭力。
4、 政府開放數據推動經濟增長獲得的稅收高於單純賣數據獲得的收入。 201 年世界經合組織在關於開放政府數據的報告中提到政府通過開放數據推動經濟增長,從而獲得的稅收收入遠高於單賣數據所能獲得收入。開放數據激發經濟活力從而得到稅收提升,這是一個良 性循環,更是一個能創造巨大公共價值的全局性的戰略。
(二) 國內外政府開放數據的情況
在 2009 年奧巴馬簽署開放政府數據的行政命令後,這些年來開放政府數據已成為了世界性的一個趨勢。美國聯邦數據平台 Data.gov 上線後,在美洲、歐洲、亞洲等地,開放政府數據已成為了政府的一項重要工作。美國聯邦政府的開放政府數據平台開放了來自多個領 域的 13 萬個數據集的數據。這些領域包括圖中所列的農業、商業、氣候、生態、教育、能源、金融、衛生、科研等十多個主題。這些主題下的數據都是美國聯邦政府的各個部委所開放的。英國、加拿大、紐西蘭等國在 2009 年之後都建立起了政府數據開放平台,成為 了國際信息化和大數據領域的一個重要趨勢。
大數據
在我國, 2011 年香港特區政府上線了 data.gov.hk,稱為香港政府資料一線通。上海在 2012年 6 月推出了中國大陸第一個數據開放平台。之後,北京、武漢、無錫、佛山南海等城市也都上線了自己的數據平台。
大數據
(三)、 大數據對於政府治理具有極大的價值
大數據其實對政府的治理帶來了全新的價值,無論是對宏觀經濟的決策能力、產業聚集能力、協同治理能力、社會管理能力、公眾服務能力、快速響應能力的提升,大數據都可以在有很大層面上幫助政府治理。
大數據大數據
(四)、大數據上升至國家戰略成為共識。
大數據時代,對大數據的開發、利用與保護的爭奪日趨激烈,制信權成為繼制陸權、制海權、制空權之後的新制權,大數據處理能力成為強國弱國區分的又一重要指標。國際上以美國為代表的發達國家紛紛布局大數據產業,相繼推出大數據相關政策,大力支持大數據產 業在本國的發展。以美國為例,美國從開展關鍵技術研究、推動大數據應用和開放政府數據三方面布局大數據產業,尤其在開放政府數據方面非常積極,通過 Data.gov開放 37 萬個數據集,並開放網站的 API 和源代碼,提供上千個數據應用。我們認為,大數據未來將 引發新一輪大國競爭,大數據對整個世界的影響力會呈現爆發性增長趨勢,因此包括我國在內的國家會在政策支持力度上不斷提升,大數據戰略將上升至國家戰略已毋庸臵疑。
大數據
(五)、 我國 高度重視大數據未來發展
自去年 3 月「大數據」首次出現在《政府工作報告》中以來,國務院常務會議一年內 6次提及大數據運用。近期在 6 月 17 日的國務院常務會議上,李克強總理再次強調「我們正在推進簡政放權,放管結合、優化服務,而大數據手段的運用十分重要。」 7 月 1 日, 國務院辦公廳印發了《關於運用大數據加強對市場主體服務和監管的若干意見》。
大數據
大數據大數據
(六). 各部委行動時間表已經確,我國大數據發展面臨歷史性機遇
值得注意的是,近期國務院出台文件對各個部委推進大數據任務制定了明確的時間表,很多推進工作任務要求在 2015 年 12 月底前出台政策並實施,近期將是我國大數據發展政策出台的密集期。
表 3: 各部委推進大數據應用時間表
序號工作任務負責單位時間進度1加快建立公民、法人和其他組織統一社會信用代碼制度。發展改革委、中央編辦、公安部、民政部、人民銀行、稅務總局、工商總局、質檢總局2015 年 12 月底前出台並實施2全面實行工商營業執照、組織機構代碼證和稅務登記證「三證合一」、 「一照一碼」登記制度改革。工商總局、中央編辦、發展改革委、質檢總局、稅務總局2015 年 12 月底前實施3建立多部門網上項目並聯審批平台,實現跨部門、跨層級項目審批、核准、備案的「統一受理、同步審查、信息共享、透明公開」。發展改革委會同有關部門2015 年 12 月底前完成4推動政府部門整合相關信息,緊密結合企業需求,利用網站和微博、微信等新興媒體為企業提供服務。網信辦、工業和信息化部持續實施5研究制定在財政資金補助、政府采購、政府購買服務、政府投資工程建設招投標過程中使用信用信息和信用報告的政策措施。財政部、發展改革委2015 年 12 月底前出台並實施6充分運用大數據技術,改進經濟運行監測預測和風險預警,並及時向社會發布相關信息,合理引導市場預期。發展改革委、統計局持續實施7支持銀行、證券、信託、融資租賃、擔保、保險等專業服務機構和行業協會、商會運用大數據為企業提供服務。人民銀行、銀監會、證監會、保監會、民政部持續實施8健全事中事後監管機制,匯總整合和關聯分析有關數據,構建大數據監管模型,提升政府科學決策和風險預判能力。各市場監管部門2015 年 12 月底前取得階段性成果9在辦理行政許可等環節全面建立市場主體准入前信用承諾制度。 信用承諾向社會公開,並納入市場主體信用記錄。各行業主管部門2015 年廣泛開展試點, 2017 年 12 月底前完成10加快建設地方信用信息共享交換平台、部門和行業信用信息系統,通過國家統一的信用信息共享交換平台實現互聯共享。各省級人民政府,各有關部門2016 年 12 月底前完成11建立健全失信聯合懲戒機制,將使用信用信息和信用報告嵌入行政管理和公共服務的各領域、各環節,作為必要條件或重要參考依據。在各領域建立跨部門聯動響應和失信約束機制。建立各行業「黑名單」制度和市場退出機制。推動將申請人良好的信用狀況作為各類行政許可的必備條件。各有關部門,各省級人民政府2015 年 12 月底前取得階段性成果12建立產品信息溯源制度,加強對食品、葯品、農產品、日用消費品、特種設備、地理標志保護產品等重要產品的監督管理,利用物聯網、射頻識別等信息技術,建立產品質量追溯體系,形成來源可查、去向可追、責任可究的信息鏈條。商務部、網信辦會同食品葯品監管總局、農業部、質檢總局、工業和信息化部2015 年 12 月底前出台並實施13加強對電子商務平台的監督管理,加強電子商務信息採集和分析,指導開展電子商務網站可信認證服務,推廣應用網站可信標識,推進電子商務可信交易環境建設。健全權益保護和爭議調處機制。工商總局、商務部、網信辦、工業和信息化部持續實施14進一步加大政府信息公開和數據開放力度。除法律法規另有規定外,將行政許可、行政處罰等信息自作出行政決定之日起 7 個工作日內上網公開。各有關部門,各省級人民政府持續實施15加快實施經營異常名錄制度和嚴重違法失信企業名單制度。建設國家企業信用信息公示系統,依法對企業注冊登記、行政許可、行政處罰等基本信用信息以及企業年度報告、經營異常名錄和嚴重違法失信企業名單進行公示,並與國家統一的信用信息共享交換平台實現有機對接和信息共享。工商總局、其他有關部門,各省級人民政府持續實施16支持探索開展社會化的信用信息公示服務。建設「信用中國 」網站,歸集整合各地區、各部門掌握的應向社會公開的信用信息,實現信用信息一站式查詢,方便社會了解市場主體信用狀況。各級政府及其部門網站要與 「信用中國 」網站連接,並將本單位政務公開信息和相關市場主體違法違規信息在「信用中國 」網站公開。發展改革委、人民銀行、其他有關部門,地方各級人民政府2015 年 12 月底前完成17推動各地區、各部門已建、在建信息系統互聯互通和信息交換共享。在部門信息系統項目審批和驗收環節,進一步強化對信息共享的要求。發展改革委、其他有關部門持續實施18健全國家電子政務網路,加快推進國家政務信息化工程建設,統籌建立人口、法人單位、自然資源和空間地理、宏觀經濟等國家信息資源庫,加快建設完善國家重要信息系統。發展改革委、其他有關部門分年度推進實施, 2020 年前基本建成19加強對市場主體相關信息的記錄,形成信用檔案。對嚴重違法失信的市場主體,按照有關規定列入「黑名單」,並將相關信息納入企業信用信息公示系統和國家統一的信用信息共享交換平台。各有關部門2015 年 12 月底前實施20探索建立政府信息資源目錄。各有關部門2016 年 12 月底前出台目錄編制指南21引導徵信機構根據市場需求,大力加強信用服務產品創新,進一步擴大信用報告在行政管理和公共服務及銀行、證券、保險等領域的應用。發展改革委、人民銀行、銀監會、證監會、保監會2017 年 12 月底前取得階段性成果22落實和完善支持大數據產業發展的財稅、金融、產業、人才等政策,推動大數據產業加快發展。發展改革委、工業和信息化部、財政部、人力資源社會保障部、人民銀行、網信辦、銀監會、證監會、保監會2017 年 12 月底前取得階段性成果23加快研究完善規范電子政務,監管信息跨境流動,保護國家經濟安全、信息安全,以及保護企業商業秘密、個人隱私方面的管理制度,加快制定出台相關法律法規。網信辦、公安部、工商總局、工業和信息化部、發展改革委等部門會同法制辦2017 年 12 月底前出台(涉及法律、行政法規的,按照立法程序推進)24推動出台相關法規,對政府部門在行政管理、公共服務中使用信用信息和信用報告作出規定,為聯合懲戒市場主體違法失信行為提供依據。發展改革委、人民銀行、法制辦2017 年 12 月底前出台(涉及法律、行政法規的,按照立法程序推進)25建立大數據標准體系,研究制定有關大數據的基礎標准、技術標准、應用標准和管理標准等。加快建立政府信息採集、存儲、公開、共享、使用、質量保障和安全管理的技術標准。引導建立企業間信息共享交換的標准規范。工業和信息化部、國家標准委、發展改革委、質檢總局、網信辦、統計局2020 年前分步出台並實施26推動實施大數據示範應用工程,在工商登記、統計調查、質量監管、競爭執法、消費維權等領域率先開展示範應用工程,實現大數據匯聚整合。在宏觀管理、稅收征繳、資源利用與環境保護、食品葯品安全、安全生產、信用體系建設、健康醫療、勞動保障、教育文化、交通旅遊、金融服務、中小企業服務、工業製造、現代農業、商貿物流、社會綜合治理、收入分配調節等領域實施大數據示範應用工程。
Ⅲ 盤點2021年大數據分析常見的5大難點!
2021年已經到來,現在是深入研究大數據分析面臨的挑戰的時候了,需要調查其根本原因,本文重點介紹了解決這些問題的潛在解決方案。
1、解決方案無法提供新見解或及時的見解
(1)數據不足
有些組織可能由於分析數據不足,無法生成新的見解。在這種情況下,可以進行數據審核,並確保現有數據集成提供所需的見解。新數據源的集成也可以消除數據的缺乏。還需要檢查原始數據是如何進入系統的,並確保所有可能的維度和指標均已經公開並進行分析。最後,數據存儲的多樣性也可能是一個問題。可以通過引入數據湖來解決這一問題。
(2)數據響應慢
當組織需要實時接收見解時,通常會發生這種情況,但是其系統是為批處理而設計的。因此有些數據現在仍無法使用,因為它們仍在收集或預處理中。
檢查組織的ETL(提取、轉換、載入)是否能夠根據更頻繁的計劃來處理數據。在某些情況下,批處理驅動的解決方案可以將計劃調整提高兩倍。
(3)新系統採用舊方法
雖然組織採用了新系統。但是通過原有的辦法很難獲得更好的答案。這主要是一個業務問題,並且針對這一問題的解決方案因情況而異。最好的方法是咨詢行業專家,行業專家在分析方法方面擁有豐富經驗,並且了解其業務領域。
2、不準確的分析
(1)源數據質量差
如果組織的系統依賴於有缺陷、錯誤或不完整的數據,那麼獲得的結果將會很糟糕。數據質量管理和涵蓋ETL過程每個階段的強制性數據驗證過程,可以幫助確保不同級別(語法、語義、業務等)的傳入數據的質量。它使組織能夠識別並清除錯誤,並確保對某個區域的修改立即顯示出來,從而使數據純凈而准確。
(2)與數據流有關的系統缺陷
過對開發生命周期進行高質量的測試和驗證,可以減少此類問題的發生,從而最大程度地減少數據處理問題。即使使用高質量數據,組織的分析也可能會提供不準確的結果。在這種情況下,有必要對系統進行詳細檢查,並檢查數據處理演算法的實施是否無故障
3、在復雜的環境中使用數據分析
(1)數據可視化顯示凌亂
如果組織的報告復雜程度太高。這很耗時或很難找到必要的信息。可以通過聘請用戶界面(UI)/用戶體驗(UX)專家來解決此問題,這將幫助組織創建引人注目的用戶界面,該界面易於瀏覽和使用。
(2)系統設計過度
數據分析系統處理的場景很多,並且為組織提供了比其需要還要多的功能,從而模糊了重點。這也會消耗更多的硬體資源,並增加成本。因此,用戶只能使用部分功能,其他的一些功能有些浪費,並且其解決方案過於復雜。
確定多餘的功能對於組織很重要。使組織的團隊定義關鍵指標:希望可以准確地測量和分析什麼,經常使用哪些功能以及關注點是什麼。然後摒棄所有不必要的功能。讓業務領域的專家來幫助組織進行數據分析也是一個很好的選擇。
4、系統響應時間長
(1)數據組織效率低下
也許組織的數據組織起來非常困難。最好檢查其數據倉庫是否根據所需的用例和方案進行設計。如果不是這樣,重新設計肯定會有所幫助。
(2)大數據分析基礎設施和資源利用問題
問題可能出在系統本身,這意味著它已達到其可擴展性極限,也可能是組織的硬體基礎設施不再足夠。
這里最簡單的解決方案是升級,即為系統添加更多計算資源。只要它能在可承受的預算范圍內幫助改善系統響應,並且只要資源得到合理利用就很好。從戰略角度來看,更明智的方法是將系統拆分為單獨的組件,並對其進行獨立擴展。但是需要記住的是,這可能需要對系統重新設計並進行額外的投資。
5、維護成本昂貴
(1)過時的技術
組織最好的解決辦法是採用新技術。從長遠來看,它們不僅可以降低系統的維護成本,還可以提高可靠性、可用性和可擴展性。逐步進行系統重新設計,並逐步採用新元素替換舊元素也很重要。
(2)並非最佳的基礎設施
基礎設施總有一些優化成本的空間。如果組織仍然採用的是內部部署設施,將業務遷移到雲平台可能是一個不錯的選擇。使用雲計算解決方案,組織可以按需付費,從而顯著降低成本。
(3)選擇了設計過度的系統
如果組織沒有使用大多數系統功能,則需要繼續為其使用的基礎設施支付費用。組織根據自己的需求修改業務指標並優化系統。可以採用更加符合業務需求的簡單版本替換某些組件。
Ⅳ 大數據指的是什麼
大數據屬於計算機科學學科領域,指的是通過分析和挖掘全量的非抽樣的數據輔助決策,是近年來一種新興技術,在各行各業中都有著非常廣泛的應用價值,下面我就帶領大家詳細盤點一下。
大數據技術指的是無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
一是機器學習、人工智慧繼續成為大數據智能分析的核心技術,大數據預測和決策支持仍是主要應用。在學術上,深度分析繼續扮演技術主角,推動整個大數據智能的應用。通過像神經網路模型的深度學習,讓計算機自動學習產生特徵的方法,並將特徵學習融入建立模型的過程中,增加設計特徵的完備性。深度學習將在圖像分類、語音識別、問答系統等應用取得重大突破,並有望得到成功商業應用。
二是數據科學帶動多學科融合。隨著社會的數字化程度逐步加深,更為寬泛、更為包容大數據的邊界不斷完善,使得越來越多的學科在數據層面趨於一致,為類比科學研究創造了條件。「數據科學」的基礎研究與成果將源源不斷地注入技術研究和應用范疇中。
三是開源是主流技術,公測促良好研發生態。大數據的處理模式更加多樣化,Hadoop不再成為構建大數據平台的唯一選擇。隨著開源項目Spark不斷被大規模應用,正成為大數據領域最大的開源社區。開源系統將成為大數據領域的主流技術和系統選擇,並將引領著大數據生態系統的發展。各類大數據應用公測將促進大數據技術取得突破性進展。
四是基於知識圖譜的大數據應用成為熱門應用場景。近年來,大數據成為大眾媒體的熱詞,大眾需要可視化的大數據,背後是基於知識圖譜的大數據應用。可視化是通過把復雜的數據轉化為可以交互的圖形,幫助用戶更好地理解分析數據對象,發現、洞察其內在規律。讓對信息技術不熟悉的普通民眾和非技術專業的常規決策者也能夠更好地理解大數據及其分析的效果和價值,進而從國計、民生兩方面都充分發揮大數據的價值。
Ⅳ 大數據幫你談戀愛盤點數據時代驚人應用
大數據幫你談戀愛?盤點數據時代驚人應用
1大數據驚人應用(一)
衣食住行這些生活當中經常遇到的瑣事,也是我們平時不可避免的,科技領域一直是筆者非常關注的重點行業之一,從這幾年的產業發展我們不難看到,大數據和雲計算這兩個詞頻頻出現在我們的耳邊,並且基於上述這兩種技術的各類應用也開始層出不窮。
大數據幫你談戀愛?盤點數據時代驚人應用
作為普通用戶來說,我們在了解和關注一類新技術的時候往往只會聚焦於它的應用程度以及通過應用能夠解決我們自身哪些實際問題,對於大數據和雲計算來說同樣也是如此。近些年在智能設備、醫療、教育以及公共交通等很多方面我們都見到了大數據的各類應用,本期筆者就和大家來重點聊聊這些新技術在日常生活當中究竟都進行了怎樣的應用,我們來盤點分析一下在數據爆發的今天我們都如何駕馭這些數據的。
數據感知客戶需求
通過技術平台收集用戶數據,然後將這些海量數據進行分析,從而剖析出用戶的使用習慣,購買特點等等一系列詳細的分析結果,這種方式可能是現在應用最為廣泛的大數據技術應用的一類了。在一般情況下,建立出數據模型進行預測。比如美國的著名零售商Target就是通過大數據的分析,得到有價值的信息,精準得預測到客戶在什麼時候想要小孩。
另外,通過大數據的應用,電信公司可以更好預測出流失的客戶,在這方面,美國全球最大的零售商沃爾瑪做的就很好,沃爾瑪通過大數據收集和分析技術更加精準的預測哪個產品會大賣,從而在庫存以及人員安排上開始重點排兵布陣,汽車保險行業也是如此,他們會了解客戶的需求和駕駛水平,並且將這些數據回傳給相關部門進行分析和應用,這樣一來,政府也能了解到選民的偏好。
2大數據驚人應用(二)
優化企業流程
對於企業用戶來說,尤其是管理者,都希望能夠提升運營效率的同時簡化各項流程,隨著大數據技術的廣泛應用,開始有很多企業用戶利用社交媒體的數據、網路搜索等做種途徑來挖掘出更有價值的數據,其中應用最為突出的就是供應鏈領域,在上述這兩種應用類型當中,地理定位和無線電頻率的識別追蹤貨物和送貨車,利用實時交通路線數據制定更加優化的路線。人力資源業務也通過大數據的分析來進行改進,這其中就包括了人才招聘的優化。
改善生活模式
筆者喜歡跑步,最早的時候跑步可能隨身會攜帶MP3播放器,而現在的跑步裝備可能除了手機之外,還會佩戴一些智能穿戴設備,這些電子設備在監控跑步者各項身體數據的同時,能夠將數據進行回傳和分析,從而讓用戶獲得更加精準更加高效的健身意見。
更好玩的一類應用就是,現在已經開始有很多年輕的用戶開始利用大數據在交友和談戀愛,這種平台也是基於大數據技術,通過用戶上傳的數據來智能匹配男女用戶,通過每個人的興趣、愛好、容貌、地域特點等等多方數據來更精準的為用戶提供交友對象服務。
3大數據驚人應用(三)
提升醫療科研水平
現在很多先進的醫療機構都在利用大數據對患者的數據進行分析,同時結合先進的儀器、3D列印技術等針對患者的患處進行治療,從而提升了治療效率,也提升了治療效果。大數據技術目前已經在醫院應用監視早產嬰兒和患病嬰兒的情況,通過記錄和分析嬰兒的心跳,醫生針對嬰兒的身體可能會出現不適症狀做出預測。這樣可以幫助醫生更好的救助嬰兒。
提高體育成績
現在很多運動員在訓練的時候應用大數據分析技術了。比如例如用於網球鼻塞的IBM SlamTracker工具,我們使用視頻分析來追蹤足球或棒球比賽中每個球員的表現,而運動器材中的感測器技術,例如籃球或高爾夫俱樂部。讓我們可以獲得對比賽的數據以及如何改進。很多精英運動隊還追蹤比賽環境外運動員的活動-通過使用智能技術來追蹤其營養狀況以及睡眠,以及社交對話來監控其情感狀況。
優化機器和設備性能
大數據分析還可以讓積極和設備在應用上更加智能化和自主化。例如,大數據工具曾經就被谷歌公司利用研發谷歌自駕汽車。豐田的普瑞就配有相機、GPS以及感測器,在交通上能夠安全的駕駛,不需要人類的敢於。大數據工具還可以應用優化智能電話。
金融交易
大數據在金融行業主要是應用金融交易。高頻交易是大數據應用比較多的領域。其中大數據演算法應用於交易決定。現在很多股權的交易都是利用大數據演算法進行,這些演算法現在越來越多的考慮了社交媒體和網站新聞來決定在未來幾秒內是買出還是賣出。
本期我們通過不同行業利用大數據平台和技術的各類應用向讀者展示了現在大數據領域的深度應用,其實通過這些應用我們不難發現,從大數據誕生到現在這短短幾年的時間當中,技術的革新和應用的廣泛提升已經讓我們這些普通用戶感受到了改變,相信未來在大數據技術保駕護航之下,我們平時工作和生活等很多方面都將會帶來更好的體驗。