1. 大數據有什麼風險
當大數據充斥各種場合,從馬雲到釋昭慧都侃侃而談,你還能不懂什麼是大數據嗎?你也許已經聽過無數的大數據神話,但對於大數據仍停留在一知半解階段,公子義為整理為梳理什麼才是真正的大數據。
大數據是什麼?
大數據(Big Data)又被稱為巨量資料,其概念其實就是過去10年廣泛用於企業內部的資料分析、商業智慧(Business Intelligence)和統計應用之大成。但大數據現在不只是資料處理工具,更是一種企業思維和商業模式,因為資料量急速成長、儲存設備成本下降、軟體技術進化和雲端環境成熟等種種客觀條件就位,方才讓資料分析從過去的洞悉歷史進化到預測未來,甚至是破舊立新,開創從所未見的商業模式。
一般而言,大數據的定義是Volume(容量)、Velocity(速度)和Variety(多樣性),但也有人另外加上Veracity(真實性)和Value(價值)兩個V。但其實不論是幾V,大數據的資料特質和傳統資料最大的不同是,資料來源多元、種類繁多,大多是非結構化資料,而且更新速度非常快,導致資料量大增。而要用大數據創造價值,不得不注意數據的真實性。
為什麼需要大數據?
因為當從人到機器都已經被數據解構,數據不僅僅是歐巴馬口中的石油或是黃金,它更是血液,貫穿每個人一生中每個生命階段。這並非危言聳聽,更不是科幻電影,而是正在逐步成真的現實。
大數據的應用廣泛
對企業而言,大數據可望提升服務質量、增加管理效率、幫助決策和創造商業模式;對一般民眾而言,大數據是另一個自我,它可能比本人更了解本人,為你預先解決每個未知,當一切都開始數據化,你能夠不需要數據嗎?
大數據一定要很大嗎?
雖然大數據的狹義定義是,資料量要在100TB到PB之間,但其實絕大多數的企業,都不符合這個標准,大企業如eBay、亞馬遜或AT&T或許符合大數據的標准。但其實資料量只是大數據的其中一個面向,大數據揭示的是一種「資料經濟」的精神,而非只是「大」。
「大,是大數據中最無趣的部分。」公子義認為,企業真正要尋找的是非傳統的、而且未曾被挖掘過的資料,並且從這些資料中去提煉出價值,這才是對大數據應有的正確認知,而非只是執著於資料大小,只要能從看似毫無意義的數據礦坑中挖掘出金礦,有誰會在意那座礦坑原本是大得像座山還是小得像狗屋呢?和沛科技創辦人翟本喬就指出,大數據這個名字容易讓人誤導,因為真正重要的其實是大智慧。大數據不只是說資料量有多大,速度快和資料量大都可以用技術輕易解決,但種類(Variety)比較需要智慧。
沒有大數據就不能用大數據嗎?
非也,建置大數據架構與環境的確所費不貲,一般中小企業通常無法輕易投入巨額成本,但大數據時代的精神在於如何妥善利用既有或非傳統資料,從中挖掘出新商機,因此即使是中小企業甚或者是新創企業,都能在大數據時代用「大數據」。
數據應該如何建立?
就技術面來說,現在有許多業者開始提供建置成本較低的大數據處理工具和雲端系統,有些甚至跟App一樣,只要根據自身需求挑選需要購買的功能即可,例如科智提供的工業化數據管理工具即為一例。另一方面,很多時候中小企業其實不需要建設大數據系統。公子義認為,在絕大多數情況下,大數據項目其實不需要建置Hadoop系統,先用小量資料去驗證一個概念,是否能將資料轉換成商業機會,再來決定要不要建置大數據的作業環境。
大數據領域權威麥爾苟伯格(Viktor Mayer-Schönberger)在《大數據》一書中便提及,大公司有巨量資料的規模優勢,但小公司有成本及創新上的優勢,小公司因為速度夠快、靈活度高,就算維持小規模,還是能夠蓬勃發展。
要怎麼開始進行大數據項目?
第一步設置專門統籌大數據項目的部門和職銜, 而且層級越高越好,企業領導人必須足夠正視大數據的力量,才能帶動整個組織重視數據的文化。Etu負責人蔣居裕便指出,大數據其實是管理問題,而非技術問題,缺少跨部門協作,大數據項目很難有個美好的開始。
第二步,切勿陷入大數據迷思,與其急著想用數據變現,不如先回頭看看自己企業內部的問題為何,先定義問題,再試圖用數據找解方。 阿里巴巴集團副總裁車品覺建議,與其整天想著大數據,不如先整頓自己企業內部的數據,很多時候光是企業內部的數據就問題叢生,不同部門之間的數據無法兼容,「整個數據在一個中小企業裡面也是四分五裂,在這個地方沒做好的情況下,居然說你想用大數據,其實是有點難以理解。」
大數據從哪來?
任何地方。隨著物聯網興起,任何以前不可能產生資料的東西或地方都可能「資料化」。公子義認為大數據的發展可以分成三階段,正說明了大數據的來源多樣化:.com時期、社群網路時期和物聯網時期。早在2000年初網路熱潮興起,人們就已經開始研究log資料,搜集使用者的cookie和搜尋行為等。而社群網路如Facebook或Twitter將人們的互動關系數據化,這些社群數據創造了大量的商業價值。而第三階段物聯網時期,可能是最有趣的階段,無論是機器還是人都開始被數據解構,數據可能來自手錶、鞋墊甚至皮帶,這些物聯網數據將是接下來重要的數據分析對象。
大數據有什麼風險?
傳統商業分析會有的風險,大數據也都會有,這並非大數據才有的問題,「個資安全問題」一直都存在,只是隨著資料來源越來越多且資料量越來越大,資安問題更顯迫切罷了。市場研究機構Gartner研究副總裁布萊恩(Brian Prentice)指出,大數據本身並沒有資安問題,問題在企業應用資料的方式,Gartner預測2018年,企業違反商業倫理的案件中,有近50%都來自不當的大數據應用。
另一值得關切的是大數據可能帶來的「資料獨裁問題」,根據大數據領域權威麥爾苟伯格(Viktor Mayer-Schönberger)的說法,資料獨裁指的是任由資料來管控我們,盲目受到分析結果的制約,導致濫用或誤用資料。例如根據數據分析將人群分類,其實有可能會把個體給標簽化,甚至污名化某些族群,想像未來若我們用數據預先打擊犯罪,那會是什麼情景?
2. 大數據面臨哪些安全與隱私問題
(一)大數據遭受異常流量攻擊
大數據所存儲的數據非常巨大,往往採用分布式的方式進行存儲,而正是由於這種存儲方式,存儲的路徑視圖相對清晰,而數據量過大,導致數據保護,相對簡單,黑客較為輕易利用相關漏洞,實施不法操作,造成安全問題。由於大數據環境下終端用戶非常多,且受眾類型較多,對客戶身份的認證環節需要耗費大量處理能力。由於APT攻擊具有很強的針對性,且攻擊時間長,一旦攻擊成功,大數據分析平台輸出的最終數據均會被獲取,容易造成的較大的信息安全隱患。
(二)大數據信息泄露風險
大數據平台的信息泄露風險在對大數據進行數據採集和信息挖掘的時候,要注重用戶隱私數據的安全問題,在不泄露用戶隱私數據的前提下進行數據挖掘。需要考慮的是在分布計算的信息傳輸和數據交換時保證各個存儲點內的用戶隱私數據不被非法泄露和使用是當前大數據背景下信息安全的主要問題。同時,當前的大數據數據量並不是固定的,而是在應用過程中動態增加的,但是,傳統的數據隱私保護技術大多是針對靜態數據的,所以,如何有效地應對大數據動態數據屬性和表現形式的數據隱私保護也是要注重的安全問題。最後,大數據的數據遠比傳統數據復雜,現有的敏感數據的隱私保護是否能夠滿足大數據復雜的數據信息也是應該考慮的安全問題。
(三)大數據傳輸過程中的安全隱患
數據生命周期安全問題。伴隨著大數據傳輸技術和應用的快速發展,在大數據傳輸生命周期的各個階段、各個環節,越來越多的安全隱患逐漸暴露出來。比如,大數據傳輸環節,除了存在泄漏、篡改等風險外,還可能被數據流攻擊者利用,數據在傳播中可能出現逐步失真等。又如,大數據傳輸處理環節,除數據非授權使用和被破壞的風險外,由於大數據傳輸的異構、多源、關聯等特點,即使多個數據集各自脫敏處理,數據集仍然存在因關聯分析而造成個人信息泄漏的風險。
基礎設施安全問題。作為大數據傳輸匯集的主要載體和基礎設施,雲計算為大數據傳輸提供了存儲場所、訪問通道、虛擬化的數據處理空間。因此,雲平台中存儲數據的安全問題也成為阻礙大數據傳輸發展的主要因素。
個人隱私安全問題。在現有隱私保護法規不健全、隱私保護技術不完善的條件下,互聯網上的個人隱私泄露失去管控,微信、微博、QQ等社交軟體掌握著用戶的社會關系,監控系統記錄著人們的聊天、上網、出行記錄,網上支付、購物網站記錄著人們的消費行為。但在大數據傳輸時代,人們面臨的威脅不僅限於個人隱私泄露,還在於基於大數據傳輸對人的狀態和行為的預測。近年來,國內多省社保系統個人信息泄露、12306賬號信息泄露等大數據傳輸安全事件表明,大數據傳輸未被妥善處理會對用戶隱私造成極大的侵害。因此,在大數據傳輸環境下,如何管理好數據,在保證數據使用效益的同時保護個人隱私,是大數據傳輸時代面臨的巨大挑戰之一。
(四)大數據的存儲管理風險
大數據的數據類型和數據結構是傳統數據不能比擬的,在大數據的存儲平台上,數據量是非線性甚至是指數級的速度增長的,各種類型和各種結構的數據進行數據存儲,勢必會引發多種應用進程的並發且頻繁無序的運行,極易造成數據存儲錯位和數據管理混亂,為大數據存儲和後期的處理帶來安全隱患。當前的數據存儲管理系統,能否滿足大數據背景下的海量數據的數據存儲需求,還有待考驗。不過,如果數據管理系統沒有相應的安全機制升級,出現問題後則為時已晚。
3. 大數據面臨哪些安全與隱私問題
在大數據環境下,人們上傳的數據會面臨這些問題:
一:數據安全隱患問題;注要表現在(一)大數據遭受異常攻擊,造成安全隱患。(二)大數據泄露風險。(三)大數據傳輸過程的安全隱患。(四)大數據存儲管理風險。
二、大數據隱私問題;主要表現在(一)個人隱私保護。(二)傳統安全措施難以適配。(三)數據訪問控制愈加復雜。
4. 大數據的弊端是什麼
大數據的弊端是可能造成數據泡沫風險。大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。
結構
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。
大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。
5. 大數據安全層面的風險主要包括
大數據在應用和存儲中存在著一系列安全風險,包括以下幾個層面:
數據泄露風險:大數據的存儲和傳輸,容易面臨數據泄露的風險。這些數據可能是敏感性數據,如個人身份信息、財務信息、醫療記錄等。
數據完整性風險:大數據存儲和傳輸中,數據可能會遭受損壞、篡改或丟失,因此需要採取保護措施,保證大數據的完整性。
許可權管理風險:「大數據時代」涉及眾多數據源,管理人員要對各類數據源的許可權進行仔細的分析和考慮,設置合適的許可權,避免數據泄漏、篡改等風險。
命令注入風險:黑客利用安全漏洞,通過構造特殊的輸入進行攻擊,從而在系統內執行惡意命令,造成系統癱瘓、用戶數據丟失等風險。
惡意軟體攻擊:惡意軟體是指那些被創建來入侵計算機、網路或移動設備的軟體,通過惡意指令來獲取敏感數據,竊取隱私信息,或者破壞系統的完整性。
供應鏈風險:大數據往往依賴於雲服務、第三方應用等,這些供應商存在安全問題時,會直接影響大數據的安全。
數據處理風險:大數據可能存在各種數據處理問題,如特徵選擇錯誤、處沒爛理數據集不準確、應用演算法核閉缺陷等,從而導致大數據的隱私和安全問題。
這些安全風險需要引起我們的注意,企業或個人在使用、處理與存儲大數據時,應制定安全策略和措施,加強數據管理與安枯氏漏全運維,從而有效地緩解數據的安全風險。
6. 大數據安全面臨哪些風險及如何防護
現如今大數據已經逐漸改變了我們的生活方式,成為必不可少的存在,在我們享野首受大數據給我們帶來的便利時,安全性無論對於企業還是個人都是必須要解決的重大課題。
總結大數據面臨的三大風險問題如下
1.個人隱私問題凸顯
例如大數據中的精準營銷定位功能,通常是依賴於高度採集個人信息,通過多種關聯技術分析來實現信息推廣,精準營銷。企業會掌握用戶大量的數據,不排除隱私部分的敏感數據,一旦伺服器遭到不法分子攻擊導致數據泄露,很可能危及用戶的隱私、財產甚至是人身安全。
2.數據准確與權威性
大數據通過各種渠道獲取大量數據進行計算分析,企業通常直接通過分析結果進行支持決策,有時候企業只看結果,卻忽略了源頭數據的准確性,不準確的數據直接影響大數據分析的結果和企業的利益,錯誤的指導會對企業帶來一定的風險與損失。
3.基礎設施維護壓力
數據量越大,對基礎設施的性能要求就越高,同樣對於網路的安全、恢復、防範依賴性就越強,一定程度上對企業設施安全的維護造成了壓力,基礎設施建設不完善、維護不到位,抱有沒出問題就得過且過的態度,時刻面臨被攻擊的危險可能。
針對上述問題的防護措施如下
1.對用戶早脊嘩而言
雖然在互聯網時代下要完全保護自己的隱私是比較困難的,但也要加強自身信息的防範意識。注冊賬號時,遵循最少原則,不要隨意泄露敏感信息,降陸行低隱私信息被泄露的危險;
2.對企業而言
加強數據安全管理,實現數據的治理與清洗,從源頭保證數據的一致性、准確性。首先升級基礎伺服器環境,建立多重防護、多級互聯體系結構,確保大數據處理環境可信度。其次全方位實時監控、審計、防護,防止敏感數據泄露、丟失,確保數據風險可控,並不斷通過體系化的大數據安全評估,形成數據安全治理的閉環管理;
3.對政策而言
應該加強對數據信息的保護,對數據的使用進行一定的監管與限制,對非法盜用、濫用數據信息者嚴懲,之後加強對技術安全研發使用的推廣與實施,保證數據安全,加強對數據治理的力度。
大數據時代的到來,可以為我們的生活帶來切實的利益,行業的數據規范正在建立並逐步趨於完善,對於我們來說,既不要因為安全風險問題而排斥大數據,也不要疏忽於對個人/企業信息的保護,合理看待和利用大數據,讓其發揮真正的價值。
7. 大數據安全層面的風險
外部非授權人員對信息系統進行惡意入侵,非法訪問隱私數據。
大數據平台中,B域、M域、O域及DPI信令等各類數據集中存儲,一旦發生安全事件則可涉及海量客戶敏感信息及公司數據資產。
大數據多部署在雲環境晌緩中,由於存儲、計算的多層面虛擬化,帶來了數據管理權與所有權分離,網路邊界模糊等新問題。
大數據平台多使用Hadoop、Hive、第三方組件等開源軟體,這些軟體設計初衷是為了高效數據處理,系統性安全功能相對缺乏宴敬模,安全防護能力遠遠滯後業務發展,存在安全漏洞。
敏感數據跨部門、跨系統留存,任一單位或系統安全防護措施不當,均可能發生敏感數據泄漏,造成「一點突破、全網皆稿悶失」的嚴重後果。
8. 央行大數據36項有風險是什麼
央行大數據36項有風險包括信貸風險、操作風險、市場風險、合規風險、技術風險、經營風險等。
9. 關於大數據相關的風險概述 關於大數據相關的風險概述內容是什麼
1、數據建設風險操作,主要指在工程建設過程中,對關鍵系統、關鍵組件進行變更升級等操作。
2、數據管理風險操作,主要指數據生產運營過程中,對數據模型和數據實例進行定義調整、變更等造成數據異常的操作。
3、數據開放風險操作,主要指數據能力開放過程中,導致數據共享服務中斷。
4、或者涉及違規對企業外部提供數據能力和API服務的操作。
5、數據應用風險操作,主要指數據應用服務提供過程中,對數據應用功能及服務內容進行上線變更、回溯更新,導致出現數據展示錯誤或者影響客戶服務感知的操作。
6、數據安全風險操作,主要指在數據全生命周期中,導致對個人用戶隱私信息。
7、或者企業運營管理機密信息出現數據泄露、數據丟失、數據篡改等安全問題的操作。