A. 電力企業從大數據中得到了什麼
1、線路優化,在沒有大數據之前,某小區可能你們的設計容量非常龐大,但回事實上只是浪答費,這個小區沒有預計的那麼耗電,而在鋪設地下電纜這些,如果有大數據,也可以做到更精準。
2、如果你有用戶的用電數據,其實可以大概知道該用戶的消費水平,未來或許能夠提供一些精準服務,例如:某個用戶常年電表不走,可能是房子空置,某一天開始,用電大增,可能是房子已經在裝修了,後續是不是該買各種家電了?
3、電力的調配,把電力輸送到真正需要的地方。
4、產能優化,是風電、核電、煤電、還是水電帶來的效益更好?大數據或許可以幫你解答這個問題。
5、設備的維護,錄入所有設備的數據信息,哪些設備該保養該更換一目瞭然。
說那麼多,要達到那一天感覺還是很遙遠,現在大數據大多還是停留在表面,與產業結合還不是很多。點我名字,掃我大頭貼,發現更多大數據之美。
B. 大數據在電力行業的應用前景有哪些
關鍵技術:
電力大數據的發展也需要一些關鍵技術的支撐,(1)大數據傳輸及存儲技術:電力系統各個環節的運行數據及設備狀態在線監測數據將會帶來海量數據傳輸和存儲問題(2)實時數據分析及處理技術:在未來的電力系統環境中,從發電、輸變電環節,到用電環節,都需要實時數據處理,藉助電力大數據的分析技術可以從電力系統的海量數據中找出潛在的模態與規律,為決策人員提供決策支持。(3)大數據展示技術:包括可視化技術、空間信息流展示技術、歷史流展示技術等.
目前,電力大數據應用場景主要在以下方面:
(1)規劃—提升負荷 預測能力。通過對大數據的分析,利用數據挖掘技術,更准確地掌握用電負荷的分布和變化規律,提高中長期負荷的預測准確度。
(2)建設—提升現場安全管理能力。對現場照片進行批量比對分析,利用分布式存儲、並行計算、模式識別等技術,掌握施工現場的安全隱患,或者核查安全整改措施的落實情況。
(3)運行—提升新能源調度管理能力。利用機器學習、模式識別等多維分析預測技術,分析新能源的出力與風速、光照、溫度等氣象因素的關聯關系,更准確地對新能源的發電能力進行預測和管理。
(4)檢修—提升狀態檢修管理能力。研究消缺、檢修、運行工況、氣象條件等因素對設備狀態的影響,以及設備運行的風險水平,利用並行計算等技術實現檢修策略優化,指導狀態檢修的深入開展。
(5)營銷—提升對用電行為的分析能力。擴展用電採集的范圍和頻次,利用聚類模型等挖掘手段,開展對用電行為特徵的深入分析,並實施區別化的用戶管理策略。
(6)運監—提升業務關聯分析能力。利用流式計算、可視化和並行處理等技術,實現全方位在線監測、分析、計算。
前景:
一、宏觀經濟形勢評價與預測
二、服務電力企業、電力用戶;1.用戶能耗分析及用電優化;2.用電信息徵信體系服務;
C. 大數據在電力行業的應用前景有哪些
我們首先要先了解清楚什麼是大數據?大數據是基於互聯網的定義,而大數據技術主要處理「涌現」性的數據。
首先,大數據不使用「大數據」的概念,而是物聯網+雲+數據處理的綜合概念。
其次,對電力數據的分析也在不斷發展,學習大數據處理技術,恢復電力數據也有許多優點。
在不久的未來,物聯網和智能電網高度發達的時候,店裡大數據是非常必要的。
D. 為什麼電網企業要做大數據分析
為什麼電網企業要做大數據分析呢?這個必須得要分析,不分析的話,整個全市用電企業怎麼去分配這些數據,必須做依據,而通過依據再進行分析。
E. 電力企業從大數據分析中能得到什麼
電力企業從大數據分析中可以得到用戶的使用數據
F. 電力大數據的電力大數據技術
電力大數據技術滿足電力數據飛速增長,滿足各專業工作需要,滿足提高電力工業發展需要,服務經濟發展需要。電力大數據技術包括:高性能計算、數據挖掘、統計分析、數據可視化等。 數據挖掘技術是通過分析大量數據,從大量數據中尋找其規律的技術,主要有數據准備、規律尋找和規律表示3個步驟。數據准備是從相關的數據源中選取所需的數據並整合成用於數據挖掘的數據集;規律尋找是用某種方法將數據集所含的規律找出來;規律表示是盡可能以用戶可理解的方式(如可視化)將找出的規律表示出來。
數據挖掘的任務有關聯分析、聚類分析、分類分析、異常分析、特異群組分析和演變分析等等。 統計分析,常指對收集到的有關數據資料進行整理歸類並進行解釋的過程。 統計分析可分為描述統計和推斷統計。
1、描述統計
描述統計是將研究中所得的數據加以整理、歸類、簡化或繪製成圖表,以此描述和歸納數據的特徵及變數之間的關系的一種最基本的統計方法。描述統計主要涉及數據的集中趨勢、離散程度和相關強度,最常用的指標有平均數、標准差、相關系數等。
2、推斷統計
推斷統計指用概率形式來決斷數據之間是否存在某種關系及用樣本統計值來推測總體特徵的一種重要的統計方法。推斷統計包括總體參數估計和假設檢驗,最常用的方法有Z檢驗、T檢驗、卡方檢驗等 2012年7月10日,信通公司成功舉辦大數據開啟智能電網新時代研討會。本次研討會作為公司大數據戰略推進重要一環,總結公司大數據戰略實施以來的重點工作,加深理解大數據對電力信息通信事業的意義,促進大數據生態環境建設,並展望公司及大數據未來發展方向。本次研討會特別邀請了中國寬頻資本基金董事長田溯寧博士、《證析》作者鄭毅先生、浙江海鹽供電局徐光年主任做專題演講。
研討會的成功舉辦,使大家進一步了解了大數據、信息通信技術在智能電網發展、未來科技發展的重要意義,同與會各位專家的交流也使大家開闊了視野、增長了知識。本次研討會也標志了電力大數據戰略將進入攻堅實戰階段,與會人員紛紛表示,要牢牢把握住電力信息通信引領智能電網飛速發展的寶貴機遇,以昂揚的鬥志面對新的挑戰! 2012電力行業信息化年會於2012年11月3-4日在北京舉行。年會由中國電機工程學會電力信息化專業委員會、國網信息通信有限公司聯合主辦,南瑞集團國電通公司承辦。國家電監會信息中心、國家電網公司信息化工作部、中國南方電網公司信息中心、中國電力建設集團公司信息中心、中國能源建設集團有限公司科技信息部以及各發電集團公司、各省電網公司信息部門等為會議的支持單位。
本次年會主題為「大數據與寬頻中國」。「大數據」將給電力企業帶來新一輪商業模式轉變和價值創新,寬頻中國戰略更為電力信息化發展提速。來自國家電力監管委員會、國家電網公司、國網信息通信有限公司、輔業集團公司、發電集團公司、網省公司等單位的30多位專家和代表將圍繞主題在年會上發言或演講。
G. 國網福建電力推進能源大數據中心建設
8月24日獲悉,國網福建電力部署推進能源大數據中心建設工作,高標准做好能源大數據中心工作整體規劃,穩步推進能源大數據中心實體化運作,強化數據產品質量,更好支撐國家電網公司戰略落地,支撐 社會 和公司的治理能力現代化。
國網福建電力 探索 建立科學、合理的協作機制,與政府部門、院校、專家等建立密切的合作關系,加強策劃研究,提升數據產品的質量;加快外部數據的匯聚接入,深化數據接入的技術方案和管理機制研究,促進能源行業數據統一歸集、統籌管理和資源共享,建立科學、准確的大數據分析模型,讓數據更加完整、更有價值;統籌規劃推進數據基礎設施建設,制定數據應用管理細則,提出數據應用需求庫、儲備庫、研發庫和產品庫「四庫」規范化管理要求,加強數據基礎管理,確保數據質量和安全;加強隊伍建設,注重信息、管理專業人才培養,更好服務能源大數據中心發展。
該公司以市場需求為導向,強化精準投資,加強產品運營和應用管理,推進數據產品應用迭代,確保數據產品增值,提升研發效益。目前,該公司構建「電易+」數據產品體系,研發鄉村振興電力指數、茶產業用能可視化看板等20多項數據產品;推進企業排污治理、住宅空置分析、群租房識別等數據產品的對外增值。(林梅妹)
H. 大數據在電力行業的應用前景有哪些
大數據是指無法在可容忍的時間內用傳統信息技術和軟硬體工具對其進行感知、獲取、管理、處理和服務的數據集合。
大數據已經滲透到每一個行業和業務職能領域,並逐漸成為重要的生產因素。
電力大數據:
對於電力行業而言,電力生產涉及的運行工況參數、設備運行狀態等實時生產數據,現場匯流排系統所採集的設備監測數據以及發電量電壓穩定性等方面的數據,電力企業運營和管理數據如交易電價、售電量用電、客戶信息、綜合數據等共同構成了。
根據電力行業特徵,電力大數據主要來源於:電力生產、管理運營、智能電網。
智慧電力解決方案:利用智能和科學的智慧電力解決方案,如管理及優化企業停電計劃的智能停電管理系統,幫助電網企業優化建設改造投資計劃的智能電網評估與投資優化決策系統,可智能感知電網實時運行狀態並輔助監管人員決策的電網狀態智能感知與報警系統等。
大數據支撐智能電網發展:
在本質上,智能電網是「大數據」在電力上的應用,智能電網的理念是通過獲取更多的如何用電、怎樣用電的信息,來優化電的生產、分配以及消耗。
在智能電網中引入了信息流的概念,即電網要能夠把電能流信息流結合在一起,實現傳輸能源的同時實現數據的採集。智能電網還通過優化模型對數據進行深度挖掘和分析,預測電能流的情況,最終實現清潔發電、高效輸電、動態配電、合理用電的智慧電力的目標。這些目標的實現都需要電力大數據
的支撐。
信息化與智能化是電力行業發展的趨勢,而若要實現電網的信息化與智能化,電力大數據 將是不可或缺的支撐。
I. 大數據時代電力營銷管理創新研究論文
大數據時代電力營銷管理創新研究論文
摘要: 對電力企業來說,大數據營銷能基於海量數據的分析,為其制定營銷戰略提供依據,而如何在大數據基礎上進行電力營銷管理創新是亟待解決的大問題。本文首先闡述了目前基於大數據電力營銷管理的弊端;其次分析了基於大數據的電力營銷管理面臨的機遇和挑戰;最後提出了基於大數據的電力營銷管理創新,以促進電力企業穩定、長久發展。
關鍵詞: 大數據;電力營銷管理;創新
在當前的大數據環境下,電力系統既面臨新的發展機遇,也面臨著新的挑戰。對電力系統來說,大數據不僅是科技生產力進步的具體體現,也是新形勢下電力系統發展、管理及技術改革的重要依據,電力系統的大數據包括生產、運營和管理三方面。電力營銷是電力系統的重要部分,對提高企業的核心競爭力及確保企業的可持續發展具有十分重要的作用。然而由於各種因素的影響,電力營銷管理目前存在諸多弊端,在大數據時代,對電力營銷創新管理模式進行研究迫在眉睫,基於此,筆者對基於大數據的電力營銷管理創新進行研究。
1.基於大數據的電力營銷管理的弊端
在大數據背景下,國內電力企業營銷管理存在諸多弊端,具體表現在下述幾方面:
第一,電力營銷管理理念亟待改進。電力行業長久以來屬於國家的壟斷行業,而隨著各種新型能源的不斷出現,電能面臨著巨大的競爭,然而其營銷設計仍以業務導向為核心,很少考慮市場的競爭狀況和客戶的需求,沒有建立一種以客戶為核心的營銷管理機制;
第二,電力營銷業務功能亟待完善。電力系統的營銷政策、技術研究、運維及市場開拓等方面的機構不完善,不健全,部分功能缺失;
第三,電力營銷運營效率亟待提升。電能計量檢定、人員及相關設備重復配置;規劃、生產的部門對電力營銷管理支持力度較弱;故障搶修、業擴報裝等服務流程不協同。綜上所述,電力營銷管理亟待進行創新,以適應新形勢下客戶對供電服務的要求。
2.基於大數據的電力營銷管理面臨的機遇和挑戰
2.1機遇
在大數據快速發展的背景下,電力系統營銷管理面臨的機遇主要表現為:
第一,國內經濟穩定發展,電力需求仍持續增加;
第二,國家實施節能減排,電能應用范圍更加廣泛;
第三,國家電網創建「雙一流」,為加快營銷發展注入新動力。
2.2挑戰
在大數據快速發展的背景下,電力系統營銷管理也面臨諸多挑戰,具體表現為:
第一,國家經濟轉型期的'結構優化調整及節能減排戰略的實施,國家控制能源消費總量,大工業用電比重會呈現一定程度的下降。循環經濟、節能環保產業、分布式電源等會日益增加,對電力營銷市場的發展帶來威脅,影響電能的市場佔有率;
第二,國家大力開發低碳技術,清潔能源要求必須建立一種新型的供用電模式,而現有的供電模式要滿足這些應用需要法律、政策、技術等眾多方面的支持才能實現;
第三,國家電網推進「三集五大」要求電力系統必須要轉變營銷發展方式。目前電力系統的營銷仍然資源分散、管理層級多,亟待進行整合;營銷管理的專業化、組織結構扁平化、管理層級等方面亟待改進,集約化、智能化的服務手段亟待提升等,使得目前電力系統的營銷管理面臨巨大挑戰。
3.基於大數據的電力營銷管理創新研究
在大數據及信息化背景下,電力企業要提高核心競爭力,必須要順應時代潮流,及時對傳統的營銷管理體系進行重構,通過利用大數據分析研究結果進行電力營銷,具有極大的市場價值。
3.1通過大數據分析客戶的潛在需求行為
大數據最主要的特徵之一是海量的數據,電力企業要獲取比較精準的數據,必須進行大量數據的分析研究尋找客戶的潛在需求。所以對電力企業來說要重建營銷管理體系,提高核心競爭力必須要制定多種方案,通過大數據的分析結果尋找潛在的客戶需求,站在用戶的角度,分析用戶的電能消費行為和特點,通過這些分析及時改變自己的營銷管理模式,提升服務質量,提高客戶滿意度和忠誠度,最終提高電力企業的知名度。
3.2通過大數據分析精準定位消費客戶,進行個性化營銷
從大數據提供的海量信息中分析客戶的消費行為,找出電力系統最精準的用戶,以便電力企業的營銷能實現精準化,同時根據精準化消費群體的特徵建立針對性的營銷方式,從而能劃分出精準的消費客戶,進行個性化營銷。隨著經濟的發展和用戶需求的提升,電力企業也逐漸重視電力營銷的精準化,而大數據的出現不僅使精準化營銷變得更加高效,也極大地提升了服務和產品質量,使得消費者市場也發生一定程度的變化。消費者市場的劃分必須要經過大數據才能實現精準的分析,這種分析結果面臨的是個體消費者,而並非是群體,在這種情況下,電力系統的個性化營銷在不久的將來一定會成為電力系統的營銷主體。
3.3運用大數據分析,製品新產品,拓展新市場
對電力系統來說,傳統的以業務導向為核心的營銷管理已經難以滿足現代化的需求,通過大數據分析結果制定針對性的營銷策略是十分重要的,這對於電力企業開拓市場和業務起著決定性作用。如騰訊在開發游戲時,總是先通過大數據對游戲用戶行為進行精準的分析然後再推出產品,通過這種方法能使其在推出手游時更具有針對性和精準性。因此電力企業通過使用大數據分析客戶的消費行為,開拓新業務、新市場是未來發展的必然趨勢,根據大數據分析的結果為客戶制定更加個性化的需求,並進一步制定針對性的營銷渠道,拓寬產品領域。
3.4依靠互聯網技術,合作開展大數據營銷,開展多元化服務
隨著互聯網營銷的風靡,很多行業越來越重視網路營銷,他們通過使用大數據進行網路營銷。電力系統要想持續、穩定、可持續發展,必須要充分利用互聯網進行大數據營銷,除了要在電力系統領域建立相關的資料庫,利用資源優勢外,還要不斷拓展業務,通過業務延伸實現電力企業的多元化發展模式。多樣化服務的開展可從下述幾方面著手:客戶經理對客戶的用電狀況進行詳細的統計和分析,提出的建議中不僅要有生產班次的安排,還必須要為客戶的用電狀況提供針對性的無功補償。站在客戶角度為客戶節約電費著想,為客戶的用電負荷進行合理、科學的指導,這不僅能有效地節約電費,還能有效減少設備的能耗。電力企業還要在基於自身優勢的基礎上,不定期檢查用電設備的運營狀況,及時排查運行過程中存在的安全隱患,這對確保配電網的穩定運行具有重要作用。要對所在區域的電網進行改造時,要及時通知大客戶,並將規劃改造的詳細情況與大客戶進行溝通交流,以得到客戶的理解和支持,這對電力企業的穩定發展意義重大。
3.5與稅務部門合作減小電費回收風險
對電力企業來說,電費能否正常回收是確保其正常運作和提高經濟效益的關鍵環節,尤其是大客戶的電費回收,由於受到各種因素的影響,電費回收難一直是難以解決的難題。目前多數電力企業為了加強電費回收,通常採取如下措施:強化合同管理、建立信用評級制度、嚴格客戶資質審核、高壓用戶電費擔保模式等,在這些措施中,高壓用戶擔保模式具有較好的效果,然而也存在一定的不足之處。對電力企業來說,僅僅具有採集客戶的用電信息數據,對客戶的資金信息難以准確把握,高壓用戶擔保模式雖然讓電力企業通過銀行掌握相關的資金信息,然而很多企業的現金流並不通過銀行,因此獲得信息並不準確,在一定程度上影響電費回收風險的控制效果。為了有效解決這種弊端,可建立一種能將用電企業的資金流動信息整合到電力系統大資料庫的營銷管理中,而與稅務部門進行合作能達到此目的。具體實施措施如下:首先,與稅務部門協調,將電力系統大數據平台增加一個調取用電企業每月納稅信息的模塊;其次,根據用電企業的納稅和銀行信貸狀況,計算電費回收風險指數,評估風險;最後,根據評估結果建立預警機制,對於部分電費回收風險較大的企業可採取各種手段介入電費回收。
4結束語
綜上所述,大數據時代的來臨給傳統企業和互聯網企業的營銷管理帶來巨大的沖擊,越來越多的企業開始利用大數據進行營銷管理,電力企業也要與時俱進,持續改革,在大數據時代下重構營銷管理體系,以提高其核心競爭力和經濟效益。
參考文獻:
[1]宋寶香.資料庫營銷:大數據時代引發的企業市場營銷變革[J].價值工程,2014,31(30):132-134.
[2]孫柏抓.大數據技術及其在電力行業中的應用[J].電氣時化,2013.8:33-35.
[3]龐建軍.大數據背景下的電力營銷市場行業發展趨勢分析[J].科技視界,2014(32):295-296.
;