① 口碑營銷公司可以操縱用戶的搜索結果,大數據時代下的評論還可信嗎
我認為可信度不高,之所以這么認為的原因有三個:
我們的確已經進入大數據時代,然而,在享受互聯網帶給我們便利的同時,由此產生的問題也越來越多。有的公司會利用互聯網技術非法謀利,而這會影響社會的發展以及民眾的生活。口碑營銷公司可以操縱用戶的搜索結果,這意味著多數評論將不再可信。
一、互聯網公司能夠任意操縱評論。
我們的確不能全然相信這些評論,因為某些缺乏公平競爭觀念的公司會濫用互聯網技術,並且為其他公司以及自身謀取巨額利益。在公司的操縱下,我們只能看到他們想讓我們看到的評論,所以這些評論的參考意義和價值不大。
以上就是我的分析。
② 最高罰5000萬元,對大數據殺熟就該嚴格亮劍|長城評論
長城網特約評論員 熊志
《深圳經濟特區數據條例(徵求意見稿)》日前公開徵求意見。其中,針對網路平台利用大數據「殺熟」問題,意見稿明確提出給予重罰:違法所得不超過1萬元的,5萬元起罰。情節嚴重的,可處5000萬元以下或者上一年度營業額5%以下罰款。
在數據公平競爭層面,深圳以地方立法的形式,在全國率先明確大數據殺熟的處罰依據,這種先行先試的探路,無疑是很有針對性的,也是為其它地區積攢經驗。
一直以來,隨著消費者對網路的依賴程度不斷加深,一些網路平台也開始依託所收集到的用戶數據,在用戶畫像的基礎上,憑借演算法優勢來對消費者區別對待。比如同樣的商品,老用戶要比新用戶貴,或者會員要比普通用戶貴。
對不同消費者進行差別對待,這種有損公平交易的價格歧視行為,利用的正是「熟客」對平台的深度依賴。而且,從媒體報道看,大數據殺熟在電商、網約車、外賣、在線 旅遊 等各個領域幾乎都有上演,一些頭部互聯網平台都曾因此而陷入輿論風口。
大數據殺熟現象的層出不窮,是互聯網行業野蠻生長的一個縮影。當然,近兩年來,隨著用戶的投訴增多,針對類似侵害消費者公平交易權的行為,治理力度也在不斷加強。
比如今年2月,國務院反壟斷委員會發布《關於平台經濟領域的反壟斷指南》,針對「對交易條件相同的交易相對人實施差別待遇」的行為,進行了明確的規范限制,矛頭直接指向大數據殺熟。
不過,它畢竟只是部門規章,而目前為止對於大數據殺熟,《反壟斷法》等相關法律法規雖然有所涉及,但還缺少相當細化的法律定性和懲罰標准。所以,深圳作為先行示範區,這次通過地方立法劍指大數據殺熟,做了立法示範。
值得一提的是,一些網路平台之所以敢肆無忌憚地進行大數據殺熟,演算法優勢是一方面,另一方面在於,對那些「熟客」來說,殺熟的行為有相當強的隱蔽性,在日常消費過程中,普通人很難發現。就算粗知帶發現,面對龐大的平台,進行維權也彌足困難。
為了緩解數據維權難的現狀,該條例(意見稿)提到, 探索 建立數據領域公益訴訟制度,讓更加專業的行業組織,也能對平台提起訴訟。這種嘗試和 探猛裂索 ,等於是為大數據演算法時代處於弱勢者地位的用戶撐腰,也能夠倒逼平台公平競岩蘆爭,用服務和口碑取勝,而不是靠殺熟獲利。
當然,深圳的意見稿目前還處在公開徵集意見階段,還有待最終落地,而落地之後的具體實踐中,是否會產生預期中的威力,現在還有待觀察。但不管怎麼說,在大數據殺熟肆無忌憚的背景下,要避免用戶規模不斷膨脹的網路平台,利用演算法優勢侵害消費者的合法權益,對平台的約束和懲戒力度,應該進一步加強。只有對大數據殺熟的懲戒有據可依,平台才會不敢隨意亂來。
③ 大數據時代 大數據應用隨處可見可感可知
大數據時代:大數據應用隨處可見可感可知
大數據時代:大數據應用隨處可見可感可知 ,大數據是一場人人都想抓住的變革機遇。不管是IT巨頭還是創業小團隊,都想在這個極具變化的變革初期佔領一席之地,立名、掘金、搶占話語權。
正如知名IT評論人謝文所說:「大數據之所以可能成為一個時代,在很多程度上是因為這是一個可以由社會各界廣泛參與,八面出擊,處處結果的社會運動,而不僅僅是少數專家學者的研究對象」。數據產生於各行各業,這場變革也必將影響到各行各業,因此,機遇也蘊含於各行各業。致力於IT創業的人們緊緊盯著這個市場,洞察著每一個機遇。
如果說雲計算主要提供了強大的後台運算能力,對大眾來說,看不見摸不著;那麼大數據卻是和人們的生活緊密相關的。大數據應用隨處可見可感可知。
大數據與公共安全
未來,大數據將成為社會基礎設施的一部分,跟公路、自來水、電一樣,成為人們生活不可或缺的一部分。但大數據的作用並不僅僅局限於為普通消費者提供生活必須服務,更可以有效協助公安部門提供公共安全服務。而數據的有效利用並服務於社會則需要數據的公開和共享。
4月15日發生的波士頓馬拉松爆炸案造成3人死亡,多人受傷。FBI在波士頓馬拉松爆炸事件後在案發現場附近採集了10TB左右的數據。雖然通過大數據「已經鎖定並逮捕嫌疑犯」的報道已被FBI和波士頓警察局聲明譴責,但未來大數據分析技術爐火純青以後,社交媒體規范和信息分享機制健全,數據來源和質量可靠,那利用大數據鎖定嫌疑犯將變得簡單而高效。
利用大數據還可以預防和打擊犯罪。密歇根大學曾在網上發布報告指出,研究人員正在用「超級計算機以及大量數據」來幫助警方定位那些最易受到不法份子侵擾片區的方法,利用大量數據創建一張波士頓犯罪高發地區熱點圖。在研究某一片區的犯罪率時,他們還將相鄰片區的各種因素列為他們考慮的對象。隨著將越來越多的數據加入到研究中來,研究者們認為他們能在額外變數是如何影響犯罪率這一問題上得到更准確的結論,並且為警察更具針對性的鎖定犯罪易發點、抓獲逃犯提供支持。
大數據開發和應用還有助於完善救災系統。7·21北京暴雨發生時,由於求救人數眾多,救援電話被打爆,被困人員無法從官方獲得幫助,從而轉向微博平台。一條包含人物、時間和地點三要素的微博可迅速了解救援所需,打開微博附加坐標數據即可實現地圖定位,為及時救災提供方便。雅安地震中,除了微博再次凸顯新媒體傳播優勢外,微信群及各大互聯網公司推出的尋人平台也為救災提供了多渠道支持。但各大網站數據並不互通,而且數據的低精確度和低效成為最大弊端。若要發揮數據的最大價值,數據必須是在線、公開、共享、互聯、相關的。由此看出,數據的公開和共享是一件有必要且有待解決的事情。
實踐代表:各國政府
大數據與醫療健康
「個性化醫療」和「量化自我」是近期比較火的兩個詞。在大數據時代,人們會長期監測自身健康數據,「預防」比「治療」變得更重要,而且醫生會通過分析病人的歷史數據給出個性化治療方案。
利用大數據的分析方法可以分析人類基因序列,得出基金突變的概率,提前避免疾病的發生。根據美國《人物》雜志的報道,奧斯卡最佳女主角於安吉麗娜·朱莉基因突變,患上乳腺癌的幾率高達87%,患上卵巢癌的幾率高達50%。5月中旬,朱莉已接受雙乳乳腺切除手術,近期,還要切除卵巢,以降低致癌風險。
在個性化醫療領域,康諾雲今年即將推出的可佩戴設備可收集和監測佩戴者的血壓、心率等,並將這些數據上傳至雲後台,通過分析佩戴者的數據,預測其健康狀況和未來某種疾病的發病概率。若這些數據出現異常,則會收到手機提醒,甚至會給出對應的解決方案。
另外,GE和Intel正聯合開發一個大數據「魔毯」項目,其原型使用家中地毯內裝的感測器感應缺乏人照料的老人下床和行走的速度和壓力,一旦這些數據發生異常則對老人的親人發送一個警報。
此外,利用大數據技術還可以制定量身打造的健身計劃。咕咚手環是首款基於網路雲開發的攜帶型可穿戴設備,主打「運動狀況提醒」、「睡眠監測」、「智能無聲喚醒」三大功能。知名運動品牌耐克還推出了"Nike+"跑鞋,通過無線Nike+iPod運動組件與iPod實現信息互通,將Nike+運動鞋與iPod連接後,iPod就可以存儲並顯示運動日期,時間、距離、熱量消耗值和總運動次數,運動時間,總距離和總卡路里等數據。
目前大數據在醫療領域的應用可謂是風生水起,百家爭鳴,大家都看到了這一領域的機遇,並想分一杯羹,只是由於基礎設施、用戶習慣、法律法規等等方面的限制,目前並未出現非常成功的案例。
實踐代表:康諾雲、咕咚手環、Jawbone up
大數據與娛樂
大數據時代,只要你上網,使用社交產品,那麼就沒有誰會比商家更了解你。你可能還沒考慮過自己最喜歡哪個電影明星,最喜歡哪種類型的影片,是喜歡在家看電影還是喜歡影院看,但擁有數據的商家已經對你了如指掌了。未來,不管你的品味多麼與眾不同,多麼挑剔,你肯定能找到符合自己的娛樂項目。因為你的歷史數據會告訴商家有諸如你這樣一類人群的存在。有利可圖的事情,都會有人去做;任何一個市場空白,只要被人發現了都會被填補。
《紙牌屋》的成功在一定程度上得益於大數據,其出品方Netflix稱挖掘其用戶行為的「大數據」已經很長時間,《紙牌屋》是其數據分析結果的第一次戰略運用。通過數據分析,Netflix甚至比觀眾還要清楚他們的觀影喜好。據悉,該網站基於3000萬北美用戶觀看視頻時留下的行為數據,推測出一部劇的關鍵要素可以是凱文·史派西、大衛·芬奇和BBC出品三者的交集,可以獲得成功,於是打造了《紙牌屋》。
一支叫熊戰士(Bear Warrior)的朋克樂隊設計了一台名為「POGO溫度計」的設備,可以通過安裝在音樂廳地毯中的一系列感應器檢測出聽眾舞步的強度,然後將信號發送到一台中央計算機,最後讓中央計算機對信號進行分析研究,幫助樂隊改進他們的演繹方式。樂隊主唱表示:「這些數據可以幫助我們了解到我們還可以如何去改善我們的演繹方式,讓聽眾對我們的音樂作品作出我們希望看到的回應。」
此外,微軟研究院計算機專家David Rothschild通過數據分析預測奧斯卡金像獎得主,他表示:「我預測奧斯卡金像獎得主的方法與預測其它事情的方法完全相同,其中包括政治。首先關注最有效的數據,然後創建不受任何特別年份結果乾擾的統計模型,所有模型都根據歷史數據進行測試、校正,我們在建模時很有耐心,確保模型能夠正確預測外樣本結果,而不僅僅是過去發生的結果。我們創建的模型是用來預測未來的,而不是預測過去的。」
5月29日,林俊傑《因你而在》微電影完整版通過QQ音樂獨家首發,這種通過系列微電影推廣專輯的線上營銷方式算是唱片領域的新嘗試。我相信,用戶是否打開連接、是否全部看完、詳細觀看哪個片段、在什麼地方快進或暫停等等這樣數據最終都會被華納唱片公司收集和掌握,從而分析用戶喜好,為下一張專輯的製作提供科學依據。
實踐代表:Netflix、樂視TV
大數據與農業
市場經濟的弊端之一即具有滯後性,這對三大產業影響最大的就是農業。由於在市場經濟條件下,農業生產很難在全國范圍內形成統一規劃,致使農業生產受市場波動影響頗大,而且農業生產很多方面依靠的是感覺和經驗,並沒有量化的數據支撐。大數據時代,不僅可以通過建立統一的數據平台,調控農業生產;還可以記錄分析農產品種植過程中的數據,通過分析數據,決定澆水、施肥、光照、溫度等條件,從而提高產量。
連鎖型的社區生鮮超市M6於8年前就開始了數據化管理,物品一經收銀員掃描,總部的伺服器馬上就能知道哪個門店,哪些消費者買了什麼。M6免費為顧客辦理實名制會員卡,用戶持卡結賬可以享受優惠,但M6不找零,這樣一來,既可以提高收銀效率,又為數據分析提供基礎。在一些細節上,M6的收銀模塊甚至比一些大商超更細致,比如,信息被掃描進系統後,顧客突然要求退掉其中一件或幾件,或者整單退掉,為什麼要退掉,這些信息全都被寫入了後台資料庫。2012年,M6的伺服器開始從互聯網上採集天氣數據,然後,從中國農歷正月初一開始推算,分析不同節氣和溫度下,顧客的生鮮購買習慣會發生哪些變化。
日本宮崎縣西南部的「都城」市已經開始利用雲和大數據進行農業生產。通過感測器、攝像頭等各種終端和應用收集和採集農產品的各項指標,並將數據匯聚到雲端進行實時監測、分析和管理。富士通和新福青果合作進行捲心菜的生產改革。兩家公司在農田裡安裝了內置攝像頭的感測器。把每天的氣溫、濕度、雨量、農田的圖像儲存到雲端。還向農民發放了智能手機和平板電腦,讓大家隨時記錄工作成果和現場注意到的問題,也都保存到雲端。捲心菜增產3成,光合作用也實現IT管理
實踐代表:M6、富士通、新福青果
其實,大數據與交通、金融、製造、教育、商業等領域均有密切關系。《大數據中國》第二期將集中探討大數據的跨界旋風,盤點、分析、評論大數據在醫療、金融、商業、教育、製造、農業、交通、天氣、娛樂、電商物流等十個領域的應用發展和實踐情況.
④ 微博全網用戶評論屬於大數據嗎
屬於。由大數據分類信息可知微博全網用戶評論屬於大數據。微博(Weibo)是一種基於用戶關系信息分享、傳播以及獲取的通過關注機制分享簡短實時信息的廣播式的社交網路平台。
⑤ 大數據是什麼意思
問題一:大數據是什麼意思 大數據是指整個分析運營的各個方面的數據整合。特別是指互聯網帶來的整個方方面的物流 信息流 資金流都在數據分析下整合
希望你能接受這個答案。
問題二:大數據是什麼意思? 大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。大數據是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的加工能力,通過加工實現數據的增值。
問題三:現在說的大數據是什麼意思 最早提出「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。大數據作為雲計算、物聯網之後IT行業又一大顛覆性的技術革命。雲計算主要為數據資產提供了保管、訪問的場所和渠道,而數據才是真正有價值的資產。企業內部的經營交易信息、互聯網世界中的商品物流信息,互聯網世界中的人與人交互信息、位置信息等,其數量將遠遠超越現有企業IT架構和基礎設施的承載能力,實時性要求也將大大超越現有的計算能力。如何盤活這些數據資產,使其為國家治理、企業決策乃至個人生活服務,是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向。
中文名:大數據時代
外文名:Big data
問題四:什麼是大數據,大數據的意義是什麼? 大數據的意思就是數據要在線,這樣你的數據才能有價值,用於分析或者處理。大量的數據在線後的分析才有意義。可能得到你想要的數據,電影里好多這種素材,比如人臉的搜索,人員的定位,人流的分析,運行的狀態等等都有使用。現在做這些應用的也很多,只是落地的還稍微少一點。還是為了創造價值。
問題五:移動大數據是什麼意思 從海量的數據里進行擷取、管理、處理、並整理之後,獲得你需要的資訊
電影《紙牌屋》的成功就是其中一個例子,Netflix(引進紙牌屋的公司)作為世界上最大的在線影片租恁服務商,從其網站點擊率、下載量、搜索請求和評論等眾多海量數據中進行分析與預測後,認為紙牌屋能火,因此選擇引進《紙牌屋》
問題六:什麼是大數據 大數據是什麼意思 「大數據」不是「數據分析」的另一種說法!大數據具有規模性、高速性、多樣性、而且無處不在等全新特點,具體地說,是指需要通過快速獲取、處理、分析和提取有價值的、海量、多樣化的交易數據、交互數據為基礎,針對企業的運作模式提出有針對性的方案。由於物聯網和智能可穿戴的普及帶來的,生產線上普通的藍領員工,前台電話員,等企業內的低階員工也成為產生大數據的數據內容的一部分,數據的產生除了來自社交網路,網站,電子商務網站,郵箱外,智能手機,各種感測器,和物聯網,智能可穿戴設備。
大數據營銷與傳統營銷最顯著的區別是大數據可以深入到營銷的各個環節,使營銷無處不在。如用戶的偏好?上網的時間段?上網主要瀏覽頁?對頁面和產品的點擊次數?網站上的用戶評價對他的影響?他會在哪些地方分享對產品和購物過程的體驗?這些都是對用戶網上消費和品牌關注度的深入分析,可以直接影響用戶消費的傾向等商業效果。
大數據徹底改變企業內部運作模式,以往的管理是「領導怎麼說?」現在變成「大數據的分析結果」,這是對傳統領導力的挑戰,也推動企業管理崗位人才的定義。不僅懂企業的業務流程,還要成為數據專家,跨專業的要求改變過去領導力主要體現在經驗和過往業績上,如今熟練掌握大數據分析工具,善於運用大數據分析結果結合企業的銷售和運營管理實踐是新的要求。
當然大數據對企業的作用一個不可迴避的關鍵因素是數據的質量,有句話叫「垃圾進,垃圾出」指的是如果採集的是大量垃圾數據會導致出來的分析結果也是毫無意義的垃圾。此外,企業內部是否會形成一個個孤立的數據孤島,數據是否會成就企業內某些人或團隊新的權力,導致數據不能得到實時有效地分享,這些都會是阻礙大數據在企業中有效應用的因素。
而隨著大數據時代的到來,對大數據商業價值的挖掘和利用逐漸成為行業人士爭相追捧的利潤焦點。業內人士稱,電商企業通過大數據應用,可以探索個人化、個性 化、精確化和智能化地進行廣告推送和推廣服務,創立比現有廣告和產品推廣形式性價比更高的全新商業模式。同時,電商企業也可以通過對大數據的把握,尋找更 多更好地增加用戶粘性,開發新產品和新服務,降低運營成本的方法和途徑。
問題七:什麼是大數據時代 世界包含的多得難以想像的數字化信息變得更多更快……從商業到科學,從 *** 到藝術,這種影響無處不在。科學家和計算機工程師們給這種現象創造了一個新名詞:「大數據」。大數據時代什麼意思?大數據概念什麼意思?大數據分析什麼意思?所謂大數據,那到底什麼是大數據,他的來源在哪裡,定義究竟是什麼呢?
一:大數據的定義。
1、大數據,又稱巨量資料,指的是所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。
2、大數據技術,是指從各種各樣類型的大數據中,快速獲得有價值信息的技術的能力,包括數據採集、存儲、管理、分析挖掘、可視化等技術及其集成。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
互聯網是個神奇的大網,大數據開發也是一種模式,你如果真想了解大數據,可以來這里,這個手機的開始數字是一八七中間的是三兒零最後的是一四二五零,按照順序組合起來就可以找到,我想說的是,除非你想做或者了解這方面的內容,如果只是湊熱鬧的話,就不要來了。
3、大數據應用,是 指對特定的大數據 *** ,集成應用大數據技術,獲得有價值信息的行為。對於不同領域、不同企業的不同業務,甚至同一領域不同企業的相同業務來說,由於其業務需求、數據 *** 和分析挖掘目標存在差異,所運用的大數據技術和大數據信息系統也可能有著相當大的不同。惟有堅持「對象、技術、應用」三位一體同步發展,才能充分實現大數據的價值。
當你的技術達到極限時,也就是數據的極限」。大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。
二:大數據的類型和價值挖掘方法
1、大數據的類型大致可分為三類:
1)傳統企業數據(Traditionalenterprisedata):包括 CRM systems的消費者數據,傳統的ERP數據,庫存數據以及賬目數據等。
2)機器和感測器數據(Machine-generated/sensor data):包括呼叫記錄(CallDetail Records),智能儀表,工業設備感測器,設備日誌(通常是Digital exhaust),交易數據等。
3)社交數據(Socialdata):包括用戶行為記錄,反饋數據等。如Twitter,Facebook這樣的社交媒體平台。
2、大數據挖掘商業價值的方法主要分為四種:
1)客戶群體細分,然後為每個群體量定製特別的服務。
2)模擬現實環境,發掘新的需求同時提高投資的回報率。
3)加強部門聯系,提高整條管理鏈條和產業鏈條的效率。
4)降低服務成本,發現隱藏線索進行產品和服務的創新。
三:大數據的特點
業界通常用4個V(即Volume、Variety、Value、Velocity)來概括大數據的特徵。具體來說,大數據具有4個基本特徵:
1、是數據體量巨大
數據體量(volumes)大,指代大型數據集,一般在10TB規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;網路資料表明,其新......>>
問題八:大數據,是指什麼?_?怎麼解釋 大數據(big data,mega data),或稱巨量資料,指的是需要新處理模式才能具有更強的決策力、洞察力和流程優化能力的海量、高增長率和多樣化的信息資產。
問題九:徵信大數據是什麼意思? 大數據是指所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、處理、並整理成為服務於 經營決策的資訊。大數據徵信是指什麼呢?簡單的說,例如電商行業京東做出判斷的消費數據信息就是大數據徵信。大數據征 信是伴隨互聯網金融發展起來的。目前徵信機構有很多,不乏後起之秀如立木徵信,使用互聯網技術抓取或介面合作獲取徵信 數據,並且可以接入央行徵信。隨著互聯網金融的發展,大數據徵信與央行徵信會不斷融合直至融為一體,真正的滿足數據的 完整性,可以更加全面地評估信用,為企業或個人提供決策分析、風險評估以及生活場景的應用。
⑥ 大數據攻略案例分析及結論
大數據攻略案例分析及結論
我們將迎來一個「大數據時代」。與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?
{研究結論}
■大數據營銷的本質是一個影響消費者購物前心理路徑的問題,而這在大數據時代前很難做到。
■對於傳統企業而言,要打通線上與線下營銷,實現新的商業模式,如O2O等,離不開大數據。
■雖然大數據應用往往集中於大數據營銷,但對於一些企業,大數據的應用早已超越了營銷范疇,全面進入了企業供應鏈、生產、物流、庫存、網站和店內運營等各個環節。
■對於大部分企業,由於數據分析人員與業務人員之間的彼此視角與思考方向不同,大數據分析和運營之間存在脫節情況,這是大數據無法用於企業運營最大的阻力
■對於大多數互聯網公司來說,大數據量、大用戶量是一個相互促進,強者越強的循環過程。
■對於大型互聯網平台,大數據已經成為其生態循環中的血液,對於這些企業,最重要
的不是如何利用大數據改進自身運營,而是利用大數據更好地繁榮平台生態。
■對於平台企業,它們的大數據策略正逐漸從大數據運營,向運營大數據轉變,前者和
後者的差別在於,前者只是運營改進的動力,而後者則成為企業實現未來戰略的核心資源。
我們都已被反復告知:我們將迎來一個「大數據時代」。
大數據應用,將和雲計算、3D列印這些技術變革一樣,顛覆既有規則,並成為先行企業的制勝關鍵。
與變化相始終的中國企業,距離這場革命還有多遠?而追上領先者又需要多快的步伐?
來自於互聯網、移動互聯網、物聯網感測器、視頻採集系統的數據正海量增長,匯成大數據的海洋,相伴的是海量數據存儲、分析技術的突破性發展,所有這一切都給企業的應用帶來了無限可能性。
中國企業家研究院對當前中國企業大數據應用的狀況進行了歸納分類,以幫助企業了解實際應用大數據時的困局難點,並提供領先企業的典型案例以資借鑒。
表1
表2
大數據運營—企業提升效率的助推力
對於大多數企業而言,運營領域的應用是大數據最核心的應用,之前企業主要使用來自生產經營中的各種報表數據,但隨著大數據時代的到來,來自於互聯網、物聯網、各種感測器的海量辯笑虧數據撲面而至。於是,一些企業開始挖掘和利用這些數據,來推動運營效率的提升。大數據運營應用中,大數據的應用分為三類:用於企業外部營銷、用於內部運營,以及用於領導層決策。
一、大數據營銷
大數據營銷的本質是影響目標消費者購物前的心理路徑,它主要應用在三個方面:1、大數據渠道優化,2、精準營銷信息推送,3、線上與線下營銷的連接。在消費者購物前,通過各種方式,直接介入其信息收集和決策過程。而這種介入,是建立在對於線上與線下海量用戶數據分析的基礎之上。相比傳統狂轟濫炸或等客上門的營銷,大數據營銷無論在主動性和精準性方面,都有非常大的優勢。它是目前主要的大數據應用領域。
大數據營銷不僅僅是用大數據找出目標顧客,向其發布促銷信息,它還可以做到:
實現渠道優化。根據用戶的互聯網痕跡進行渠道營銷效果優化,就是根據互聯網上顧客的行為軌跡來找出哪個營銷渠道的顧客來源最多,哪個來源顧客實際購買量最多,是否是目標顧客等等,從而調整營銷資源在各個渠道的投放。例如東風日產,它利用對顧客來源的追蹤,來改進營銷資源在各個網路渠道如門戶網站、搜索和微博的投放。
精準營銷信息攜神推送。精準建立在對海量消費者的行為分析基礎之上,消費者網路瀏覽、搜索行為被網路留下,線下的購買和查看等行為可以被門店的POS機和視頻監控記錄,再加上他們在購買和注冊過程中留下的身份信息,在商家面前,正逐漸呈現出消費者信息的海洋。
一些企業通過收集海量的消費者信息,然後利用大數據建模技術,按消費者屬升猛性(如所在地區、性別)和興趣、購買行為等維度,挖掘目標消費者,然後進行分類,再根據這些,對個體消費者進行營銷信息推送。比如孕婦裝品牌十月媽咪通過對自己微博上粉絲評論的大數據分析,找出評論有「喜愛」相關關鍵詞的粉絲,然後打上標簽,對其進行營銷信息推送。京東商城副總經理李曦表示:「用大數據找出不同細分的顧客需求群,然後進行相應的營銷,是京東目前在做的事情。」小也化妝品將自身網站作為收集消費者信息的雷達,對不同消費者推薦相應的肌膚解決方案,創始人肖尚略希望在未來,大數據營銷能替代網站的作用,真正成為面向顧客的前端。
打通線上線下營銷。一些企業將互聯網上海量消費者的行為痕跡數據與線下購買數據打通,實現了線上與線下營銷的協同。比如東風日產,線上與線下的協同營銷方式為:其門戶網站帶來訂單線索,而通過這些線索,服務人員進行電話回訪,從而推動顧客在線下交易。在此過程中,東風日產記錄了消費者進入、瀏覽、點擊、注冊、電話回訪和購買各個環節的數據,實現了一個橫跨線上線下,以大數據分析為支持的,營銷效果不斷優化的閉環營銷通路。而國雙科技,衡量某一地區線下促銷活動的效果,就是看互聯網上,來自這個地區對於促銷內容的搜索量。一些企業,通過鼓勵線下顧客使用微信和Wi-Fi等可追蹤消費者行為和喜好的設備,來打通線上與線下數據流,銀泰百貨計劃鋪設Wi-Fi,鼓勵顧客在商場內使用,然後根據Wi-Fi賬號,找出這個顧客,再通過與其它大數據挖掘公司合作,以大數據的手段,發掘這個顧客在互聯網的歷史痕跡,來了解這個顧客的需求類型。
二、大數據用於內部運營
相比大數據營銷,大數據在內部運營中的應用更深入,對於企業內部的信息化水平,以及數據採集和分析能力的要求更高。本質上,是將企業外部海量消費者數據與企業內部海量運營數據聯系起來,在分析中得到新的洞察,提升運營效率。(詳見P96表5:大數據在內部運營中的應用)
表5
三、大數據用於決策
在大數據時代,企業面對眾多新的數據源和海量數據,能否基於對這些數據的洞察,進行決策,進而將其變成一項企業競爭優勢的來源?同大數據營銷和大數據內部運營相比,運用大數據決策難度最高,因為它需要一種依賴數據的思維習慣。
已有少數企業開始嘗試。比如國內一些金融機構在推出一個金融產品時,會廣泛分析該金融產品的應用情況和效果、目標顧客群數據、各種交易數據和定價數據等,然後決定是否推出某個金融產品。
但是,中國企業家研究院在調研中發現,目前中國企業當中,大數據決策的應用非常之少,許多企業領導者進行決策時,仍習慣於憑借歷史經驗和直覺。
大數據產品——企業利潤滋長的新源泉
大數據除了用於運營外,還能夠與企業產品結合,成為企業產品背後競爭力的核心支持或者直接成為產品。提供大數據產品的企業分為兩類,直接提供大數據產品的企業,以及將大數據作為產品和服務核心支撐的企業。前者主要為大數據產業鏈中提供數據服務的參與者,包括數據擁有者、存儲企業,挖掘企業、分析企業等,後者則主要是那些以大數據為產品核心支撐的企業,它們大多是互聯網企業,其產品和服務先天就有大數據基因,這些企業包括搜索引擎、在線殺毒、互聯網廣告交易平台以及眾多植根於移動互聯網之上,為用戶提供生活和資訊服務的APP等。
表3
表4
一、大數據作為產品核心支持
它們主要在以下幾方面使用大數據:
1、提供信息服務。很多互聯網企業通過對海量互聯網信息和線下信息的整合和分析,為個人和企業提供信息服務,典型的如網路、去哪兒、一淘、高德地圖、春雨醫生等等。在美國,一些互聯網企業甚至根據大數據提供更深度的預測信息服務,美國科技創新公司farecast,通過分析特定航線機票的價格,幫助消費者預測機票價格走勢。
2、分析用戶的個性化需求,藉此提供個性化產品和服務,或者實現更精準的廣告。典型的有移動社交工具陌陌、網路、騰訊、廣告交易平台品友互動以及一些互聯網游戲商。這種應用往往先是收集海量用戶的互聯網行為數據,將用戶分類,根據不同類型的用戶,提供個性化的產品,或者提供個性化的促銷信息。比如網易等門戶網站推出了訂閱模式,讓使用者按照個人喜好方便地定製和整合不同來源的信息。
3、增強產品功能。對於很多互聯網產品,如殺毒軟體、搜索引擎等等,海量數據的處理能夠讓產品變得更聰明更強大,如果沒有大數據,產品的功能就大大減弱。比如奇虎360公司的360殺毒軟體,憑借每天海量的殺毒處理,建立了龐大的病毒庫,這使它能夠更快地發現病毒,而一些小的殺毒軟體公司則無法做到這一點。
4、掌控信用狀況,提供信貸服務。阿里巴巴上匯集了海量中小企業的日常資金與貨品往來,通過對這些往來數據的匯總與分析,阿里巴巴能發現單個企業的資金流與收入情況,分析其信用,找出異常情況與可能發生的欺詐行為,控制信貸風險。
5、實現智能匹配。婚戀網站、交易平台等,利用大數據可以進行精準而高效的配對服務。網易花田會挖掘用戶行為數據,比如點擊哪些異性的頁面,發表什麼樣的評論,建立用戶興趣模型,從而挖掘到用戶所期待另一半的類型,然後主動推薦與對方匹配度比較高的人選。2010年,阿里巴巴嘗試性地推出「輕騎兵」服務,由阿里巴巴將中國各產業集群地的供應商與海外買家的個性采購需求進行快速匹配,所憑借的,就是對供應商的海量交易數據信息的整合與挖掘。
二、大數據直接作為產品
對一些企業,大數據直接成為了產品,這些產品包括海量數據、分析、存儲與挖掘的服務等,目前大數據產業鏈正在形成過程中,出現了一批開放、出售、授權大數據和提供大數據分析、挖掘的公司和機構,前者主要是一些擁有海量數據的公司,將數據服務作為新的盈利來源。如大型的互聯網平台、民航、電信運營商、一些擁有大數據的政府機構等等,後者主要包括一些能夠存儲海量數據或者將海量數據與業務場景結合,進行分析和挖掘,或者提供相關產品的公司,如IBM、SAP、拓而思、天睿公司。它們為大數據應用者們提供海量數據存儲、數據挖掘、圖像視頻、智能分析等服務以及相關系統產品。
大數據平台——企業群落繁榮的滋養劑
而網路已建成了包括網路指數、司南、風雲榜、數據研究中心和網路統計在內的五大數據體系平台,幫助其營銷平台上的企業了解消費者行為、興趣變化,以及行業發展狀況、市場動態和趨勢、競爭對手動向等信息。
為解決這些問題,各個平台在積極地努力。比如阿里巴巴建立了數據委員會,在統一數據格式標准、從源頭上保證數據的質量,採集和加工出精細化的數據,確保其能符合平台企業的應用場景等方面,不遺餘力地嘗試。尤其在大數據精細化方面,阿里巴巴更是作為其大數據戰略的重點。這方面,騰訊目前也在加快步伐。比如新版騰訊網出現了「一鍵登錄」的提示,用戶可以在上面通過一些細分標簽,訂閱自己關注的內容。實際上,這也是騰訊收集更精細化的用戶興趣數據的一個有效手段。
Tips
大數據實戰手冊
將大數據應用於內部運營中時,企業會遇到一些常見問題
1企業如何獲取與分析數據?
互聯網是大數據的一個主要來源,一些線下的傳統企業很難獲得。但它們可以:
a和擁有或能抓取海量數據的平台、企業以及政府機構合作。比如淘寶上的電商就購買淘寶收集的海量數據中與自身運營相關的部分,用於自身業務。再如卡夫通過與IBM合作,在博客、論壇和討論版的內容中抓取了47.9萬條關於自己產品的討論信息,通過大數據分析出消費者對卡夫食品的喜愛程度和消費方式。
b建立自己在互聯網上的平台,比如朝陽大悅城利用自己的微信、微博等平台收集消費者評論數據。
c許多傳統企業沒有分析海量數據的能力,此時它們可以和大數據分析和挖掘公司合作,目前市場上已經有天睿公司、IBM、百分點、華勝天成等一批提供大數據分析和挖掘服務的公司,它們是傳統企業進行大數據分析可以藉助的力量。
2如何避免大數據應用時的部門分割?
對於許多企業,其信息流被各部門彼此分割,數據難以互通,對於這種情況下,大數據的共享和匯集就只是一個泡影,更難以實現大數據的深度應用。
要打通部門之間信息分割的局面,首先要建立統一的、集中的數據系統。就像立白信息與知識總監王永紅所說的,「要真正用好大數據,企業要採用大集中的信息系統。」從更深入的角度來談,企業信息流的部門分割,更在於企業部門之間的分割,比如有一些企業的營銷按照渠道分割,導致對於顧客的大數據收集和分析效果大打折扣。
IBM智慧商務技術總監楊旭青認為,「很多時候由於組織結構問題,大數據分析有效性大大降低了。」這就需要組織與流程層面的重新設計,在這方面,阿里巴巴的部門負責人輪崗制度,對於打破部門壁壘無疑是一劑好葯。而一些企業為了打破部門分割,建立了矩陣型的組織結構,強化部門間的橫向合作,這些無疑為大數據的匯集、共享與應用創造了良好條件。
3如何讓業務人員重視大數據的應用?
解決這個問題,一方面在於一把手對整個企業數據文化的倡導,比如1號店董事長於剛就要求業務人員無論在開會,還是匯報工作時,都以數據說話,而馬雲更是將大數據提升到了戰略高度。
另一方面,也在於數據部門的帶動,阿里巴巴數據委員會負責人車品覺分享了經驗,「因為運營部門的業務人員很難看到大數據的潛力,可以首先從一些對業務見效快,見效顯著的數據項目出發,通過一兩個項目的成功,調動對方的積極性,然後再逐步一個個地引導。」
4為何大數據工作與運營需求脫節?
這往往是由於數據人員與業務人員視角、專業知識不同而導致的。大數據人員做了很多努力,但是業務人員卻認為這些努力無關痛癢。如何解決這個問題?
有的企業從組織設計上發力,將大數據納入業務分析部門的管理之下,用業務統馭數據。對於朝陽大悅城,由主要負責戰略和經營分析的部門來管理大數據工作,其中的大數據分析人員則作為支持人員。在負責人張岩看來,大數據要靠商業法則指導,關鍵是找到業務需求的點,然後由數據分析和挖掘人員實現。在具體操作中,大悅城對微信的數據挖掘,挖掘什麼樣的關鍵詞,由業務分析人員確定,而具體挖掘則由數據部門做;有的企業從流程設計上著手,推動業務部門與數據部門人員之間的溝通,建立數據人員工作與效果掛鉤的考核機制。
例如阿里巴巴根據數據挖掘的成效(比如帶來的商品轉化率的提升)來考核數據挖掘師,考核數據分析師則看其分析結果能否出現在經營負責人的報告中。從數據部門自身角度則需要降低運營部門使用數據的障礙和門檻,比如立白集團的數據人員會努力嘗試向運營部門提供更易懂、更生動的圖形化數據分析界面,在立白老闆辦公室上,就有一份「客戶運營健康體檢表」,讓老闆對全國經銷商的當月銷售情況一目瞭然。再如阿里巴巴開發的無線Bi,讓經營人員在手機上也可以看到大數據分析結果,拿車品覺的話說,「以數據之氧氣包圍經營人員。」
⑦ 《大數據時代》讀後感
讀完這本書並不是一氣呵成的,第一次讀到大約五分之一的時候就放下了,第二次重新開始讀,讀到三分之二的時候又想放棄,可是想了想,還是堅持了下來,不為別的,看到三分之二的時候基本明白了書中要講的主要內容,而這內容並不是我想從書中獲知的,或者說,書中內容與我期待相去甚遠。而之所以能硬著頭皮讀完,完全是出於想著事後跟朋友評論這本書的時候更有資格而已,畢竟,沒有看完一本書而去評論它總是有失公正的。
大數據時代這本書按我自己的理解主要講了四個方面的內容,一是講什麼是大數據,舉了很多例子說明我們已經進入大數據時代了。二是講大數據的意義,文中大量舉例,論證大數據對人類發展的積極意義。三是講大數據若是用得不當所產生的消極影響。四是提醒我們如何避免大數據的消極作用,發揮它的優勢造福人類。記得高中學政治的時候,有一條回答問題的黃金法則,當要解決一個問題的時候得從三方面回答,那就是:是什麼,為什麼,怎麼樣;也就是先解釋事務的定義,再說解決問題方法,最後闡明這個事務的積極作用和消極作用。而大數據時代只說明了兩個問題,那就是,"是什麼」,以及「為什麼」。也許這本身就不是一本工具書。大數據時代,這個名字取的是夠大氣,內容卻不敢恭維。這本書在網上炒的也很火,受很多人追捧,不知道看完之後是不是跟我一樣,感覺看與不看似乎影響不大。
跟老公談論過這本書,剛開始我在京東上買它的時候很激動得對老公說,看完這本書我會更了解現在互聯網思維,對工作有幫助,而等我讀完,一點這樣的感覺都沒有了。老公也很形象描述了這本書,它就像美食節目《舌尖上的中國》一樣,告訴你哪裡有好吃的,但是不告訴你怎麼做。我覺得這個比喻很形象,真是要人命了,看著一道道美食而不得,只能拿起身邊的薯條可樂解解饞的痛苦就是如此。
「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。
美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。
透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。
讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故、將降到最低點。
作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。
每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……
對於暢銷書刊、熱點話題、時尚科技,始終不太感興趣。書刊,喜歡有一定年份的;話題,鍾情於務虛的觀點;新奇的產品於我無緣,習慣使用成熟的科技產品。既不清高,也非冷漠,就是要與現實保持一定的距離,給自己留一點思考的空間。這一習慣最近破了例。由於工作的原因,耳濡目染,「大數據」這個新興概念開始頻繁步入我的視野。按捺不住內心的好奇,網購《大數據時代》,手不釋卷,三天讀完,頗有收獲。此書有如下特點。
首先,作者站在理論的制高點上,條理清楚地闡述了大數據對人類的工作、生活、思維帶來的革新,大數據時代的三種典型的商業模式,以及大數據時代對於個人隱私保護、公共安全提出的挑戰。其次,文中的事例貼近現實生活,貼近時代,令讀者既印象深刻,又感同身受。此外,作者沒有使用大量的專業術語,沒有假裝一副專業的面孔。縱觀全書,遣詞造句,均通俗易懂。
作者認為大數據時代具有三個顯著特點。一、人們研究與分析某個現象時,將使用全部數據而非抽樣數據;二、在大數據時代,不能一味地追求數據的精確性,而要適應數據的多樣性、豐富性、甚至要接受錯誤的數據。三、了解數據之間的相關性,勝於對因果關系的探索。「是什麼」比「為什麼」重要。
作者指出,隨著技術的發展,數據的存儲與處理成本顯著降低,人們現在有能力從支離破碎的、看似毫不相乾的數據礦渣中抽煉出真知爍見。在大數據時代,三類公司將成為時代的寵兒。一是擁有大數據的公司與組織。如政府、銀行、電信公司、全球性互聯網公司(阿里巴巴、淘寶網)。二是擁有數據分析與處理技術的專業公司,如亞馬遜、谷歌。三是擁有創新思維的公司,他們可能既不掌握大數據,也沒有專業技術,但卻擅長使用大數據,從大數據中找到自己的理想天地。
面對即將來臨的大數據時代,個人將如何應對自如?這是個嚴肅的問題。
近兩周用業余時間讀了《大數據時代》這本書,是聽培訓時杜威老師推薦的,我快速閱讀了一遍,覺得受到了一些啟發,發現了一些原來沒有想到看到的事情。
首先是大數據代表著數據的樣本=全體,這是一個與傳統統計學的顯著區別。大數據有能力獲得全體數據並對其進行分析。
第二就是相關性與因果性同樣重要。相關性說明了什麼事情與什麼什麼事情有關系,如商場周圍車流量的增多與商場銷售額的相關性,因果性說明什麼是什麼的原因,如睡10個小時是有精神的原因。在大數據中,相關性要比因果性容易獲得,而且相關性已經能為客戶帶來較大的收益。
第三就是大數據允許存在不精確性、混雜性,由於數據量巨大,存在少量的異變不會對結果產生任何影響,如收益是1個億與1億零1元的差別可能決策者不關心。
第四是大數據中的三個主要因素,思維、數據、技術,思維覺得你在哪些地方使用大數據。在這三個因素之中,會產生數據中間商,來處理加工數據並出售。
讀完《大數據時代》這本書後,我意識到:我們即將或正在迎接由書面到電子的跳躍之後的又一重大變革。
這本書介紹了大數據時代來臨後,接踵而至的三項變革——商業變革、管理變革和思維變革。
其實,這場變革已經打響。商業領域由於大數據時代的到來而推陳出新。前幾年,一家名為Farecast的公司,讓預訂到更優惠的機票價格不再是夢想。公司利用航班售票的數據來預測未來機票價格的走勢。現在,使用這種工具的乘客,平均每張機票可以省大約50美元,這就是大數據給人們帶來的便利。
大家應該都知道20xx年出現的H1N1型流感,就拿美國為例,疾控中心每周只進行一次數據統計,而病人一般都是難以忍受病痛的折磨才會去醫院就診,因此也導致了信息的滯後。然而,對於飛速傳播的疾病,Google公司卻能及時地作出判斷,確定流感爆發的地點,這便是基於龐大的數據資源,可見大數據時代對公共衛生也產生了重大的影響!
在我看來,如果想在在大數據時代里暢游,不僅要學會分析,而且還要能夠大膽地決斷。
在美國,每到七、八月份時,正是台風肆虐之時,防澇用品也擺上了商品貨架。沃爾瑪公司注意到,每到這時,一種蛋撻的銷售量較其他月份明顯增加。於是,商家作了大膽的推測,出現這樣的結果源於兩種物品的相關性,便將這種蛋撻擺在了防澇用品的旁邊。這樣的舉措大大增加了利潤,這就是屬於世界頭號零售商的大數據頭腦!
大數據時代的到來,可以讓我們的生活更加便利。但是,如果讓大數據主宰一切,也存在一定的風險。
大家應該都知道電子地圖,它可以為人們指引方向。但大家應該還不知道,它會默默地積累人們的行程數據,通過智能分析可以推斷出哪裡是自己的家,哪裡是工作單位。我們的隱私就這樣被不為人知地收集著。
大數據時代的到來,讓我們的生活更安全,更方便,但與此同時,我們的隱私不再是隱私,數據的收集變得無所不包、無孔不入。世界已經向大數據時代邁進了一小步,一個嶄新的時代正向我們走來。讓我們用知識武裝大腦,做好准備,迎接新時代的到來!
3月11日下午兩節課後,我校全體教師和受邀而來的金南學區各友好學校的領導及教師匯聚於多媒體教室,共同分享、交流《大數據》讀後感。
老師們從:何謂大數據;立足國情對大數據進行探討;大數據在教育教學中的主要應用等幾個方面暢談了自己的感悟。
張萌老師說:大數據體量龐大、結構復雜、是產生巨大價值的數據集合。大數據這種方法在中國的國情下需要以更加科學、合適的方式進行實踐,不可生搬硬套。
董譯雯老師說:在你我感嘆《大數據》里深植於美國民眾血液中的自由、民主、嚴謹的價值觀的同時,可否想過中國教育體制下的孩子們身上還殘留多少獨立與自我意識?作為典型的八零後,我們這一代人身上最缺失的便是獨立思考能力。但願,我的學生哪怕是因為我所做的一點點努力而開始思考「我」這個字的含義,足矣!
張紅傑老師說:很感謝校長給我們推薦了《大數據》這本書。在教學工作中,應該有大數據意識,創新意識。學習一些專業的教學統計法、數據分析法,從中發現一些教育現象,並採取相應的策略。讓我們的教育教學工作少一些隨意和盲目,多一份嚴謹與科學。
白媛媛老師通過文中的三個事例,結合教學實際,談了自己教學中對數據使用的價值;結合自己的工作,談了如何實現工作的最高境界。
交流活動尾聲,身為閱讀《大數據》的倡議者、發起者、以及忠實的讀者韓校長幽默風趣的同大家分享了他讀後的感悟:我們心中要裝著學校,因為我們個人的'命運依賴群體的命運;工作要追求精細化,不能做胡適書中的「差不多」先生;尊重數據,擁有數據意識,建立數據團隊!
此次活動從寒假期間倡導讀《大數據》一書,到開學伊始的分組沙龍,再到今日的閱讀共享,現已圓滿告一段落。相信此次活動定會增強我校全體教師的數據意識,掌握大數據,運用大智慧助推我校的教育教學上一個新的台階!
去年的「雲計算」炒得熱火朝天的,今年的「大數據」又突襲而來。彷彿一夜間,各廠商都紛紛改旗換幟,推起「大數據」來了。於是乎,各企業的CIO也將熱度紛紛轉向關注「大數據」來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業雲計算,大數據的現狀。
不過話又還得說回來,《大數據時代》是本好書。
當然,很多IT知名人士也大力推薦,寫了好多讀後感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的BI,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書後,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼於數據關聯性,而非數據精確性,或許才是大數據與現時BI的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向於數據的精確性。看完此書,我心中的一些問題:
1.什麼是大數據?
查了查網路,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。大數據的4V特點:Volume、Velocity、Variety、Veracity--這個好像是IBM的定義吧。
以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。
2.大數據適合什麼樣的企業?
誠然,大數據的前提是海量的數據,只有擁有巨量的數據資源,方能從中查找出數據的關聯性,才可以讓通過專業化的處理,讓其為企業產生價值。針對電信運營,互聯網應用這樣海量用戶的數據的大企業,也是在應用大數據的道路上擁有得天獨厚的條件,但是針對中小企業呢?銷售訂單數據?若非百年老店,估計數據也是少得可憐,能用的可能只有消費者數據了吧。貌似大多數廠商,用來舉例的也就是消費都購買行為分析為最多。同樣,在公共事業類的政府機構,大數據的作用也許也能很好的發揮。反而感覺在大多數中小型企業應用大數據,似乎有點大題小作。書中說:大數據是企業競爭力。誠然,數據是一個企業的核心無形資源(利用得好的話),但是否所有的數據,或都換則方式說:所有的企業都以大數據為競爭力,是否真的合適么?是否在中小企業中,會顯示得小題大做呢?
3.大數據帶來的影響
當一波又一波的IT技術熱潮源源不斷地向我們鋪面而來的時候,你甚至都沒有做好准備,你都要開始迎接它所給你帶來的影響了。經過物聯網,雲計算的推波助瀾下,大數據開始登場了。但它到底給我們帶來了什麼呢?
1)預測未來書中以Google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。
2)變革商業大數據所帶來的商機,同時會衍生出一系列與大數據相關的商業機遇與商業模式,數據的潛在價值會源源不斷地發揮作用可以容易想到的是未來有專門的數據收集,數據分析,數據生成的一條數據產業鏈產生。影響的,當然是IT公司。
3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。
在看《大數據》之前,我只知道社會越來越數字化了,看完之後,才覺悟到:人類將迎來一個新的時代。
數字化已經把我們帶入一個信息時代,大數據卻把我們卷進了一場科技風暴之中,這本書中,作者為我們開啟了一個更包容更廣闊的新時代,大數據把社會的方方面面融合在了一起,曾經看似因果聯系緊密的事物,可能變得不再那麼重要;毫無關聯的事物,可能隱藏著重要的信息,從科技、商業,到醫療、政治、教育、文化,大數據一概席捲囊括,它改變著我們的傳統思維,為這個時代注入了新鮮的血液,就像作者書中所說:「這項技術終將改變我們所居住的星球上的許多東西。」
大數據最顯著的影響是對於電子商務,通過大數據,最先洞察出潛在市場的,也必然最先佔領市場。而電子商務對實業的沖擊又是勢不可擋,可見,掌握了大數據就主導了市場,擁有了先進的科技才能擁有堅實的競爭力。在醫療方面,曾經的非典時期,就是一個很好的例證,正是有大數據的預測功能,才使疫情得到了控制。在更小的方面,他也同樣改變著我們的生活,書中提到美國著名計算機專家奧倫·埃齊奧尼發明了飛機機票價格預測軟體,就是利用大數據造福我們生活的很好例子。
大數據不僅節省了時間,提高了效率,更將人類帶入一個新的文明階段。從分析因果總結經驗,轉變為搜集數據預測未來;由原來的滯後性變為現在的預見性——大大提高了人類認識世界、改造世界的能力,變被動為主動。大數據為我們掀開了歷史新紀元,不敢想像它將會為我們帶來什麼,或許會出現新奇的生活方式,從未有過的職業,聞所未聞的商業模式,百家爭鳴的文化高峰;也或許會解開更多未解之謎,探索到宇宙之外的秘密。總之,毫無疑問的是,大數據為我們帶來的未來是超乎想像的。
這本書中作者提到最多的是:改變我們的傳統思維,摒棄精確性轉向宏觀。從總結因果轉向預測。這個世界正以驚人的速度向前發展,數據大爆炸的波及范圍遠超乎我們的想像,單純靠人類的主觀判斷力是多麼的有限,大數據早晚會取而代之這一現象,這必將影響我們的生活和工作,我們也只有認清這種趨勢,改變思維,調整步伐,緊跟時代才行。即使不能與時代同步,也盡量做到避免固步自封,認識大數據、利用大數據趨利避害,為我們的生活造福!
知道"是什麼"就夠了,沒必要知道"為什麼"。在大數據時代,我們不必非得知道現象背後的原因,而是讓數據自己"發聲"。這個命題是我讀這本書最大的感觸。
對於大多數人來說,這的確是一場思維變革。對於理科學生來說,會認為這是一個錯誤的觀點,因為這無異於否定了他們對世界客觀物理化學規律探索的重要性;對於一名工科學生,其實這並不是一個多麼新穎的觀點,因為工科是講求時用性的,如何能更好地利用基本自然科學規律創造社會財富比探索自然科學知識顯得更重要。
這些天來,在讀大數據這本書的同時,也稍微重溫了一下自動控制原理,認識到控制系統中存在明顯的大數據時代思維方式,借讀書交流會之際,與大家分享。
對系統的有效控制需要對系統理解與建模。以一個日常生活中的例子說明。開車的時候一腳油門下去車就飛出去了,但並不知道這一腳油門下去能給多大車速,這就需要駕駛人員的熟練的駕駛技能了,不然超速被開罰單是很正常的。那麼,問題就來了:如何能實現速度的自動控制而不用駕駛人員踩油門?這就是控制系統最關鍵的環節——建立系統數學模型。大白話就是知道車速與燃油量的數學關系式。若是以探索為什麼的思維模式,不可避免的要列一大堆能量方程、動量方程等物理化學式子,經過繁雜的計算,還是能得到車速和燃油量的數學關系式的。很明顯這是一個繁瑣的過程,因為得知道現象背後的原因。這僅是對於這種簡單的系統,若是對於航空發動機這種復雜的系統,結構工藝過於復雜,分析各部分的物理化學過程是十分困難的,這時候可以通過實驗法得到數學模型。
實驗法主要有時域測定法、頻域測定法和統計相關法。與大數據時代思維最接近的是統計相關法,主要過程是對被研究對象施加某種隨機信號,根據被測對象各參數的變化,採用統計相關法確定被測系統或對象的動態特性。這種方法可以在被測系統或生產過程正常運行狀態下進行在線辨識,測試結果精度較高,但要求採集大量測試數據,並需要相關儀和計算機進行數據計算和處理。
若用開車實例來解釋,此時的系統為汽車動力系統,施加的隨機信號為燃油量,被測對象指車轉速,得到的動態特性就是指車速與燃油量函數關系式,從而不用探求背後的物理化學規律就得到了數學模型。
在沈陽黎明航空公司實習時去過試車間,除了發動機點火後震撼的場景動人心魄,控制室屏幕上海量的數據也同樣引人注目,我想這么多數據無非就是驗證數學模型或直接實驗法得到數學模型,結合航空發動機這種復雜的系統,對於搞控制的人來說,得到數學模型就夠了,現象背後的原因交給研發的人來探索更好。
⑧ 為什麼大數據時代讓我們生活變得沉重
在大數據高速發展並不斷拓寬應用邊界的同時,監管卻無法及時跟上,以至於一些缺乏操守和剋制的公司,惡意泄露甚至出售用戶隱私,對大家的生活造成很大影響。
大數據給我們帶來了如此大的便利,可能會導致我們過度依賴它,導致最後我們總是聽同一類型的歌,看相似觀點的新聞評論,我們最後可能被大數據困在某個小圈子裡,無法聽見外面不同的聲音,從而使我們變得狹隘。所以大數據的使用也是需要慎重的,它只是一個工具,而不要完全被工具左右了。
提出人物
最早提出「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。
⑨ 大數據時代,人類生活面臨顛覆
大數據時代,人類生活面臨顛覆
對於IT領域來說,最近有很多非常新的概念,比如雲計算、物聯網,當大家剛剛對這些概念開始有清晰的認知時,又一個全新概念出現了——大數據。什麼是大數據?大數據概念究竟指向何方,大數據背後能怎樣改變我們生活?會不會給我們的生活和工作帶來困擾?
本報與第一財經頭腦風暴節目合作探討大數據時代下的問題。參與這次討論的嘉賓有大數據概念的提出者、牛津大學教授維克托·邁爾·舍恩伯格,微軟亞太研發集團、雲計算操作系統首席架構師徐明強,上海市信息化專家、專業委員會專家、復旦大學計算機學院院長王曉陽,科爾尼管理咨詢全球合夥人孫健,復旦大學現代哲學研究所所長俞吾金,啟明創投合夥人童士豪,著名財經評論員石述思。
1 到底什麼是大數據?
維克托:我認為它就是新黃金,我覺得是21世紀最主要的資源,這種資源對社會、企業、個人是否能成功,還是會受苦受難有著很重要的作用。解釋一下,雖然此前我們都有數據,可把它們整理在一起然後分析是非常昂貴的,因此我們更多的注意力都放在了實體資源上,就是真正的黃金、金塊,像勞動力這種資源。但只有最近我們才靠人的知識、創新來創造財富,更靠前一步,我們可以根據數據來進行,因為數據收集以及分析,成本上升的程度都已經改變了,然後我們的數據就可以達到一定規模。最後,大家所尋求的不管你是一個人、一個公司、一個組織,還是這個社會,無外乎就是這種所謂的新黃金。
為什麼最近黃金的價值會跌得很厲害?因為老黃金不值錢了,沒有新黃金有價值。
童士豪:我的觀點有點類似,第一個是雲,第二個是關系,第三個是未來。像剛才維克托先生提到的,因為雲時代到了,儲存的大量數據的成本非常低,所以能讓大家去利用大數據做工作分析,最近由於很多事情的關系,有更多的關系被理解,所以能去預測未來狀況。用自己的話說,就是在聆聽上花很多時間,看了很多朋友,大家尋找工作機會也好或者是認識對工作有幫助的合作夥伴也好,在這么大的信息里,這么多人把他自己的信息放在上面,就是做了一件事,就是分析。如果你40歲想當創意公司的CEO,你現在20歲,未來20年該怎麼規劃?這就是非常有意思的一件事。
最後可能有不同的可能性,最後會不會給你找到一個最好的方法,那是自己決定的。可能性放在面前,是機會率最高的,怎麼選還是個人決定,所以大數據並沒有抹殺個人的意識。
石述思:大數據首先改變的是我們看待世界的方法,它會對這個時代的很多的價值觀產生劇烈沖擊。舉例來說,因為過去我們東方人特別喜歡一個詞叫因果,我們認為善有善報、惡有惡報,其實根據交管部門調查的數據,在街頭遭遇橫禍的人其實跟道德無關,秦檜的壽命是岳飛的兩倍半,很多貪官在發現之前,那過的確實是令人無限羨慕的生活。因此,通過大數據我們能用一種全新的觀念來看待這個世界,這個世界是有關聯來建構的一個新型的關系,只有科技發展到一定水平,才能達到這樣的高度。
與此同時,在大數據時代,我們該恪守的底線還是要恪守,但它的確在告訴我們真相,因為科學就是在告訴我們真相。我有一個願望,就是剛才講的大數據是新的黃金,我希望它更多地用於社會公益事業,比如,去挽救地震局。這樣能避免很多人道主義的災難和財產的損失,結論是我們過去認為上帝是哲學家或者叫哲人,現在發現他老人家是個老頑童。
2 大數據究竟有沒有對各領域的工作和生活產生影響?
王曉陽:大數據影響了智慧。怎麼理解呢?大數據本身的概念是數據採集和處理,到了一定的程度使我們的社會也好,管理者也好,都能獲益——從城市來講,一個管理者可以聚集這些數據和處理方式,使得我們能用智慧來管理城市,可以從交通管理、公共衛生,還有其他各個方面來管理,這管理是需要數據,數據產生了智慧,然後反過頭來能管理我們的模式。
比如,在公共衛生方面,採集數據到了目前為止其實已經進行了好多年,它的數據採集原來並不是為了大數據來做的,其實是為了一個方便——方便大家去看病。而且你的電子病例等,讓你看病更人性化,或者對醫生來講能更快、更方便地去熟悉病情,但在這種情況下,這個數據一旦採集起來使得我們對整個城市的健康狀況就能進一步了解,所以,剛才講的看病的數據其實是原本的用意,大數據一來其實我們就能看見原來看不見的問題。比如一些比較大趨勢方面的問題,流行病在哪個地方比較多,或者它怎樣流傳的,等等。這些事情我們原來是看不到的,這種情況就是大數據對我們的幫助。
徐明強:先舉個例子,有一個球和一隻螞蟻,球跟螞蟻說,做三維世界的事物太好了,你看這條線上有多少個螞蟻我一眼就看見了,螞蟻說我真的不信,我得按照這條線爬,爬到頭計數器沒有出故障我才知道有多少螞蟻。這能看到三維和二維差了一維,就差了這么大,所以大數據首先它不是數據大,不是同樣的數據多了就變成大數據,而是在原有的二維、原有的資料庫基礎上,再建立一維,給它一個全新的看點。舉例說明,你如果在美國,你是欠了債的,除了債主對你感興趣,還有人會對你感興趣——如果你欠了債,突然你可以還債了,那麼銀行會對你感興趣。在11年前,美國資本一號就發明了一種大數據的應用,它可以找到哪些人是欠了銀行的錢、欠了信用卡的錢,然後它就會觀察你的消費數據,當它發現你可以開始還的時候,他立刻把你再買過來,從此以後他就吃上了你的利息。資本一號這個公司在2001年時,每個季度的增長率是20%,就是因為它大數據的程序,它可以高命中率地發現這個,它是從哪裡找來的數據呢?從沃爾瑪、從各種各樣的消費數據中找到的。從這個實例我們可以看出,大數據這個原有的數據分析商務智能上加了一層,商務智能不能告訴我們別人將要並且能做什麼。
關於我們公司對奧斯卡頒獎的預測,除了對李安的預測沒對,其他都對了。其實,我們的預測是把所有人員都做了一個概率,所以做了19個預測對的,是我們放在第一概率的獲獎人,下面還有4個是第二概率,所以李安導演我們放在第二概率,我們把他放在後面。
這個預測跟大數據很有關系,首先做大數據需要有IQ,智商,就是說,這個模型要非常好。我們公司做IQ的人叫加戴維·羅斯查爾德,是我們研究部門的一個人。還有其他人,我要講講,他這個人的IQ有什麼差別?他這個人的IQ用了一個非常簡單聚合的模式,除了IQ還有什麼呢?智商以後還要有勤商,勤奮的勤。勤商就是說,他非常勤奮地去找數據,要找多種數據,還要找非常實際的數據,所以他在網上、社交網上都有找。有一些找不到的數據,怎麼辦?他找人做調查,然後找人來做,所以他又有智商,又有勤商,夠不夠呢?還不夠,五年前這種事情做不到,為什麼?五年前他要做這樣大量的數據的話,自己作為一個研究生的小預算是做不到的,但雲計算的出現,他就可以做到了。可以延伸這些數據,用很多處理器來處理,現在他就是用了雲做這樣一個計算,最後成功了。
孫健:我寫的是機會加危險,就是危機。我同意維克托的結論,說這是一個新的金礦,或者有說法叫新的機會,但不要忘記那同時會帶來很多危險。如果我們不能很好地去處理大數據的話,特別是像在我們日常工作中接觸到的很多中國企業,它們大多數甚至在最基礎的數據分析方面還比較落後,這就意味著,我們該怎樣很快地過渡到大數據時代去,去面對大數據挑戰,如果准備不好,那我很擔心,這會像以往很多新技術來了以後的情況,很容易造成很多企業邯鄲學步——連走路都還沒學會,就要學跳,一下子邁到大數據時代,企業不知道怎樣真正地讓大數據發揮作用。
在我們的行業里,因為大數據而做了很多產品創新。談到大數據時代的破壞型創新,實際上也是談了同樣的問題,因為在創新的同時,事實上要推導、顛覆原來的很多東西,包括我們咨詢行業的很多服務和產品都要做更新,也要跟上時代。比如,我們有一家很大的全球性零售企業,它每天要處理海量數據,那麼在海量數據之前,雖然有了技術手段,它仍需找到一個很好的切入點,去解決大數據該怎樣應用到業務中,改變業務模式,給業務創新帶來價值。因為要把這個大數據加以更好地利用,再便宜還是投資,還是要改變,硬體、軟體各方面要做配置,甚至對應的組織要做調整,一個企業要做進一步調整才能適應大數據時代的需求,才能讓大數據發揮作用。所以我們做的工作就是幫助企業找到它的價值創造,建立業務模式,來證明在這方面做這樣的投資,讓大數據發揮作用是值得的。
俞吾金:我想提出不同看法,就是因為人類的思維有一個特點,他把覺悟的東西誇大為全球的。比如你看到三隻天鵝是白的,但其實有一千隻天鵝都是白的,可在澳大利亞發現了一隻黑天鵝,就把一切天鵝都是白的這個原理給推翻了,我覺得大數據這個問題是重要的,但如何正確看待它,不能走極端。大數據反映了人們從數量關系去理解生活的一種思維方法,從古代開始就非常重視,當然古代沒有使用大數據這個概念。
數字本身對生活的重要性越來越大。從哲學上看,它有實踐性,比如數學中的π,圓周率,它等於3.1415926……它就把所有大數據都囊括進去了,更容易理解的是三分之一,三分之一的另一種寫法就是0.333333無限被延伸,所以黑客在邏輯學里就強調,這個無限包容在三分之一這個有限中,有限中包含著無限的一個展開,包含所有數據的展開,這就體現了實踐精神。從這個實踐角度看這個數據,我認為大數據在當代的變動中有重要地位,但看它要有眼光,不要誇大也不要縮小。
3 怎麼理解三分之一就把一生所有數據都概括了?
維克托:我不同意俞老師的觀點。數字的歷史很悠久,但是,以前我們對這些數字的處理方式非常有限,光有技術是不夠的,能對數據進行分析,比如像數字,它對你只是一個數字,這個意義不重要,你也可以用一個漢字或一個字母來表示,那從這個角度來看,大數據不過是一個很長很長的數字,你可以用心記住就可以。
但其實,大數據的價值在於,在整個數據的收集過程中,需要運用分析才可以了解。比如,如何進行預防性的維修,如何能夠防止爆發等,我們不是把這個數字簡單地記下來或背下來,而是要通過分析,通過數據統計的分析,通過把它進行整理了解之後分析,這不是你背下來一個數字就可以了,這是非常大的區別。
4 大數據時代究竟會給生活帶來什麼樣的顛覆?
維克托:首先從商業來講,我覺得有三個元素要記住:一個是在商業世界中決策將發生變化,會越來越清楚地證明,要靠數據說話。
在美國,最大的互聯網公司大概是谷歌,每天都有30億搜索請求。有一天他們屏幕上准備用藍色,然後他們就選了一個特別的藍色,但他是要測試41種不同的藍色,來看到底哪一種最受歡迎。他本來想自己來決定:我是首席設計師啊,我就選了一種藍色。但他的老闆說:不行,我需要實證來告訴我們哪一種藍色最受歡迎。但這個谷歌的首席設計師就辭職了,他說我是首席設計師啊,我是最清楚的。通過很多測試發現,有一種藍色的藍是裸眼看到和設計師選的藍色不太區別得開,但另一種通過測試所產生的藍色,更受歡迎,有更多點擊量。通過實證做出來的決策更有效。類似例子有很多,都說我做這行已經幾十年了,我說的肯定沒錯。這種傳統的社會觀念和思維方式會受到挑戰,我們的決策必須要靠數據說話,這是第一點。
第二,就是在我們出去說話時,我們要注意不能誤讀數據,錯誤的數據是不行的。也就是如果原來的材料不對,原料是垃圾,出來的東西肯定也是垃圾,這個公司出這些數據的話都是比較容易理解的,但可能不是你應該熟悉的數據。
第三個是挑戰。就是普通產業,尤其是計算機產業,數據會超越它們,這個可能是有一種挑戰式的說法。如果沒有足夠的數據,你也趕不上一個大量數據的比較平庸的模型,也就是為什麼說數據會超越那些產業。比如機器翻譯這件事,在六七十年代,IBM花了很多錢想用機器翻譯,它要弄一些語言的規則輸入到機器中,但效果不太好,它就有了一個新想法,它不是把一種語言的語法規則輸入機器,而是把加拿大議會中的英法雙語的互譯輸進去,把成千上萬的翻譯資料輸入進去,它就有了大量的累計組織上的資料庫,這個效果就好得多。而谷歌又在這個領域有更多數據,一下子這個翻譯就更成熟、效果更好。可以說,是這個數據使它超越了這個軟體。因為今天這個大數據的力量,可以很容易地獲得想要的資訊,但大概在十年前,需要五十萬個伺服器,大量的儲存以及處理數據的模式,你才能開始一個新業務。今天如果要輸入業務,用雲計算來測試就可以了。比如有一個叫蒂塞德的公司,它有很多產品及價格,它收購一些數據來預測到底一個產品是上架還是下架,雖然他們擁有大量客戶,可這個公司的員工只有13個人,因此它的伺服器有很多,他們擁有大量的數據。可見,這個舞台不僅可以讓大公司來做,而且創新的小公司也能以平等的地位來競爭。
王曉陽:其實講到改變了我們整個思維方式,所謂的就是實驗這個思維,比理論思維更重要,這一點我不是太懂。其實維克托先生剛才舉的例子,是在很多情況下,是我們用數據去驗證以前想要能夠有的東西,有一些智慧確實是在數字里挖掘出來的,這個可能是一個語言來自不同的地方,怎麼講呢?基於在大數據的情況下,其實有一個所謂的循環概念,等於說你有了智慧以後去驗證,驗證數據里又產生了各種各樣的智慧來做這樣的理解,所以從這個角度來講,我覺得是大數據的情況下面,沒有顛覆,而是說一個改進,對我們認知世界的改進。就公共衛生這個話題來說,我們舉的最多的一個例子就是在谷歌,有一個所謂的趨勢預測,它就是用了網民們搜索的詞來預測。
所謂的預測流感,怎麼做?很簡單,就是它去分析了以往的數據,說在流感發生的地域,地域的那個時間大家是用什麼詞去搜索,這樣就可以做統計。做了統計以後,反過頭來用這些搜索詞來預測這個流感,這種情況下是什麼意思?並不見得是說這種數據或大數據的情況就能使我們對這個流感突然有一個新的認識,其實不然,其實是谷歌的那些工程師們有一個想法,認為我們好像流行流感,這和大家有關,而每個人都會用搜索來獲取一些跟流感有關的信息,就有了這樣的關聯。這個關聯怎麼去發現?這就要用數據去發現,用所謂的大數據的做法,去實現我們已有的一些概念的東西,把它實現了之後,就能做預測。所以從這樣的角度講,並不見得是有了大數據,我們就可以把所有的智慧都丟掉,我們不用IQ了,只要數據就好了,這肯定是不行的。一定是IQ加上數據,然後能讓它有個正反的概念,這是大數據所應該乾的事情。
童士豪:我有不同想法,我覺得剛才維克托先生講的一點很有意思,就是對智慧的要求,大數據時代是不一樣的。在大數據時代,對智慧的要求可以低一點,都能產生更好的結果,這是一個有意思的事情。他剛才提了一個例子,之前要做翻譯是很難的,你的規則必須特別強、精簡、完整,才能有60%、70%的准確率。但在大數據時代,我們不用想那些,不用花智慧講那麼復雜的規則和套路,乾脆把幾億個已翻譯好的文章交給電腦,用統計學的方式找到哪種情況下,翻譯的字的另外一個意思是比較對的。這對於智慧的要求其實是降低了,但效果可能會更好。
孫健:可能我們對智慧的理解有歧義。我覺得維克托先生講的我理解,因為他有另一本書叫《Delete》,裡面專門講了這個三重智慧,談了取捨問題。因為隨著存儲技術、網際網路的發展,他講的更多的是知識,知識的要求可以低,但對智慧,我覺得理解不一樣。我理解的智慧是,你判斷一個事物的根本的、真正的洞察能力。就是,你對一個事物的洞察能力還是需要有,不會因為大數據的存在而削弱或不需要了,而恰恰因為大數據的存在才更需要洞察力。
5 大數據時代到底真正來臨了嗎?
王曉陽:大數據時代來不來臨要看你怎麼度量、衡量。現在這個數據的量和種類,以及採集的方式、手段,處理的手段,絕對已經達到了「前無古人,後無來者」的感覺。這個情況下,我們從這個數據採集以及數據處理這個能力方面來講,我們的大數據時代來臨了,但我們使用數據利用數據這個才是剛剛開始,只是剛起步。
而大數據改變我們生活的時代,還沒有完全到來,但為這個我們已經做了很多准備,這是城市的管理問題。我們為大數據時代做了很多准備,比如在數據採集方面已經做了很多准備,怎麼樣利用這個數據來做我們這個智慧城市,這是一個最大的問題。
徐明強:從商業角度來看,我從運用上說,個人認為是來臨了。舉個例子,墨客這樣一個葯材公司,他可以根據天氣性質,比如如果今天冬天特別冷,很多過敏性動物就會冬眠,四五月份突然轉熱時,花粉也開始多了,今年有很多人會過敏,等等,它就通過市場進行營銷,把比如克敏能這種葯材發布出去。
維克托·邁爾·舍恩伯格:美國總統奧巴馬曾說,盡管政府也嘗試,但他總是落後於企業,落後於社會的其他一些群體。所以說搞這種活動能充分激發數據,提供給大眾,而且公司也可以拿這些數據,讓公司能利用這些數據有更多創新。這是一個想法,也許有一些做法,比如商業方法,我認為能通過發揮企業的智慧,發揮像微軟這樣的一些聰明企業的智慧,還是有幫助的,包括和政府的合作來管好社會。
石述思:我有一個感受,當商業巨頭面對屌絲談大數據時,我們都有一種不寒而慄的感覺,因為盡管大數據時代我們每個人都是公平的,我們可以說小公司可以獲得公平競爭待遇,但其實掌握大數據的都是一些巨頭,他們有得天獨厚的優勢來搶我們錢包里的錢,我們很難,因為公司的定義就是在法律允許的范疇中唯利是圖。但我們倒是渴望政府部門能利用大數據為我們提供普惠性的服務,可就像一些智慧城市沒法真正做到智慧管理的案例一樣,所以我對大數據來到中國的前途深表憂慮。還有,即使優秀的公司利用大數據,它也要面對一個現實,比如我們像電視台做廣告的一樣,為什麼現在人依然很多,因為中國貧富差距特別大,如果你掌握了所有消費者的數據,而大多數在今天是無效數據,所以你還是有一個有選擇的大數據的過程,叫有購買力的大數據,所以各種各樣的問題就會出現在我們面前,就是社會本來是我們需要,但它存在很多幕後看不清楚的東西。我們擔心被商業巨頭利用,來完成對消費者進一步的盤剝。
孫健:我覺得從企業角度來看也是同樣的問題。我前面想表達的意思就是,第一我們今天中國很多企業實際上並沒有準備好迎接這個大數據,因為我們現在還停留在比較初級的基礎數據分析時代,我們很多的基礎數據今天都沒有被運用,不要說大數據,就是小數據今天也沒有很好的利用。還有很多假的數據,是因為對這些數據的輸入管理非常不成熟,我自己在工作中接觸很多企業,企業今天做的幾件事大家都在做,有ERP系統,有資料庫,有了數據就往裡面存,但我發覺,有很多中國企業兌現的數據管理沒有規范化的感覺,更沒有很好的利用。這就存在這樣的擔心:最後大數據時代來了以後,我們本來中國企業在這個數據分析的利用上就不擅長,今天有了大數據以後差距會變得更大,以後國際巨頭有一個成熟的數據分析方法,很多健全的商業模式,它會把這個差距變得越來越大。
6 在大數據時代,下一個預言會是什麼,下一個判斷會是什麼?
維克托:接下來怎麼能讓生活比現在更高效,就是要讓城市變得更加智能,這是可行的,為什麼?我強調的是,我們有可能改善我們的公共衛生,改善教育,我們有能力收集數據,公共交通的通化能真正滿足市民的需求,而不只是政客,而且能源消耗也會得到更好的檢測、預測和管理,這樣我們的城市就會更加智能,讓城市的生活更加好。在150年前,曾有預測如果是在城市生活,壽命會更短;在農村生活則壽命長。而150年之後的今天,壽命更加長了,有了大數據我們會更加美好,可是有一個條件,就是那些決策者,他們一定要使用這些數字才可以。
下一步是專家怎麼來做。其實這涉及到在數據時代,數據點是有限的,那麼我們收集的數據,只要我們收集足夠的數據來解決問題就可以了。因為非常復雜、數據點非常少,所以我們的數據點收集起來必須是要高質量的,現在不是這樣的,現在的是更加的多、更加的亂。解釋一下什麼叫更多更亂,更多就是有數據點,關於我們想要研究的一個現象,我們可以更多的進行數據統計,比如在美國,你有DNA基因圖譜,那麼只要2000美金就可以知道你的整個基因圖譜當中的30億這個東西是怎麼組成的,這樣你就可以知道那些30億個精對,現在如果說有一個基因組成可能會導致什麼樣的癌症,就可以查基因圖譜,說我是不容易生這個病的,這是為什麼可以預測是否患癌症的原因。那麼有更多的數據便會存在一定的不準確性,所以,我說更多且更亂,所以這里允許一點點的不準確,或者可以亂一點,這個所謂的亂就是指,不是說每一個數據點都要達到最高的准確度,這個結果就是,不是百分之一百完美,但在大數據這樣一種方向,或者說,我們在正確的數據點上要知道一個方向。知道方向比晚一點知道完美的數據更有效。比如交通預測,也許當下看到的交通預測比實際運用中要晚了20分鍾,可能看起來太晚了,但如果這是預測一個星期的信息,就夠了。
王曉陽:大數據時代對我們這個城市更加理解,所謂的理解就是你知道這個城市裡發生了什麼,這非常重要。在以前,這個城市的管理都是一拍腦袋,有的時候拍腦袋拍出很好的來,拍腦袋也能拍出非常棒的一個城市來,但是有的時候呢?拍腦袋可能太離譜,這種情況下在大數據時代我們怎麼樣利用好,就是我們所講的。而為了政績也可以用大數據來考慮,說這個數字到底對它的政績有沒有好處?就是名義是一個很大的方面,大數據方面不光是理解我們這個城市發生了什麼,而且還能了解我們城市裡的民眾在想什麼?這點對城市管理來說非常重要,城市不光是一個硬體設施,不光是地鐵和高樓,人在裡面非常重要。
以上是小編為大家分享的關於大數據時代,人類生活面臨顛覆的相關內容,更多信息可以關注環球青藤分享更多干貨
⑩ 淺談大數據對網路營銷的影響
淺談大數據對網路營銷的影響
大數據的使用將貫穿整個網路營銷過程,為企業的管理及決策提供有力的依據與支撐,能有效降低企業運營成本,改進企業管理,提高營銷決策效率,提高企業的經營效益。以下是我將大數據分析納入企業未來業務營銷計劃的五大好處。
1.有價值的見解
當企業使用預測分析時,它可以幫助公司進行長遠規劃。通過預測分析,企業可以查明趨勢,了解客戶,提高業務績效,納入戰略決策,最終預測客戶和競爭對手的行為。使用預測分析工具,企業能夠預測什麼類型的客戶更有可能購買哪種類型的'產品。這些有價值的見解將有助於指導整個企業的營銷策略。
2.減少障礙
在營銷中,障礙可以被視為阻礙企業進入某一領域或業務行業的事務。大數據可以幫助企業減少這些障礙,使企業能夠更好地與客戶和社區建立聯系。這個數據營銷時代已經開始接觸創業公司和小企業,他們現在面臨的市場准入壁壘比過去要低。
由於從大數據獲得的見解,企業更好地了解他們的消費者。擁有這種新知識,他們可以避開典型的障礙,如針對錯誤的市場,缺少他們的廣告上的標志,或由於缺乏理解,導致其他簡單的錯誤。
3.滿足客戶購買旅程的消費需求
數字革命已經改變了客戶購買路徑,從線性層次化流程改變為圓形的接觸點模式。隨著媒體數量的增加,無論是社交媒體還是在線評論,客戶都會體驗到探索公司的新方式。企業應對這種新的消費模式的最佳方法是在這些不同的點上滿足客戶。
信息技術,智能視頻分析,以及數據收集的進步使企業有可能創建定製的服務,消費者將被吸引。利用大數據使客戶提供無法抵抗的產品,可以幫助企業繼續蓬勃發展。這些基於大數據提供的洞察力的交易和產品允許企業開發和發布更有可能贏得消費者青睞的產品。
4.客戶忠誠度
使用大數據分析提供的洞察力來推動企業採取營銷活動的營銷人員可以更好地理解和滿足他們的消費者。預測消費者的行為並滿足他們的需求,有助於發展品牌和消費者之間的關系。大數據的洞察力允許企業培養和滋養這些關系,同時最終提高客戶忠誠度。
5.收入增長
通過利用上面的大數據優勢,可實現實質性收入增長。當利用從大數據分析收集的洞察力時,企業可以通過減少障礙,與客戶進行戰略性互動以及提高客戶信賴度來增長收入。
;